RESEARCH ARTICLE


Microparticulate Cortical Allograft: An Alternative to Autograft in the Treatment of Osseous Defects



H. Thomas Temple*, Theodore I Malinin
Tissue Bank, Department of Orthopaedics, University of Miami, Miller School of Medicine, Miami, Florida, USA


Article Metrics

CrossRef Citations:
14
Total Statistics:

Full-Text HTML Views: 613
Abstract HTML Views: 426
PDF Downloads: 245
Total Views/Downloads: 1284
Unique Statistics:

Full-Text HTML Views: 395
Abstract HTML Views: 293
PDF Downloads: 172
Total Views/Downloads: 860



Creative Commons License
© Temple and Malinin; Licensee Bentham Open.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.

* Address correspondence to this author at the Tissue Bank, Department of Orthopaedics, University of Miami, Miller School of Medicine, Miami, Florida 33101, USA; E-mail: htemple@med.miami.edu


Abstract

Benign bone tumors are commonly diagnosed and treated. Following tumor removal, the defect in the bone can be filled with auto- or allografts, (degradable) bone substitutes or non-degradable polymethylmethacrylate. The ideal substitute for this purpose should provide immediate structural support and readily incorporate into bone over a short period of time. Experimentally, microparticulate allograft has been shown to incorporate quickly in metaphyseal and metadiaphyseal cortico-cancellous defects in primates [1]. Using a combination of small allogeneic cortical graft particles (< 250 µm), bone defects were filled following intralesional excision in 97 consecutive patients with benign and low grade malignant tumors and tumor-like conditions of bone. The clinical results and rate of radiographic incorporation and osseous consolidation were recorded and analyzed. These patients underwent 104 procedures in which osseous defects were packed with microparticulate allograft. The follow-up was from 23 to 49 months. There were 94 (90.3%) closed defects and 10 (9.7%) open defects. The average size of the grafted defect was 42.8 cm3 (0.48 - 315.0 cm3). Internal fixation was used in 11 of the 104 procedures (10.6 %). Radiographically, incorporation was observed in 91% of patients and consolidation in 60%. There were eleven failures (10.6 %), eight (72 %) due to tumor recurrence. Seven of eight patients with tumor recurrence underwent a second resection and grafting procedure that resulted in allograft incorporation and defect healing. There were two deep infections requiring debridement with retention of the graft; both resolved with satisfactory healing.

Both incorporation and consolidation were observed in over 90% of patients with a low rate of complications. The use of small-particle cortical allograft proved to be an effective alternative to autogenous bone graft in patients with metaphyseal and metadiaphyseal surgical bone defects.