RESEARCH ARTICLE


Ultrasonically Assisted Anchoring of Biodegradable Implants for Chevron Osteotomies – Clinical Evaluation of a Novel Fixation Method



Kai Olms1, Thorsten Randt1, Nils Reimers2, Nils Zander3, Arndt P. Schulz*, 4
1 Praxisklinik Am Park, Bad Schwartau, Germany
2 University of Applied Sciences, Lübeck, Germany
3 Stryker Osteosynthesis Kiel, Germany
4 Department of Orthopedics and Trauma, University Hospital Lübeck, UKSH, Ratzeburger Allee 160, D-23538 Lübeck, Germany


Article Metrics

CrossRef Citations:
5
Total Statistics:

Full-Text HTML Views: 1140
Abstract HTML Views: 397
PDF Downloads: 323
Total Views/Downloads: 1860
Unique Statistics:

Full-Text HTML Views: 625
Abstract HTML Views: 260
PDF Downloads: 224
Total Views/Downloads: 1109



Creative Commons License
© Olms et al.; Licensee Bentham Open.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/) which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.

* Address correspondence to this author at the Department of Orthopedics and Trauma, University Hospital Lübeck, UKSH, Ratzeburger Allee 160, D-23538 Lübeck, Germany; Tel: +494515002642; E-mail: schulz@biomechatronics.de


Abstract

Reconstructive osteotomies for the treatment of Hallux valgus are among the most prevalent procedures in foot and ankle surgery.

The combination of biodegradable materials with an innovative method for fixation by application of ultrasonic energy facilitates a new bonding method for fractures or osteotomies. As clinical experience is still limited, the aim of this study was to assess the safety and performance of the SonicPin system for fixation of Austin/Chevron osteotomies.

Chevron osteotomy was performed on 30 patients for the treatment of Hallux valgus. The used SonicPins were made from polylactide and are selectively melted into the cancellous bone structure during insertion by ultrasonic energy. Patients were followed for one year, which included X-ray and MRI examinations as well as evaluation of life quality by EQ-5D (EuroQol).

The MRI after three months showed adequate bone healing in all cases and no signs of foreign body reactions, which was again confirmed by MRI 12 months postoperatively. The bony healing after 12 months was uneventful without any signs of foreign body reactions.

In summary, based on the low complication rate and the significant improvement in health related quality of life (EQ-5D) reported in this study, fixation of an Austin/Chevron osteotomy with a SonicPin for treatment of Hallux valgus can be considered to be safe and efficient over the short term.

Level of Clinical Evidence: Therapeutic Level III.

Keywords: Biodegradable implants, chevron osteotomy, Hallux valgus, Polylactide pins, ultrasound activation..