The Open Petroleum Engineering Journal




(Discontinued)

ISSN: 1874-8341 ― Volume 12, 2019

Analysis on Production of Coal Bed Methane Considering the Change in Permeability of Coal Rock



Zhu Likai1, 2, Ji Youjun3, 4, *, Yang Tianhong1, Li Xiaoyu3
1 Center for Rock Instability and Induced Seismicity Research, Northeast University, Shenyang 110819, China
2 Shenyang Research Institute of China Coal Science and Industry Group, Shenyang 110016, China
3 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu, 610500, China
4 School of Geoscience and Technology, Southwest Petroleum University, Chengdu, 610500, China

Abstract

Based on the mechanism of migration of the coal bed methane (CBM), and taking into account the deformation of the coal rock during the process of CBM production was also taken into account, a coupled mathematical model considering the interaction of solid and fluid for methane extraction was built. The coal gas extraction of JINcheng coal mine was taken as an example, some typical coal sample was chosen to test the permeability under different confining pressure. The curve for permeability of coal rock versus effective stress under different confining pressure was obtained, a numerical model considering the variation of permeability for methane extraction was set up. The influence of deformation of coal rock on the gas production was simulated and analyzed. The simulation results indicate that the productivity curve considering deformation of rock is closer to the actual production data, at the initial stage of production, the gas rate is less than the case without considering deformation of rock, but the time of stable yield will last longer, and this matches the actual methane extraction, therefore, we recommend that the deformation of coal seam should be considered during the prediction of methane production for JINcheng coal mine.

Keywords: Deformation, Methane, Numerical Simulation, Prediction for production of CBM.


Article Information


Identifiers and Pagination:

Year: 2016
Volume: 9
First Page: 289
Last Page: 298
Publisher Id: TOPEJ-9-289
DOI: 10.2174/1874834101609010289

Article History:

Received Date: 22/07/2016
Revision Received Date: 25/08/2016
Acceptance Date: 31/10/2016
Electronic publication date: 26/12/2016
Collection year: 2016

© Likai et al.; Licensee Bentham Open

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.


* Address correspondence to this author at the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Chengdu, 610500, China; Tel: +86 18380172978; E-mail: jiyoujun0319@163.com.



Track Your Manuscript:


Endorsements



"I have to express my sincere appreciation for your hard and professional work. Thank you very much!"


Si Zhang
Institute for Strength and Vibration of Mechanical Structures,
Yangtze University, Jingzhou,
Hubei Province,
China

"My experiences in publishing a paper with Bentham Open is good. I must say that the speed of publication in The Open Petroleum Engineering Journal is very fast. It takes only two month for the pioneer reviewing process. The delay was caused by me. And what’s more, the publisher’s office is quite helpful. I guess they are dealing with thousands emails every week, but they process my request in a very short period of time."


Xin Ma
School of Science, Southwest Petroleum University, Chengdu, China


Browse Contents



Webmaster Contact: info@benthamopen.net
Copyright © 2023 Bentham Open