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Abstract: Phenotypic drug discovery, primarily abandoned in the 1980’s in favor of targeted approaches to drug devel-

opment, is once again demonstrating its value when used in conjunction with new technologies. Phenotypic discovery has 

been brought back to the fore mainly due to recent advances in the field of high content imaging (HCI). HCI elucidates 

cellular responses using a combination of immunofluorescent assays and computer analysis which increase both the sensi-

tivity and throughput of phenotypic assays. Although HCI data characterize cellular responses in individual cells, these 

data are usually analyzed as an aggregate of the treated population and are unable to discern differentially responsive sub-

populations. A collection of 44 kinase inhibitors affecting cell cycle and apoptosis were characterized with a number of 

univariate, bivariate, and multivariate subpopulation analyses demonstrating that each level of complexity adds additional 

information about the treated populations and often distinguishes between compounds with seemingly similar mechanisms 

of action. Finally, these subpopulation data were used to characterize compounds as they relate in chemical space. 

INTRODUCTION 

 As the pharmaceutical industry nears the end of its first 
decade in the 21

st
 century new technologies integrate into old 

paradigms to develop useful drugs in an increasingly 
crowded marketplace. At the heart of the pharmaceutical 
industry is the efficient screening of compound libraries to 
find molecules with a desired effect while limiting the num-
ber of complications. In the past, the majority of these assays 
were performed using target-based screens to detect mole-
cules of interest by their effects on specific cellular targets. 
Combinatorial chemistry then modified these compounds 
into “drug-like” forms with the promise of greater potency 
and fewer side effects. While this approach has proven 
somewhat successful, it has done so in an often expensive 
and inefficient way and is therefore clearly unsustainable. 
Approaches to targeted drug discovery therefore must be 
employed. In the last decade phenotypic drug discovery 
(PDD), which measures compound effects based upon 
changes in cellular morphology, has been used increasingly 
in conjunction with target-based assays to derive additional 
information about how compound libraries affect the cell.  

 The success of modern phenotypic screens is due to the 
adaptation of HCI to drug discovery, combining computer-
driven detection and analysis with immunofluorescent tech-
niques to better characterize cellular phenotypes in response 
to treatment [1]. The integration of phenotypic and target-
based discovery should speed up the discovery process, al-
lowing earlier decisions on molecules of potential interest 
prior to lengthy development. This synergy decreases the  
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overhead necessary to develop a series of molecules and 
streamlines the discovery process [2]. For example, although 
a target-based screen frequently determines the potency of a 
molecule against one target, and often ignores its activity 
against others, a phenotypic screen generates additional data 
about that molecule which would otherwise be missed [3]. 
For instance compounds with high levels of toxicity may 
have previously progressed to animal models due to their 
strong effects against one specific target. With the addition 
of HCI cell-based assays, however, this toxicity could be 
detected earlier in the development cycle saving valuable 
time and resources. In addition, compounds with beneficial 
“off-target” effects previously missed in target-based screens 
due to weak activity against a primary target, but with an 
overall greater phenotypic effect, may be discovered earlier 
and brought forward as appropriate [1, 2]. 

 One of the most powerful, yet frequently overlooked, 
features of HCI is the individualized characterization of each 
cell, and the subsequent assembly of those individual data 
points into distinct populations. The data obtained from each 
cell are therefore not viewed in isolation, but rather each cell 
becomes part of a newly characterized subpopulation [4]. In 
addition, HCI can easily multiplex divergent immunofluo-
rescent assays to further resolve how a treatment affects mul-
tiple aspects of cell biology. The use of these subpopula-
tions, rather than reading the average response of the whole 
treated population, becomes even more important when deal-
ing with molecules affecting several targets where multiple 
subpopulations often shift in response in a concentration 
dependent fashion. 

 Two common phenotypic assays are those for cell cycle 
arrest and apoptosis [5, 6]. The obvious phenotypic changes 
that occur in both of these processes generate distinctive 
morphologies, and are highly amenable to HCI analysis and 
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categorization. When used together these assays distinguish 
populations of cells that may differ in response to compound 
treatment due to genotype, cell cycle position, or other niche. 

 Here we describe a multi-parameter assay including both 
cell cycle and apoptotic components. This assay was used to 
screen a library of commercially available cellular modula-
tors leading to cell cycle arrest in the presence or absence of 
detectable apoptosis. We demonstrate the differential effects 
of many of these compounds and display the phenotypic 
fingerprints for each type of cell cycle arrest. Complex mul-
tiparameter fingerprints are then linked to similar classes of 
molecules. Finally we show that the fingerprint data obtained 
from single cells can be used to classify treatments based 
upon their phenotypic properties. The combination of these 
approaches creates an overreaching view of the targeted bi-
ology that removes many issues frequently associated with 
data generated from total population reads and opens up pos-
sibilities for the use of targeted agents against multiple si-
multaneous biologies. 

MATERIALS AND METHODS 

Cell Culture and Compound Treatment 

 HCT 116 and HeLa cells were grown according to ATCC 
guidelines. For the assays described below, adherent cells 
were plated onto poly-D-lysine coated 96-well dishes (BD 
#356640) at a density of 3,000 cells in 100 l of media as 
determined by a Coulter Z2 cell and particle counter. Cells 
were incubated with compounds in a final concentration of 
0.5% DMSO. All compounds were prepared in ten-point 
curves using two-fold dilutions and a starting concentration 
of 5 μM. Compound dilutions and additions were performed 
using a Multimek-96 automated pipettor (Beckmann).  

Immunofluorescence 

 Cells were fixed with 3.7% formaldehyde for 20 minutes 
at 37°C and permeabilized with 0.1% Triton-X 100 for 10 
minutes at 25°C. All following dilutions were performed in 
PBS at 25°C. Fixative was removed and each well washed 
with PBS. Cells were blocked using 1% Bovine Serum Al-
bumin (BSA) (Invitrogen #15260-037) for 1 hour at 25°C. 
The primary antibodies against phosphorylated-histone H3 
(Upstate Biolabs #06-570) [7] and cyclin B1(BD Pharmin-
gen #624086) were diluted in 1% BSA to a final concentra-
tion of 5 g/ml and this mixture added to each well for 1 
hour at 25°C. Each well was then washed 3 times with 200 

l of PBS, and incubated for 1 hour at 25°C with a solution 
containing 5 g/ml goat -mouse-Alexa-555 (Molecular 
Probes #A-21422), 5 g/ml goat -rabbit-Alexa-647 (Mo-
lecular Probes #A-21244) to detect pHH3, and 200 ng/ml 
Hoechst 33342 to detect nuclear material (Molecular Probes 
#21492). TUNEL analysis was then performed using the 
Roche in situ cell death detection kit with fluorescein (Roche 
#11 684 795 910) and stored at 4°C until analysis. 

Fluorescent Imaging and Statistical Analysis 

 Cell images were captured using a Cellomics Arrayscan 
VTI and analyzed with the Target Activation BioApplication 
reading in 4 channels at a magnification of 10X. Objects 
were identified using an algorithm to detect nuclear staining 
with Hoescht dye, and the relative levels and sub-cellular 
localization of TUNEL, cyclin B1 and pHH3 were deter-

mined through the respective intensities and locations of 
Alexa-488, Alexa-555, and Alexa-647 fluorescence. A 
minimum of 1000 individual cellular images or 20 fields 
were captured for each condition. For each cell, along with 
the intensity from each channel, several additional nuclear 
features were captured including the total nuclear area, the 
ratio of the perimeter of the nucleus compared to its area, 
and the length to width ratio of the nucleus. Arrayscan data 
were then log2 transformed and analyzed using unsupervised 
K-means clustering to group subpopulations with similar 
profiles [8, 9]. All populations were compared to asynchro-
nous untreated control populations across all plates. Sub-
population clusters were derived from the entire population 
of the assay and intensities based on the standard deviation 
away from the mean of the control population. 

RESULTS 

 Until recently many HCI assays determined a response 
by observing a single parameter, but as the technology ad-
vanced additional parameters were added to show a more 
complete phenotypic change in treated cells. This method 
was limited, however, as the phenotypic changes were 
viewed as an aggregate response of the entire treated popula-
tion. To demonstrate the usefulness of subpopulation analy-
sis in PDD a collection of 44 well-characterized and com-
mercially available cellular modulators were screened. The 
data obtained from this screen were then analyzed first using 
traditional well-level averages (i.e. total population), and 
then by increasingly complex subpopulation analyses. The 
initial data generated from the average responses of the 
treated cells displayed the population’s primary phenotype. 
To demonstrate this method cells were treated with an in-
hibitor of PLK1 and four commonly used phenotypic pa-
rameters were observed in isolation. PLK1 is an important 
regulator of centrosome maturation and spindle assembly 
during the mitotic phase of the cell cycle and is critical for 
exit from mitosis [10, 11]. In many, but not all, cases a 
marker was expected to give its strongest response when 
exposed to the highest concentration of the agent, and to 
generate a lesser response as the concentration of that agent 
decreased. When the entire population is observed at the 
level of the treated well, concentration response curves are 
one of the standard methods frequently used to characterize a 
phenotypic effect. For instance TUNEL staining, a measure 
of apoptosis through the use of DNA end labeling, increases 
in response to a wide variety of cytotoxic agents (Fig. 1A) 
[12, 13]. TUNEL staining alone, while useful for determin-
ing induction of apoptosis, does not fully describe the com-
plete phenotype of a treated cell. The addition of DNA inten-
sity shows relative changes in the DNA content of treated 
cells as they replicate their DNA and suggests when some of 
these cells may be arrested in specific cell cycle compart-
ments (Fig. 1B). To further define cell cycle position and 
arrest, the G2/M marker cyclin B1 (Fig. 1C), and the mitotic 
marker phospo-histone H3 (Fig. 1D) were also used. PHH3 
is a marker for chromosomal condensation present in mitosis 
and promotes the recruitment of condensin, while cyclin B1 
activates CDK1 and allows progression through G2 and into 
mitosis [7, 14, 15]. The measurement of these four pheno-
typic parameters illustrate that the highest levels of Total 
DNA, TUNEL, cyclin B1, and pHH3 are found at the high-
est concentrations of the tested compound and decrease as 
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less compound is added to the cells. These measurements 
suggest a mitotic and apoptotic response to inhibition of 
PLK1 in this assay, but unfortunately, these data do not dif-
ferentiate between the multiple phenotypes likely present. 
While successful in showing a general response, this method 
lacks the resolution necessary to determine effects at the 
individual cell level. 

 To characterize individual cellular phenotype response, 
distribution analyses were performed using the same data 
obtained from the populations shown above. This method 
most frequently compares the DNA content of a population 
of cells, but is applicable to a variety of situations found in 
HCI. We have previously shown that a log2 transformation 
of these data reduces the effects of outliers and increases the 
ease of analysis [8]. We therefore applied a log2 transforma-
tion to generate more meaningful parameter distributions for 
Total DNA (Fig. 2A), TUNEL staining (Fig. 2B), cyclin B1 
expression (Fig. 2C), and the presence of pHH3 (Fig. 2D). 
Theses distributions compare PLK1-inhibitor treated cells 
with cells treated with DMSO alone. In all cases the distribu-
tion analyses illustrate that populations have shifted away 
from the mean control population (as shown by the vertical 
blue lines). In the case of DNA intensity, this shift is towards 
a much higher DNA content containing cells with 4N and 8N 
DNA. These three populations were averaged together as a 
4N+ DNA population when observed at the well level, dem-
onstrating the improved resolution of this technique when 
applied to HCI. The G2/M marker data shown from the 
staining of cyclin B1 and pHH3 also demonstrate that there 
are two distinct expression patterns in the data for each of 
these markers, but that all of the cells have shifted away 
from the average shown in the control population. When 
combined with the total DNA intensity data, these markers 
show that the population has shifted towards a likely G2/M 
phenotype. Although the TUNEL staining in these cells pre-

sents a uniform distribution, the increase in staining intensity 
suggests that the G2/M phenotype found upon PLK1 inhibi-
tion likely leads to apoptosis. The advantage of these sub-
population analyses is the increased resolution of the entire 
population which distinguishes populations previously unde-
tected through well-level analysis. Detecting the differential 
phenotypes shown using these distribution analyses was im-
possible when using the total population read. 

 Although uniparameter distribution analyses detected the 
population shifts following treatment, we were unable to link 
cellular parameters together and show that the same cells that 
had increases in DNA content were also undergoing apopto-
sis. To more thoroughly examine these subpopulations we 
used bivariate analyses to combine these parameters in a 
method similar to that used to display flow cytometry data. 
These bivariate analyses link parameters from the same cell 
and demonstrate additional subpopulations that may have 
been missed in a simpler analysis. The log2 transformed data 
from the DNA total intensity and TUNEL analysis were 
compared (Fig. 3A), while the cyclin B1 and pHH3 data 
were compared (Fig. 3B). Three subpopulations were again 
distinguished based on total DNA intensity. The addition of 
TUNEL staining to this analysis demonstrates that apoptosis 
occurs across the population, but the greatest apoptotic re-
sponse lies within those cells with 8N DNA content. The 
combination of cyclin B1 intensity data with those from 
pHH3 staining distinguish two populations and demonstrate 
that the same cells with the greatest expression of cyclin B1 
also contain the largest amount of pHH3. The use of these 
pairwise comparisons to link parameters distinguished addi-
tional subpopulations, and further defined the subpopulations 
detected in the univariate analysis. Although in the case of 
PLK1 inhibition the subpopulation with 8N DNA content 
had the highest level of apoptosis, in others it was a different 
subpopulation with a dissimilar phenotype (depending upon 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Aggregate cellular responses to treatment with a PLK1 inhibitor. 

Four phenotypic parameters were measured from HCT 116 cells exposed to an inhibitor of PLK1 in a concentration response curve for 48 

hours. The aggregate phenotypic responses from TUNEL apoptotic staining (A), total DNA intensity (B), cyclin B1 expression (C), and 

presence of pHH3 (D) are shown in a concentration range of 5000 nM to 10 nM. Intensity values are shown as relative fluorescent units. 
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Fig. (2). Distribution analysis of phenotypic parameters distinguish subpopulations. 

Distributions were performed of the individual cellular data for the four phenotypic parameters shown in Fig. (1). These data were taken from 

the same HCT 116 cells treated with 2500 nM PLK1 inhibitor for 48 hours. Total DNA (A), TUNEL (B), cyclin B1 (C), and pHH3 intensity 

(D) data were log2 transformed and distributed according to intensity. The blue lines shown in the PLK1 treatments represent the mean of the 

control population. 
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Fig. (3). Bivariate analysis of phenotypic parameters further refine subpopulations. 

Distribution analysis data used in Fig. (2) (green bars at top and side) were combined to further differentiate subpopulations. Total DNA in-

tensity data were combined with TUNEL data (A) and cyclin B1 data were combined with pHH3 data (B). Topographic mapping demon-

strates clustering concentrations (red coloring illustrates closest clustering, and blue furthest clustering). 

 

Table 1. Kinase Inhibitors Against Cell Cycle Targets 

Generic Name  Target Source 

Seliciclib CDK2; CDK7; CDK9; MCL1 Cyclacel Pharmaceuticals Inc 

ON-01910Na CDC2; PDGFRB; PLK1 Onconova Therapeutics Inc 

SCH-727965 CDC2; CDK2; CDK9 Schering-Plough Corp 

No Name Given AuroraA and AuroraB Astrazeneca 

No Name Given CDK2, CDK4, CDK6 and FAK AstraZeneca 

VX-680.HCl; MK-0457 Aurora-1,Aurora-2,Aurora-3;Flt-3;JAK2;RET Vertex; Merck 

AG-024322 CDC2; CDK2; CDK4 Pfizer Inc 

Purvalanol A multi-targeted CDK The Regents of the Univ. Cali. 

No Name Given CDK2, CDK4, CDK6 and FAK AstraZeneca 

No Name Given PLK-1 GSK/Banyu 

No Name Given CDK1, CDK2, CDK3 AstraZeneca 

BMI-1026 CDK1 Biomedical Institute (USA) 

PD-171851 CDK4 Pfizer Inc 

AG-12286 CDK Agouron/Pfizer 

PHA-680632 Aurora A, Aurora B, Aurora C and RTK Nerviano, Pfizer 

BI2536 PLK-1 Boehringer Ingelheim 

H-7 CDK7 University of California 

Indenopyrazole/Quinazoline CDK Bristol-Myers Squibb Co 

No Name Given PLK-1 Smithkline Beecham 

Aurora A Kinase AURKA; PRKG1 GPC 

ON-01910Na PLK1, CDK1 Onconova 

No Name Given CDKs, FAK Astrazeneca 
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(Table 1). Contd….. 

Generic Name  Target Source 

Berlex CDK4 Bayer AG 

No Name Given PLK-1 Smithkline Beecham 

No Name Given CDKs FAK Astrazeneca 

No Name Given WEE1 ChemExplorer 

BI-2536 PLK1 Boehringer Ingelheim Corp 

No Name Given Aurora A AstraZeneca 

GSK-461364 PLK1; PLK3 GlaxoSmithKline plc 

No Name Given PLK-1 Amgen 

HMN-214 PLK-1  Nippon Shinyaku Co 

No Name Given CDKs & FAK AstraZeneca 

R-547 CDC2; CDK2; CDK4 Roche 

No Name Given CDKs & FAK Astrazeneca 

HMN-214 PLK1 Nippon Shinyaku 

PD-332991 CDK4; CDK6 Onyx Pharmaceuticals Inc 

PHA-739358 ABL1;AURKA;AURKB;FGFR1;NTRK1;RET Nerviano Medical Sciences 

AZD-1152 AURKA; AURKB AstraZeneca plc 

CDK inhibitor CDK Johnson & Johnson 

Tozasertib Lactate ABL1; AURKA; AURKB; BCR; FLT3; JAK2 Vertex Pharmaceuticals Inc 

SNS-032 CDK2; CDK7; CDK9; MCL1 Bristol-Myers Squibb Co 

BMS-265246 CDC2; CDK2 Bristol-Myers Squibb Co 

MLN-8054 AURKA Takeda Pharmaceutical 

Alvocidib CDC2; CDK2; CDK4; CDK9 US Government 

 
the treatment, its effect on the cell, and the type of cell stud-
ied).  

 To further explore how a variety of compounds affected 
cell cycle arrest and apoptotic response we continued to ana-
lyze the set of 44 targeted cancer compounds currently in 
clinical development (Table 1). Compounds were selected 
for this screen for their kinase target specificity in order to 
generate phenotypic fingerprints. Although many of these 
compounds generate one specific fingerprint at all concentra-
tions, several of them demonstrate concentration-dependent 
phenotypic effects resulting in multiple fingerprints, likely 
due to differing IC50’s against multiple cellular targets. As 
described above, analysis of these data at the cellular level is 
crucial to understanding these complex phenotypes in a con-
centration-dependent setting. 

 Although a bivariate analysis began to differentiate phe-
notypes and subpopulations, even greater resolution was 
required to discern the many varied phenotypes frequently 
found in a screening setting. Although we were able to link 
two parameters using a bivariate analysis, generating a new 
bivariate distribution for every two phenotypic parameters of 
interest was an unnecessarily complicated procedure. When 
interested in the overall phenotypic fingerprint of a subpopu-

lation it becomes necessary to use a more refined method of 
analysis to link multiple parameters into one output. Build-
ing upon the bivariate analysis, 7 parameters were combined 
to obtain a phenotypic fingerprint of treatment effects across 
all of the cellular subpopulations. Data were extracted from 
individual cells and used to create clusters of the cellular 
subpopulations using unsupervised K-means clustering (Fig. 
4). The output from this analysis was a heatmap generated 
by a user-defined number of clusters based upon similarity 
of cells to each other across all seven parameters (like groups 
with like). Although a user could request an infinite number 
of phenotypic clusters, the algorithm limits the output based 
upon phenotypic similarities present at the population level. 
If the user defined more clusters than the algorithm could 
find, the extra clusters contained zero cells. The K-means 
algorithm determined how the cells cluster based upon the 
cells in both the control and experimental populations. The 
colors displayed in the heatmap indicate shifts away from the 
average of the control population (numbered at right by 
standard deviations) with shifts to red denoting increases and 
shifts to blue denoting decreases. In the heatmaps, each row 
contains the data from one cell, and those cells were sorted 
in each cluster based upon their total DNA intensity from 
high to low. The numbers on the left side of each cluster 
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refer to the fraction of the total number of cells in that clus-
ter. One limitation of this technique as an analytical tool is 
the number of fluorescent channels that can be measured 
using fluorescent microscopy in conjunction with the subcel-
lular localization of each fluorescent channel. Currently limi-
tations in fluorescent probe technology and the specificity of 
fluorescent excitation and emission filters impedes our abil-
ity to image >4 unique fluorescent probes at any given time, 
although we can incorporate subcellular localization of the 
fluorescent probes to increase the number of potentially use-
ful channels for fingerprint development. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Diagram of a multiparametric heatmap. 

The phenotypic fingerprint of each imaged cell is shown from left 

to right in a single row across the heatmap and is characterized by 

the 7 parameters: total, average, and variation of DNA intensity, 

nuclear area, TUNEL apoptotic staining, cyclin B1 expression, and 

the presence of pHH3. These parameters are shown in columns 

along the bottom of the heatmap. Cells were clustered vertically 

using unsupervised K-means based on those 7 parameters and are 

grouped within each cluster based upon their total DNA intensity 

from highest to lowest. The blue to red shifts present in the heatmap 

represent deviations away from the mean of a control population in 

standard deviations (shifts to red are increases and shifts to blue 

decreases). 

 

 To demonstrate the effectiveness of this technique across 
the cell cycle representative heatmaps were generated for 
molecules against a number of commonly targeted proteins 
active in one of the four major cell cycle phases: G1, S, G2, 
and M (Fig. 5). Following treatment with an inhibitor of 
CDK4, HCT-116 cells arrested in the G1 phase of the cell 
cycle. This arrest was characterized by one predominant cell 
population having low total, average, and variation of DNA 
intensity and lacking the G2/M markers cyclin B1 and 
pHH3. These cells also contained relatively small nuclei 
consistent with G1 arrest and virtually no apoptotic fraction 
(as evidenced by a lack of a TUNEL response). The CDK4 
G1-arrest phenotype contrasted with that of cells arrested in 
S phase by an inhibitor of CDK2. In this case the primary 
subpopulation of cells, while also lacking high levels of cy-
clin B1 or pHH3, shifted into a new cluster consisting of 
slightly higher levels of total DNA (consistent with an S 
phase arrest), but retaining low average and variation of 
DNA intensity. Inhibitors of CDK1 have yet another pheno-

type as cells arrested in the G2 phase of the cell cycle. Cells 
arrested by CDK1 inhibitors exhibited high levels of total 
DNA and a concomitant increase in nuclear area to hold their 
4N DNA content. As these cells were arrested in G2 and 
unable to progress through mitosis they expressed high lev-
els of the G2/M markers cyclin B1 and pHH3. At the con-
centration shown, these cells underwent significant apoptosis 
as demonstrated by their increased TUNEL staining. Finally, 
cells arrested through inhibition of PLK1 display a mitotic 
arrest phenotype. Along with the increase in total DNA in-
tensity found in cells arrested with a compound in G2, these 
cells had smaller nuclei due to the condensation of nuclear 
material. This condensation caused a corresponding increase 
in the average and variation of DNA intensity. Not surpris-
ingly the mitotic markers cyclin B1 and pHH3 were at their 
highest levels in cells arrested in this phase of the cell cycle. 

 The creation of fingerprints specific to individual cell 

cycle inhibitors is a powerful tool to dissect cellular re-

sponses to compound libraries, and also is useful to detect 
the varying responses to treatment between cell lines. For 

example, HCT-116 and HeLa cells were both exposed to an 

inhibitor of CDK4/6 for 48 hours, and the subpopulations 
from each treatment yielded distinct fingerprints based on 

the gene expression patterns in each line (Fig. 6). The HCT-

116 cells were arrested primarily in S phase as shown by 
their DNA content, nuclear area, and low cyclin B1 and 

pHH3 expression, while the HeLa cells remained unaffected 

when compared to a control population. This differential 
effect is due to the pRb status of each cell line and how it 

relates to the given inhibitor. A CDK 4/6 inhibitor arrests the 

cell cycle through inhibition of Rb, a pathway inactivated in 
HeLa cells, but intact in HCT-116 cells. This form of analy-

sis illustrates the usefulness of heatmaps when used in con-

junction with a variety of genetically dissimilar cell lines to 
determine a compound’s mechanism of action. 

DISCUSSION 

 Prior analysis of HCI data centered around the collection 
of DNA content and protein expression data at the level of 

the individual cell, but analysis at the level of the entire 

population. Although these readouts with changes in multi-
ple parameters were useful in a screening setting due to their 

ease of analysis, they became less useful when dissecting a 

treatment’s mechanism of action. The primary issue with 
well-level analysis is that it frequently masks subtle changes 

in cellular parameters, whereas subpopulation analysis dis-

tinguishes between the subpopulations defined by these sub-
tle but often important changes. Data shown as an aggregate 

response to treatment frequently do not display the effect of 

the treatment on an individual cell and can mask important 
phenotypic changes. These aggregate responses often return 

results similar to those found in ELISAs which are also un-

able to differentiate between a large effect in a small sub-
population of cells from a smaller effect in every cell in the 

population. The differential effects of subpopulations to 

treatment may be a critical factor when studying diseases 
where only a subset of the total population is crucial to driv-

ing the disease, with the most obvious example found in 

cancer biology where the majority of the cells respond to 
chemotherapy while a subset of cancer stem cells remain 

resistant [16, 17]. 
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Fig. (5). Examples arrest at each stage of the cell cycle due to inhibition of specific kinases. 

Inhibition of the cell cycle using kinase inhibitor fell into four main categories demonstrated by the above four compounds. CDK4 inhibition 

led to a G1 arrest phenotype, CDK2 inhibition led to an S phase arrest phenotype, CDK1 inhibition led to a G2 arrest phenotype, and inhibi-

tion of PLK1 demonstrates one form of mitotic arrest phenotype. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Genetic differences in cell lines affecting phenotypic responses are detectable using subpopulation analysis. 

HCT 116 and HeLa cells were both exposed to an inhibitor of CDK4/6 at a concentration of 313 nM for 48 hours. Heatmap analysis was then 

performed to differentiate the compound effects on each cell type. HCT 116 cells arrested with a primarily S phase phenotype with HeLa cells 

remained unaffected by this treatment. 

 As a first step towards subpopulation analysis single pa-
rameter distributions are a simple tool that can be developed 
with a minimal amount of statistical and informatics support 
and can be quickly analyzed by biologists. A bivariate analy-
sis, while adding an additional level of statistical complexity, 
is well worth the time and resources taken for the analysis. 
Linking changes in parameters from a multiplexed assay is 
an excellent start to defining subpopulation biology. These 

uncomplicated analyses illustrate the value of automated 
statistical tools to ease the analysis of large and complex data 
sets. Although these tools are an excellent first step towards 
dissecting subpopulations, additional subpopulations affect-
ing the biology of the disease and treatment may remain 
undetected in the absence of more complex analysis. 

 Multiparameter analysis using unsupervised K-means 
clustering further defines and refines the subpopulations pre-
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sent in any studied population. One advantage to using this 
method is that a perturbation in any one of the parameters 
used in the analysis can change the identity and membership 
of subpopulations and detect additional, previously hidden, 
subpopulations. The changes in the subpopulations generated 
by these shifts lead to a degree of sensitivity in this analysis 
previously unknown to HCI. Even more important than these 
subtle population shifts are the slight phenotypic changes 
which may suggest the mechanism of action of uncharacter-
ized treatments leading to cell cycle arrest, apoptosis, or 
modulation of cellular signaling. The fingerprints generated 
using this method of analysis describe important biological 
phenotypes across a population of treated cells and can be 
used to advance novel therapeutic treatments simply by fol-
lowing the phenotype of interest. Thus, phenotypic effects of 
traditional lead optimization SAR modifications, such as 
those designed to affect potency, solubility, metabolism, etc, 
can be tracked relative to the parent molecule through a care-
ful analysis of high content fingerprints. Previously we have 
shown that this analysis can be used effectively both in vitro 
and in vivo to drive initial drug discovery efforts and is being 
used in our hands to detect and advance compounds with 
novel biologies [4]. 
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