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Abstract: Phosphodiesterase-4 (PDE-4) is an important drug target for several diseases, including COPD (chronic 
obstructive pulmonary disorder) and neurodegenerative diseases. In this paper, we describe the development of improved 
QSAR (quantitative structure-activity relationship) models using a novel multi-conformational structure-based 
pharmacophore key (MC-SBPPK) method. Similar to our previous work, this method calculates molecular descriptors 
based on the matching of a molecule's pharmacophore features with those of the target binding pocket. Therefore, these 
descriptors are PDE4-specific, and most relevant to the problem under study. Furthermore, this work expands our 
previous SBPPK QSAR method by explicitly including multiple conformations of the PDE-4 inhibitors in the regression 
analysis, and thus addresses the issue of molecular flexibility. The nonlinear regression problem resulted from including 
multiple conformations has been transformed into a linear equation and solved by an iterative partial least square (iPLS) 
procedure, according to the Lukacova-Balaz scheme. 35 PDE-4 inhibitors have been analyzed with this new method, and 
predictive models have been developed. Based on the prediction statistics for both the training set and the test set, these 
new models are more robust and predictive than those obtained by traditional ligand-based QSAR techniques as well as 
that obtained with the SBPPK method reported in our previous work. As a result, multiple predictive models have been 
added to the collection of QSAR models for PDE4 inhibitors. Collectively, these models will be useful for the discovery 
of new drug candidates targeting the PDE-4 enzyme. 

INTRODUCTION 

 Phosphodiesterases (PDE's) are involved in many cellular 
signal transductions mediated by cAMP or cGMP molecules. 
They have been proved to be an important class of drug 
targets for a variety of diseases. For example, Sildenafil, a 
PDE-5 inhibitor, has been developed to treat erectile 
dysfunction (ED) [1]. Inhibitors of PDE-4 have been studied 
as potential treatment for COPD (chronic obstructive 
pulmonary disorder) [2, 3]. Other diseases such as dementia, 
depression and schizophrenia have also been targeted with 
PDE inhibitors [4]. Because of the broad biological functions 
in which PDE enzymes are involved, developing predictive 
QSAR models for PDE inhibitors may prove to be fruitful 
for both chemical genomics research and drug discovery 
targeting the PDE enzymes. 

 We have been interested in developing predictive QSAR 
(quantitative structure-activity relationship) models for PDE 
inhibitors primarily because of their potential role in treating 
neurodegenerative diseases. For example, selective PDE-4 
inhibitors are potential drug candidates for treating memory 
deficit [5] and neurodegeneration [6], and thus were the 
subject of a previous study by our group [7]. In that study, 
we have developed a structure-based QSAR model with 
better predictive power than other published models. 
However, it has been demonstrated in the literature that 
multiple models developed with different methodologies  
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tend to be complementary to each other, with each model 
capturing different aspects of the SAR (structure-activity 
relationship) trend, and that the joint use of multiple models 
often enables more effective virtual screening strategy [8, 9]. 
Thus, we aim to develop additional improved models for the 
PDE-4 inhibitors using a novel QSAR technique. 

 In our previous work [7], we have demonstrated that the 
predictiveness of a structure-based QSAR (SB-PPK) model 
was superior to others that had been developed using more 
traditional, ligand-based QSAR techniques. This may be due 
to the fact that the SB-PPK descriptors were generated based 
on how the inhibitors match the pharmacophore features of 
the target binding site, and thus they were target-specific; 
while traditional QSAR methods were ligand-based where 
no target information was used in calculating the descriptors. 
Hence, it appeared that target-specific descriptors afforded 
more predictive models than universal ligand-based 
descriptors. 

 One issue that was not addressed in our previous work 
was that of conformational flexibility, i.e. how to include 
multiple conformations of an inhibitor in the QSAR analysis. 
Instead, it allowed only one conformation per inhibitor. In 
general, this multi-conformational problem has long been an 
issue in 3D QSAR methodologies. Most current methods, 
like our previous work, allow only one row of descriptors for 
each inhibitor in the analysis, and the information of multiple 
conformations was at best encoded into one row of 
descriptors. For example, Chen et al. [10] generated multi-
feature pharmacophore keys, and features resulted from 
different conformations were combined into one row of 
descriptors for a given molecule. The issue with this 
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approach is that after the features from different 
conformations are encoded into one row of descriptors, it is 
almost impossible to decode which features come from 
which conformation. In our current work, we aim to include 
multiple conformations of each inhibitor in the QSAR 
analysis to address the issue of conformational flexibility. 

 We have expanded the Lukacova-Balaz scheme [11] for 
treating multimode issue of 3D QSAR into the SB-PPK 
methodology, and applied this new multi-conformational 
QSAR technique to analyze the same set of PDE-4 inhibitors 
as studied previously for comparative analyses. This new 
method combines the structure-based QSAR concept (SB-
PPK) and a novel mathematical treatment of the multi-
conformational issue. We demonstrate that improved models 
over previous methods can be developed. This multi-
conformer approach overcomes the pitfalls of one conformer 
per ligand paradigm adopted by most traditional 3D QSAR 
techniques. A standard workflow for model building and 
validation was employed to ensure the predictiveness of the 
QSAR models. As a result, all models developed herein give 
both the training set r

2 and the test set R
2 over 0.65, 

indicating a high predictive power. In the following sections, 
we describe the details for descriptor generation, the theory 
and the mathematical solution to the multi-conformational 
issue, followed by results and discussions. 

MATERIALS AND METHODS 

The PDE-4 Dataset 

 The 35 indole derivative based PDE-4 inhibitors 
analyzed by Dong et. al. [7] and Chakraborti et al. [12] were 
used in this analysis. The dataset covers a diverse set of 
molecules with a wide range of inhibitory activities against 
PDE-4. The pIC50 values range from 5.85 to 8.49. The 
inhibitory activity values are presented in Table 1 and the 
molecular structures are included in the Supplementary 
Materials. 

The Multi-Conformer QSAR Table 

 In this work, the input QSAR table for regression 
analysis is different from a traditional one. Traditional 
QSAR table has one row for each inhibitor, where the row of 
descriptors uniquely characterizes the molecule under study. 
Since multiple conformers are allowed in this multi-
conformer QSAR method, multiple rows of descriptors are 
generated for each inhibitor. We first describe how a single 
conformer is characterized using the SB-PPK approach, and 
then discuss the descriptors of multiple conformers for a 
given inhibitor. 

Descriptors for a Single Conformer 

 The SB-PPK (structure-based pharmacophore key) 
descriptors for a given conformer of an inhibitor are derived 
from comparing and matching the pharmacophore feature 
pairs of the target binding site and the pharmacophore 
feature pairs of the conformer under study. 

 As detailed in our previous work [7], the pharmacophore 
feature pairs of the binding site are calculated by (1) 
identifying structure-based pharmacophore centers from the 
target-ligand complex structure, and (2) creating all possible 

pairs of these feature centers, resulting in feature pair keys. 
In our previous work, LigandScout [13] was employed to 
find the pharmacophore centers. Here, we employed a 
different approach to identify the pharmacophore centers. 
This approach illustrated in Fig. (1) uses Delauney 
tessellation [14, 15] of the inhibitor-protein complex 
structure (1ro6) to identify the interacting atoms of the 
bound inhibitor and the binding pocket atoms. The space 
occupied by the Delauney tetrahedra that contain at least one 
inhibitor atom will be considered the binding pocket space. 
This space is further approximated by a regular geometric 
grid with grid spacing of 0.52Å. The grid points that are too 
close to the protein atoms are trimmed off, leading to a 
refined geometric grid. The grid points are then labeled 
based on their distances to nearby protein atoms and the 
nature of the nearby protein atoms. For example, if a 
hydrogen bond donor is found in nearby protein atoms, the 
grid points will be labeled as potential hydrogen bond 
acceptor. If a positively charged protein atom is found 
nearby, the grid points are labeled as potentially negatively 
charged features to complement the protein atom. The whole 
geometric grid is labeled according to similar principles. 
Since multiple neighboring grid points are often labeled as 
the same pharmacophore type, they will be grouped into one 
pharmacophore center. This clustering is achieved using the 
ART-2a algorithm [16], a neural network based clustering 
technique. In this work, 12 pharmacophore centers were 
generated from the inhibitor-protein complex (1ro6). These 
pharmacophore centers characterize the unique environment 

Table 1. Molecular ID and Inhibition Activities (  log M ) 

of Dataset 

Mol - ID Activity Mol - ID Activity 

1 7.82 19 7.72 

2 7.00 20 7.52 

3 8.49 21 8.39 

4 7.60 22 7.80 

5 7.74 23 7.70 

6 8.28 24 8.10 

7 7.15 25 7.62 

8 7.60 26 7.85 

9 7.34 27 8.15 

10 7.10 28 7.34 

11 7.22 29 7.66 

12 7.92 30 7.42 

13 6.73 31 6.59 

14 7.38 32 7.92 

15 6.70 33 6.30 

16 6.52 34 5.85 

17 7.28 35 7.10 

18 7.35   
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of the binding pocket of the protein. Each center can be one 
or more of the five pharmacophore types: positively charged 
(P), negatively charged (N), hydrophobic (H), hydrogen 
bond donor (D) and hydrogen bond acceptor (A). 
Pharmacophore feature pairs are then generated by making 
all possible pairwise combinations of the identified 
pharmacophore centers. For example, if 5 different 
pharmacophore centers were found, a total of 10 possible 
feature pairs could be generated. Each feature pair is 
determined by the two pharmacophore types involved and 
the unique distance between the two pharmacophore centers. 
If the 5 centers were of the following types: P, D, A, H, H, 
the pharmacophore feature pairs could be PD5, PA7, PH7.5, 
PH9.0, DA6, DH7, DH5, AH4, AH5, HH3, where the two 
letters indicate the feature pair key and the number being the 
distance between the two centers. This set of feature pairs, 
each having a fixed distance, will be the reference to which 
the ligand feature pairs are compared in order to generate the 
SB-PPK descriptors for a given ligand conformer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Flowchart for the generation of receptor pharmacophore 
feature pairs. 
 
 The pharmacophore feature pairs for a given conformer 
of a ligand can be generated according to our previous work 
[7] and outlined in Fig. (2). Instead of using the LigandScout 
program, the atom typing program Patty (OE Scientific, NM, 
USA) was employed in this work to label each atom of an 
inhibitor molecule. Similar pharmacophore types are 
defined: positively charged (P), negatively charged (N), 
hydrophobic (H), hydrogen bond donor (D) and hydrogen 
bond acceptor (A). Once each atom is typed with a proper 
pharmacophore type, pharmacophore feature pairs can be 
generated in a way similar to how the reference (target 
binding site) pharmacophore feature pairs are generated. If a 

conformer had the following pharmacophore centers: A, P, 
A, D, then 6 possible pharmacophore feature pairs could be 
generated: AP6.9, AA5, AD6, PA9, PD4.8, AD7, where the 
two letters indicate the feature pair key and the number being 
the distance between the two feature centers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Flowchart for ligand pharmacophore key generation. 
 
 After both the reference feature pairs and the ligand 
feature pairs are generated, the SB-PPK descriptors for a 
given ligand conformer are generated based on the matching 
of the feature pairs of the conformer with the feature pairs of 
the binding pocket (i.e. the reference). The value of a given 
descriptor is the total number of matches for that descriptor 
between the ligand and the binding pocket. More details can 
be found in our previous publication [7]. 

Descriptors for Multiple Conformers of an Inhibitor. 

 Multiple conformers were generated for each inhibitor 
using the OMEGA program, version 2.0 (OMEGA, OE 
Scientific, NM, USA). The maximum number of conformers 
for each molecule was set to 1000. Top ranking conformers 
were retained for each inhibitor, and each conformer was 
used to generate its SB-PPK descriptors as described above. 
As a result, multiple rows of SB-PPK descriptors were 
generated for each inhibitor. For example, if 10 conformers 
were used for each molecule, 350 rows of descriptors would 
be generated for a dataset of 35 molecules. Table 2 shows an 
example of the multi-conformer QSAR table. 
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 The above multi-conformer QSAR table will be used as 
the input for the iterative partial least square (iPLS) 
procedure to derive multi-conformational QSAR models, 
according to the Lukacova-Balaz scheme [11]. 

Generation of Multi-Conformational QSAR Models 

Using the Lukacova-Balaz Scheme 

 Based on a similar set of equations as those employed by 
Lukacova & Balaz [11], the multi-conformational QSAR 
models are built using the iPLS method. One major 
difference between our work and that of Lukacova lies in 
how the structure-based descriptors are generated. The 
details of the theory are discussed in the context of the SB-
PPK descriptors as follows. 

 Let Ki, the total dissociation constant of a ligand bound to 
a receptor in multiple conformations be expressed as:  

            (1) 

 Where kij is the partial dissociation constant, i is the 
ligand and j is a conformer of ligand i. 

 Similar to Lukacova et. al., we propose a correlation 
between the partial dissociation constant (kij) and the 
structure-based descriptors nijh, such that: 

 
         (2) 

 Where H is the number of descriptors, co is the intercept 
and ch is the regression coefficient. 

 Substituting Eq. (2) into Eq. (1), we have  

 

        (3) 

 From Eq. (3), we can develop a structure-based multi-
conformational QSAR model by solving for co and ch since 
we know Ki and nijh for each ligand. Eq. (3), a non-linear 
equation, has been transformed into a linear one, according 
to Lukacova et. al. [11]. The difference between our linear 
equation shown in Eq. (4) and that of Lukacova's is the 
summation of the kij, which are the denominators in our work 
as opposed to numerators in Lukacova's. We find this to be a 
much better fit for the iterative PLS method.  

Table 2. An Example of the Multi-Conformer QSAR Table 

  HH3.0 HH4.1 HH2.5 DH2.1 DH5.2 AH9.0 AH2.2 AH4.5 …. 

 Conf-1 7 7 10 9 10 11 15 13 …. 

 Conf-2 9 6 10 9 10 6 15 13 …. 

Mol -1 Conf-3 7 7 9 7 9 9 15 14 …. 

 Conf-4 10 6 9 8 9 8 15 14 …. 

Act -1 Conf-5 12 9 17 9 17 11 19 14 …. 

 Conf-6 15 7 17 9 15 7 17 15 …. 

 Conf-7 9 7 15 5 13 11 17 14 …. 

 Conf-1 14 10 12 8 11 16 17 7 …. 

 Conf-2 14 9 12 8 11 12 17 8 …. 

Mol -2 Conf-3 13 10 11 6 10 13 17 8 …. 

 Conf-4 12 9 12 8 11 18 18 9 …. 

Act -2 Conf-5 15 9 11 7 10 11 17 8 …. 

 Conf-6 15 8 12 8 11 12 18 8 …. 

 Conf-7 12 9 11 6 10 11 18 9 …. 

 Conf-1 10 10 10 12 10 22 17 9 …. 

 Conf-2 13 10 11 12 11 22 17 7 …. 

Mol -3 Conf-3 13 9 10 11 10 17 17 8 …. 

 Conf-4 13 9 10 11 10 14 17 9 …. 

Act -3 Conf-5 11 10 9 9 9 15 17 8 …. 

 Conf-6 12 10 9 8 9 16 17 8 …. 

 Conf-7 14 9 9 10 9 18 17 8 …. 
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(4) 

 To solve the above equation for the coefficients, i. e. 
building a multi-conformational QSAR model, an iterative 
PLS procedure was employed. The left of equation 4 is the 
new dependent variable for the PLS analysis; and the 
independent variables for the iPLS procedure are not the 
original descriptors, nijh; rather, they are functions of partial 
association constants (kij) and the original descriptors (nijh), 
as shown in equation 4. In fact, the PLS variables also 
depend on the regression coefficients ch (h=1, 2, . . H) in 
each iteration. Once the regression coefficients are set in the 
first iteration, new kij values are calculated from equation 2, 
and then used to update the variables of equation 4. This 
procedure is repeated until the resultant models converge. 
The initial PLS variables for equation 4 are set as the average 
values of descriptors over all the conformations for each of 
the inhibitors. Once the iPLS procedure converges, the final 
coefficients (co to ch) define a QSAR model, and equation 3 
is used to predict the activity values for unknown or test set 
molecules from their multi-conformational descriptors (nijh). 

Integrated Workflow for Model Building and Validation 

 We have adopted a standard workflow reported 
previously [17] to train and validate QSAR models. As 
shown in Fig. (3), the splitting of the dataset into training 
and test sets as well as obtaining the statistics for both the 
training set and test set is the key in this workflow. A given 
dataset is first divided into multiple pairs of training and test 
sets by a clustering procedure based on the ART-2a 
algorithm [16]. The parameters in ART-2a algorithm were 
adjusted in order to obtain 7 multi-member clusters, and one 

molecule from each cluster was randomly selected into a test 
set, resulting in multiple 7-member test sets. Once molecules 
were selected into a test set, the remaining molecules in the 
dataset were put into the corresponding training set. In this 
work, 30 pairs of training and test sets were generated, with 
the training set having 28 molecules and the test sets having 
7 molecules. For each pair of training and test sets, the iPLS 
procedure was used to train the models on the training set, 
and the developed models were used to predict the 7 test set 
molecules. Model quality was calculated as r

2 for the 
training set, and R

2 for the test set. While r
2 reflects the 

model quality on the training set, R2 indicates the predictive 
power of the model against the test set. Only models with 
both indicators (r2 and R

2) greater than a preset threshold 
(0.65 in this work) were retained as the final models for 
future use. The use of 0.65 as the cutoff value is arbitrary. 
One can use higher values as well. If no good models can be 
found with this cutoff, one can lower it. The ultimate goal is 
to find models that afford both r2 and R2 greater than a preset 
threshold. 

RESULTS AND DISCUSSIONS 

Fast Convergence of the Iterative PLS Analysis 

 As shown in Fig. (4), the iPLS procedure to obtain the 
multi-conformational QSAR model converges very fast. In 
just 7 cycles of PLS regression, the models reach r2 of about 
0.83, and maintain at that level. This procedure is highly 
efficient compared to other approaches, where all 
combinations of conformers need to be considered to build 
QSAR models, and stochastic optimization process is often 
used to select the best performing models. Because many 
conformers are allowed to represent an inhibitor molecule, 
conformational flexibility is taken into account in our QSAR 
models. This is better than traditional single conformer based 
3D QSAR techniques, which is demonstrated in the 
following sections. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Fast convergence of the iterative PLS analysis. 
 

Effect of Number of Principal Components on Model 
Quality 

 We used different numbers of principal components to 
obtain the PLS QSAR models, the results of which are 
shown in Fig. (5). These results are indicative of the 
predictiveness of the QSAR models. The r

2 values of the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Overall workflow of structure-based QSAR method. 
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training set and the R2 values of the test set are shown on the 
y-axis and the number of principal components on the x-axis. 
In the first case, the r2 values increases monotonically with 
increase in the number of principal components for the 
training set. This trend is also observed in the R2 values for 
the test set, however, they reach a plateau at around 7 
principal components, and starts to decrease in value from 10 
principal components onward. This decrease in the R2 values 
indicated over-training when too many principal components 
were used in the PLS model. In the second case, R

2 values 
decreased much faster than in the first case. The models with 
number of principal components between 6 and 9 were 
predictive for both the training and test sets. Based on this 
observation, we have chosen to build models using 7 
principal components to derive both model-1 and model-2 
reported below. 
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Fig. (5). The effect of number of principal components on model 
quality for model-1 (top) and model-2 (bottom). 
 

Effect of Number of Conformers per Inhibitor on Model 

Quality 

 It is essential when building a multi-conformer QSAR 
model to find out the optimal number of conformers to use. 
We have tested a variety of number of conformers in this 
work in order to find out the best conformer number. When 5 
conformers were used, R

2 values were low, with only 1 in 

100 models above 0.50. On the other hand, when 10 
conformers were used, the values of the R2 above 0.5 were 
around 6 in 100. Further experimentation led us to conclude 
that 7 conformers for each ligand afforded the best models. 
In the rest of this study, we present the results obtained with 
7 conformers per inhibitor in the models. 

Effect of Dataset Splitting on Model Quality 

 The results presented in this work are based on a rational 
splitting of the dataset into training and test sets. We found 
that by introducing a more rational method, there is a higher 
occurrence of models with R2 higher than 0.5. A comparison 
of the results between rational splitting and random splitting 
showed that out of 20 splits, 9 gave models (7 conformers 
and 7 principal components) with R2 values above 0.5 for the 
rational splitting, compared to only 1 model having R2 above 
0.5 based on random splitting. The R

2 value in the random 
split was 0.74 while the R

2 values for the rational splitting 
were 0.54, 0.74, 0.68, 0.71, 0.64, 0.67, 0.69, 0.56  and 0.74. 
A fewer number of splitting cycles is required to obtain a 
predictive model. This observation is consistent with that of 
Golbraikh et al. [17]. Thus, all models were built using the 
training and test sets created with the clustering-based 
splitting of the dataset. 
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Fig. (6). Predicted activity vs. experimental activity for the 
training set (top) and test set (bottom) for model 1. 
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Predictiveness of MC-SBPPK Models Compared to 
Previous Methods 

 The predictive power of the new models developed with 
the MC SBPPK method exceeds that of other models 
developed with more traditional QSAR techniques [12, 18, 
19], and that of the model developed with our previous SB-
PPK method [7]. For example, a MOE (Chemical 
Computing Group, Montreal, Canada) based 2D QSAR 
method afforded models with r2 of 0.66 for the training set, 
and R2 of 0.58 for the test set [7]. A reported CoMFA model 
gave an r

2 of 0.986, but an R
2 of 0.560, indicating 

overtraining on the training set and underperforming on the 
test set. A CoMSIA model gave an r2 of 0.967, but an R2 of 
0.590 for the test set, again indicating overtraining and 
underperforming during prediction. The most balanced 
model developed in our previous work afforded an r2 of 0.75 
for the training and R2 of 0.624 for the test set. In the current 
work, the two best models gave r2 of 0.83 and 0.83 for the 
training sets, and R2 of 0.74 and 0.67 for the test sets. Figs. 
(6, 7) show the scatter plots of predicted vs. experimental 
activities. Figs. (8, 9) show the absolute errors of prediction 
for both MC SBPPK models. Thus, the MC SBPPK method 
has successfully incorporated multi-conformers in the QSAR 

analysis, and afforded more predictive models than all 
previously reported methods. 
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Fig. (8). Prediction error of training set (top) and test set (bot-
tom) for model 1. 
 

CONCLUSIONS 

 We described the development of improved QSAR 
models based on a new multi-conformational structure-based 
pharmacophore key (MC SBPPK) method. Following our 
previous work, this method calculates molecular descriptors 
based on the matching of a molecule's pharmacophore 
features with those of the target binding pocket. Therefore, 
these pharmacophore key (SBPPK) descriptors are PDE4-
specific, and most relevant to the problem under study. We 
also successfully expanded our previous SBPPK method by 
explicitly including multiple conformations of PDE-4 
inhibitors in the analysis, and thus addresses the issue of 
molecular flexibility. The nonlinear regression problem 
resulted from including multiple conformations has been 
transformed into a linear equation and solved by an iterative 
partial least square (iPLS) procedure, according to the 
Lukacova-Balaz scheme originally developed to address the 
multi-mode issue in 3D QSAR analysis. We demonstrated 
that more predictive models were obtained by the MC 
SBPPK method, indicating the importance of incorporating 
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Fig. (7). Predicted activity vs. experimental activity for the 
training set (top) and test set (bottom) for model 2. 

9

8

8.5

7.5

A
ct

iv
ity

6.5

7

Pr
ed

ic
te

d 
A

5 5

6

5

5.5

5 5.5 6 6.5 7 7.5 8 8.5 9

Experimental Activity

9

8

8.5

7.5

8

A
ct

iv
ity

6.5

7

Pr
ed

ic
te

d 
A

5.5

6

5

5.5

5 5.5 6 6.5 7 7.5 8 8.5 9

Experimental Activity

1

0.6

0.8

0.2

0.4

r r
or

-0.2

0

P r
ed

ic
tio

n 
E

r

-0 6

-0.4

P

1

-0.8

0.6

Molecules

-1

1

0.6

0.8

0.2

0.4
ro

r

-0.2

0
1 2 3 4 5 6 7

ed
ic

tio
n 

E
rr

-0.6

-0.4

Pr

M l l

1

-0.8

0.6 Molecules

-1



Multi-Conformational QSAR Models for PDE-4 Current Chemical Genomics, 2009, Volume 3    61 

multiple conformations to address the issue of molecular 
flexibility in 3D QSAR modeling. 

a 
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Fig. (9). Prediction error of training set (top) and test set (bot-
tom) for model 2. 
 
 The success of the MC SBPPK method in modeling the 
PDE-4 inhibitors also helps to establish the platform of 
structure-based multi-conformational QSAR method for 
modeling inhibitors of other PDE enzymes. The fact that 
many X-ray structures of PDE enzymes have been solved 
supports the use of structure-based QSAR methods. 
Ultimately, we will develop a collection of MC SBPPK 
models for PDE inhibitors, and contribute to the chemical 
genomics research of the PDE family of enzymes. 
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