

Synthesis and Characterization of a Series of 1-Aryl-4-[Aryldiazenyl]piperazines. Part II¹. 1-Aryl-4-(2-Aryl-1-Diazenyl)-piperazines with Fluoro-, chloro-, Methyl-, Cyano- and Acetyl Substituents in The 1-Aryl Group

Karen O'Malley^{a,*} and Keith Vaughan^{b,*}

^a ALS Environmental, Calgary, AB Canada

^bDepartment of Chemistry, Saint Mary's University Halifax, Nova Scotia B3H 3C3, Canada

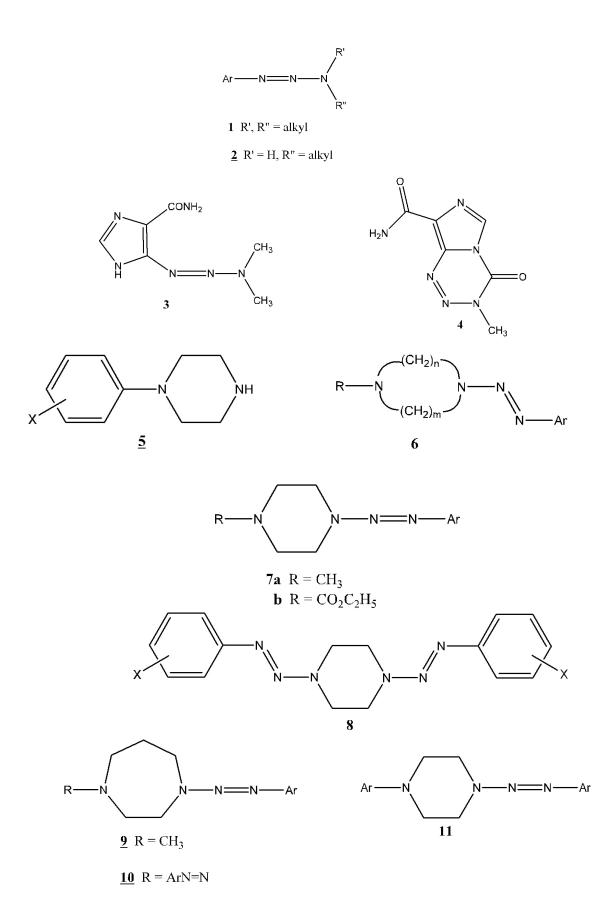
Received: July 31, 2015

Revised: March 9, 2016

Accepted: April 15, 2016

Abstract: This paper reports the synthesis and characterization of eight series of 1-aryl-4-(2-aryl-1-diazenyl)-piperazines (12 to 19). Several series of these triazenes have been synthesized by the diazotization of a primary arylamine followed by diazonium coupling with a secondary arylpiperazine. The arylpiperazines used in this study are: 1-phenylpiperazine, 1-(4-fluorophenyl-)piperazine, 1-(4-chlorophenyl-)piperazine, 1-(4-dictorophenyl-)piperazine, 1-(4-gyridyl-)piperazine, 1-(4-dictorophenyl-)piperazine, 1-(2-methylphenyl-)-piperazine, 1-(4-acetophenyl-)-piperazine, 1-(2-pyridyl-)piperazine and 2-cyanophenylpiperazine. These new triazenes (series 12-19) have been identified with a cocktail of contemporary spectroscopic techniques, notably infra-red and nuclear magnetic spectroscopy, supported by high resolution electron ionization mass spectrometry.

Keywords: 1-Arylpiperazine, Aryldiazenylpiperazines, Diazonium Coupling, IR spectroscopy, Mass Spectrometry, NMR, Triazene.


INTRODUCTION

The chemistry of triazenes has been explored since the latter part of the eighteenth century. Most of the work centered on the chemistry of the 1-aryl-3,3-dialkyltriazenes (1) and to a lesser extent on the chemistry of the monoalkyltriazenes (2). The field of investigation of anti-tumour triazenes was established in the 1950s with the discovery of the biological activity of DTIC, also known as Dacarbazine, 5-(3,3-dimethyltriazen-1-yl)imidazole-4-carboxamide (3) [1] and in the 1980s with the discovery of temozolomide, also known as Temodal, (3,4-dihydro-3-methyl-4-oxoimidazo 5,1-d -as-tetrazine-8-carboxamide) (4) [2]. The mechanism of action of these drugs is only partially understood, but researchers do agree that the effectiveness of triazene-based antitumour agents may be due to their ability to alkylate DNA. These drugs are still considered very effective therapies, especially Dacarbazine in the treatment of malignant melanomas [3] and Temodal for brain cancers [4].

From an alternative perspective, the medicinal chemistry of piperazine derivatives has attracted considerable interest. Research on arylpiperazines (5) is quite extensive due to their biological applications. They are especially known for their high affinity toward serotonin receptors, chiefly 5-HT1A receptors. Many common anxiolytics (*antianxiety agents*) and antidepressants incorporate arylpiperazines [5]. It is believed that arylpiperazine derivatives act as 5-HT1A receptor antagonists [6]. The possibility of combining the structural unit of a triazene with that of a piperazine raises interesting questions regarding the biological activity that might be generated from such a combination.

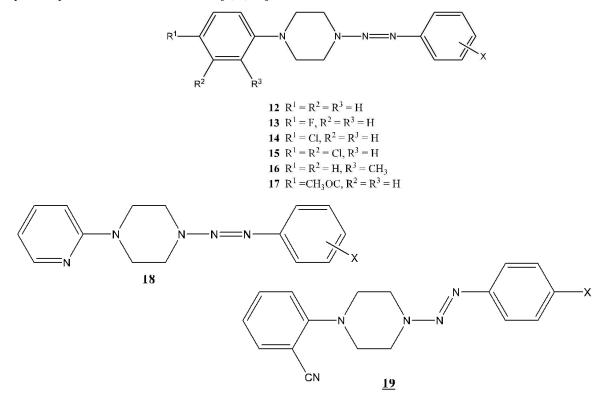
^{*} Address correspondence to these authors at the Department of Chemistry, Saint Mary's University Halifax, Nova Scotia B3H 3C3; Phone: (902)-420-5650; Fax: (902)-496-8104; E-mail: keith.vaughan@smu.ca, karen.omalley@alsglobal.com

¹ For part I in this series please see the Open Org Chem J, 2015, 9, 35-42.

44 Open Chemistry Journal, 2016, Volume 3

Vaughan *et al.* recently explored and expanded the range of triazene derivatives of piperazines in a series of papers. The structures investigated use (1, x)-diazocycloalkanes (6) where m = 1 or 2 and n = 2, 3, 4, or 5, as the general structure. The specific structures varied the R moiety, the homology of the piperazine ring, or a combination of the two. In a previous report [7], the 1-(2-aryl-1-diazenyl-) 4-methylpiperazines (7a) were prepared by reaction of 1-methylpiperazine with the appropriate diazonium salt; this work also reported the analogous synthesis of the N-ethoxycarbonylpiperazines (7b). A subsequent study [8] of the diazonium coupling reaction with piperazine itself in 2 : 1 proportions resulted in the isolation and identification of the bis-triazene series (8). Some of the compounds in this series had been previously synthesized, but characterization had not been in depth [9].

A further paper in Vaughan's series [10] studied the effects of different piperazine ring homology, specifically diazepanes (9 and 10). One possible direction for further study arising from these papers would involve the synthesis of a series of compounds maintaining the (1, x)-diazocycloalkane base structure (6) with the piperazine ring, while further adding to different functional groups on the R group. The R group has included alkylated and esterified substituents, as well as the aryldiazenyl group in *bis*-triazenes (8 - 10). A logical next step would be to synthesize a series with the R group as an aryl moiety (11). This extension will further add to the information on similar series, and provide a synthetic method for future studies. Additional interest in these new compounds is derived from the potential medicinal applications of compounds of type 11.


In this paper, several novel compounds of a new series of triazenes (12-17) have been synthesized and characterized.

The series has also been extended to the triazene series (18 and 19).

All compounds have been purified and characterized by IR and NMR spectroscopy and high resolution mass spectrometry (EI).

EXPERIMENTAL

For details of the experimental methods such as IR, NMR, mass spectrometry, melting point measurement, *etc.*, see any of the prior references of this author [7, 8, 10].

1-Aryl-4-(2-aryl-1-Diazenyl)-Piperazines (Series 12 to 19 Inclusive)

General Procedure

An aromatic primary amine (0.010 mol) was dissolved in 3M HCl (12.0 mL), and placed in an ice bath to cool to 0°C. Sodium nitrite (0.011 mol), dissolved in water (3.0 mL) was added to the solution, and stirred for 0.5 hours. Concurrently, the appropriate aryl-piperazine (0.011 mol) was dissolved in water (1.0 mL), and cooled to 0°C. If necessary to dissolve the alkylpiperazine, a small amount of 3M HCl (1.0 to 3.0 mL) was added. The piperazine solution was added slowly to the diazonium salt solution, and the resulting mixture was stirred for 0.5 hours. The solution was then neutralized with saturated sodium bicarbonate and left stirring in the cold for two hours. The product was collected using vacuum filtration if it was a solid and by extraction procedures if it was an oil. The solids were purified by recrystallization using an appropriate solvent. Oily products were isolated by extraction of the aqueous reaction mixture with dichloromethane, drying the organic layer over anhydrous magnesium sulphate, followed by evaporation of the solvent under vacuum.

RESULTS AND DISCUSSION

1-Aryl-4-(2-aryl-1-diazenyl)-piperazines: Synthesis

1-Aryl-4-(2-aryl-1-diazenyl)-piperazines (Series 12-17) were produced in good to excellent yields (20 - 99%) by reaction of a diazonium salt with a specific N-arylpiperazine. Physical data and IR spectroscopic data of these compounds are listed in Tables 1-6. The integrity of all compounds was verified by high-resolution mass spectrometry (EI) (see Tables 7-12). { See structures in the Introduction section above.}

Series #	x	% Yield	M.P. (C)	Recr. Solv.	Crystal Appearance	I	R (cm ⁻¹)
12c	<i>p</i> -CH ₃	39	164 - 166	Ethanol	Tiny pale Yellow needles	OOP	819
12d	<i>p</i> -Br	55	157 - 159	Ethanol	Tiny Orange needles	OOP	830
12e	<i>p</i> -OCH ₃	20	182 - 184	Ethanol	lustrous metallic Plates	OOP C-O	834 1157, 1245
12f	<i>p</i> -COCH ₃	51	165 - 167	Ethanol	Small Orange plates	OOP C=O	843 1681
12g	<i>p</i> -Cl	38	161 - 162	Ethanol	Lustrous gold Plates	OOP	834
12i	o-Br	95	Oil	Oil	-	OOP	760

Table 1. Summary of physical and IR spectroscopic data of the 1-phenyl-4-(2-aryl-1-diazenyl)-piperazine series (12).

 Table 2. Summary of physical and IR spectroscopic data of the 1-(4-fluorophenyl)-4-(2-aryl-1-diazenyl)-piperazine series (13).

Series #	Х	% Yield	M.P. (°C)	Recr. Solv.	Crystal appearance	IR (c	cm⁻¹)
13a	<i>p</i> -CO ₂ CH ₃	99	151.8 - 152.4	Ethanol	Orange Fibrous Needles	OOP C=0 C-0	865 1710 1277
13b	<i>p</i> -Br	99	185.9 - 186.5	Ethanol	Tiny pale Yellow needles	OOP	837
13c	<i>p</i> -CH ₃	72	171.9 - 172.8	Ethanol	Pale flesh-colored plates	OOP	814

Series #	X	% Yield	M.P. (°C)	Recr. Solv.	Crystal Appearance	Г	R (cm ⁻¹)
14a	<i>p</i> -CO ₂ CH ₃	36	211.0 - 211.8	Ethanol	Orange-Yellow Needles	OOP C=O C-O	865 1704 1272
14b	<i>p</i> -CN	49	185.3 - 186.0	Ethanol	Gold needles	OOP C≡N	850 2218
14c	<i>p</i> -Br	93	226.8 - 227.8	Ethanol	Creamy yellow Needles	OOP	837
14d	<i>p</i> -CH ₃	52	195.2 - 196.3	Ethanol	Pale pink Needles	OOP	816
14e	<i>p</i> -OCH ₃	30	192.9 - 194.0	Ethanol	Pale pink Plates	OOP C-O	836 1028, 1240
14f	p-NO ₂	89	218.5 - 221.4	Ethyl acetate	Lustrous Blood-red needles	OOP NO ₂	863 1327, 1506

 Table 3. Summary of physical and IR spectroscopic data of the 1-(4-chlorophenyl)-4-(2-aryl-1-diazenyl)-piperazine series (14).

 Table 4. Summary of physical and IR spectroscopic data of the 1-(3, 4-dichlorophenyl)-4-(2-aryl-1-diazenyl)-piperazine series (15).

Series #	X	% Crude	M.P. (°C)	Recr. Solv.	Crystal Appearance	1	R(cm ⁻¹)
15a	<i>p</i> -CN	98	162 - 163	Ethanol	Fibrous Off-white Prisms	OOP C≡N	842 2223
15b	<i>p</i> -CHOCH ₃	98	155 - 156	Ethanol	Lustrous reddish gold plates	OOP C=O	846 1675
15c	<i>p</i> -Br	55	146 - 147	Ethanol	Light brown needles	OOP	836
15d	<i>p</i> -OCH ₃	34	131 - 133	Ethanol	Pale pink needles	OOP C-O	837 1034, 1245
15e	<i>p</i> -NO ₂	53	150 - 151	Ethanol	Small lustrous red Needles	OOP NO ₂	851 1339, 1595
15f	<i>p</i> -CH ₃	36	130.3 - 130.9	Ethanol	Small pale pink Needles	OOP	823
15g	3-ру	104	Oil	Oil	-	OOP	838
15h	<i>m</i> -CF ₃	48	Oil	Oil	-	OOP	803

Table 5. Summary of physical and IR spectroscopic data of the 1-(ortho-tolyl)-4-(2-aryl-1-diazenyl)-piperazine series (16).

Series #	X	% Yield	M.P. (°C)	Recr. Solv.	Crystal Appearance	Г	R (cm-1)
16a	<i>p</i> -NO2	46	143.0 - 144.1	Cyclohexane	Blood-red Needles	OOP NO2	855 1321, 1507
16b	<i>p</i> -Cl	60	104.9 - 105.5	Ethanol	Creamy yellow needles	OOP	846
16c	<i>p</i> -CO ₂ C ₂ H ₅	62	105.5 - 106.1	Ethanol	Large orange needles	OOP C=O C-O	859 1711 1269
16d	<i>p</i> -COCH ₃	53	115.1 - 115.9	Ethanol	Red-gold lustrous needles	OOP C=O	845 1675
16e	<i>p</i> -CONH ₂	11	222.2 - 223.4	Ethanol	Orange prisms	OOP C=O N-H	857 1658 3289, 3328
16f	<i>p</i> -OCH ₃	53	131.6 - 133.2	Cyclohexane	Dark red prisms	OOP C-O	833 1010, 1242
16g	Н	61	Oil	Oil	-	OOP	813

Series #	Х	% Yield	M.P. (°C)	Recr. Solv.	Crystal Appearance	IR (cm ⁻¹)	
17a	<i>p</i> -CO ₂ CH ₃	98	235.3 - 236.1	Ethanol	Yellow prisms	OOP C=O ester C=O ketone C-O ester	861 1706 1664 1280
17b	<i>p</i> -Br	93	231.6 - 232.4	Ethanol	Pale yellow prisms	OOP C=O ketone	837 1659
17c	<i>p</i> -CH ₃	65	193.7 - 194.6	Ethanol	Lustrous pink plates	OOP C=O ketone	847 1674
17d	p-NO ₂	90	217-218	Ethanol	Fine rusty- red needles	C=O ketone Nitro group OOP	1665 1513 & 1337 861
17e	<i>p</i> -CN	90	150-165	-	Amorphous brown clumps	C≡N C=O ketone OOP	2222 1658 843
17f	p-CO ₂ Et	93	177-178	Ethanol	Fine Lemon- yellow prisms	C=O ester C=O ketone C-O OOP	1705 1664 1282 859
17g	Н	94	179-180	Ethanol	Fine pale yellow plates	C=O ketone OOP para OOP mono	1673 817 771

Table 6. Summary of physical and IR spectroscopic data of the 1-(4-acetophenyl)-4-(2-aryl-1-diazenyl)-piperazine series (17).

Table 7. Summary of mass spectroscopic data of the 1-phenyl-4-(2-aryl-1-diazenyl)-piperazine series (12).

Series #	X	Formula	Calc. Mass (amu)	Found Mass (amu)
12c	<i>p</i> -CH ₃	$C_{17}H_{20}N_4$	280.1688	280.1697
12d	<i>p</i> -Br	$\mathrm{C_{16}H_{17}N_{4}Br}$	344.0636	344.0632
12e	<i>p</i> -OCH ₃	$C_{17}H_{20}N_4O$	296.1637	296.1622
12f	<i>p</i> -COCH ₃	$C_{18}H_{20}N_4O$	308.1637	308.1636
12g	p-Cl	$C_{16}H_{17}N_4Cl$	300.1142	300.1143
12i	o-Br	$C_{16}H_{17}N_4Br$	344.0636	344.0653

Table 8. Summary of mass spectroscopic data of the 1-(4-fluorophenyl)-4-(2-aryl-1-diazenyl)-piperazine series (13).

Series #	X	Formula	Calc. Mass (amu)	Found Mass (amu)
13a	<i>p</i> -CO ₂ CH ₃	$C_{18}H_{19}N_4O_2F$	342.1492	342.1487
13b	<i>p</i> -Br	$C_{16}H_{16}N_4FBr$	362.0542	362.0525
13c	<i>p</i> -CH ₃	$C_{17}H_{19}N_4F$	298.1594	298.1603

Table 9. Summary of mass spectroscopic data of the 1-(4-chlorophenyl)-4-(2-aryl-1-diazenyl)-piperazin series (14).

Series #	X	Formula	Calc. Mass (amu)	Found Mass (amu)
14a	<i>p</i> -CO ₂ CH ₃	$C_{18}H_{19}N_4O_2Cl$	358.1196	358.1195
14b	<i>p</i> -CN	$C_{17}H_{16}N_5Cl$	325.1094	325.1101
14c	<i>p</i> -Br	C ₁₆ H ₁₆ N ₄ ClBr	378.0247	378.0248
14d	<i>p</i> -CH ₃	$C_{17}H_{19}N_4Cl$	314.1298	314.1295
14e	<i>p</i> -OCH ₃	$C_{17}H_{19}N_4OCl$	330.1247	330.1239
14f	p-NO ₂	$C_{16}H_{16}N_5O_2Cl$	345.0992	345.1000

Series #	X	Formula	Calc. Mass (amu)	Found Mass (amu)
15a	<i>p</i> -CN	$C_{17}H_{15}N_5C_{12}$	359.0704	359.0700
15b	<i>p</i> -COCH ₃	$C_{18}H_{18}N_4OC_{12}$	376.0857	376.0846
15c	<i>p</i> -Br	$C_{16}H_{15}N_4C_{12}Br$	411.9857	411.9848
15d	<i>p</i> -OCH ₃	$C_{17}H_{18}N_4OC_{12}$	364.0857	364.0821
15e	<i>p</i> -NO ₂	$C_{16}H_{15}N_5O_2C_{12}$	379.0602	379.0613
15f	<i>p</i> -CH ₃	$C_{17}H_{18}N_4C_{12}$	348.0908	348.0917
15g	3-ру	$C_{15}H_{15}N_5C_{12}$	335.0704	335.0700
15h	<i>m</i> -CF ₃	$C_{17}H_{15}N_4F_3C_{12}$	402.0626	402.0611

Table 10. Summary of mass spectroscopic data of the 1-(3, 4-dichlorophenyl)-4-(2-aryl-1-diazenyl)-piperazine series (15).

Table 11. Summary of mass spectroscopic data of the 1-(ortho-tolyl)-4-(2-aryl-1-diazenyl)-piperazine series (16).

Series #	X	Formula	Calc. Mass (amu)	Found Mass (amu)
16a	$p-NO_2$	$C_{17}H_{19}N_5O_2$	325.1538	325.1548
16b	p-Cl	$C_{17}H_{19}N_4Cl$	314.1298	314.1298
16c	<i>p</i> -CO ₂ C ₂ H ₅	$C_{20}H_{24}N_4O_2$	352.1899	352.1881
16d	<i>p</i> -COCH ₃	$C_{19}H_{22}N_4O$	322.1793	322.1801
16e	<i>p</i> -CONH ₂	$C_{18}H_{21}N_5O$	323.1746	323.1751
16f	<i>p</i> -OCH ₃	$C_{18}H_{22}N_4O$	310.1793	310.1797
16g	Н	$C_{17}H_{20}N_4$	280.1688	280.1689

The 1-(2-pyridyl)-4-(2-aryl-1-diazenyl-)piperazines (series 18) were prepared by diazotization of the arylamine and coupling with 1-(2-pyridyl-)piperazine. The 1-(2-cyanophenyl)-4-(2-aryl-1-diazenyl-)piperazines (series 19) were prepared by diazotization of the arylamine and coupling with 1-(2-cyanophenyl-)piperazine. Physical data and infrared frequencies of the compounds of 18 and 19 are provided in Tables 13 and 15. Mass spectrometric data on these compounds are given in Tables 14 and 16.

Series #	Х	Formula	Calc. Mass (amu)	Found Mass (amu)
17a	<i>p</i> -CO ₂ CH ₃	$C_{20}H_{22}N_4O_3$	366.1692	366.1682
17b	<i>p</i> -Br	$C_{18}H_{19}N_4OBr$	386.0742	386.0726
17c	<i>p</i> -CH ₃	$C_{19}H_{22}N_4O$	322.1793	322.1801
17e	<i>p</i> -CN	C ₁₉ H ₁₉ N ₅ ONa	356.1482	356.1483
17f	<i>p</i> -CO ₂ Et	$\mathrm{C_{21}H_{24}N_4O_3Na}$	403.1741	403.1726

Table 13. Summary of physical and IR spectroscopic data of the 1-(2-pyridyl)-4-(2-aryl-1-diazenyl)-piperazine series (18).

Series #	Х	% Yield	M.P. (°C)	Recr. Solv.	Crystal Appearance	п	R (cm ⁻¹)
18 a	<i>p</i> -NO ₂	71	197.5 - 198.2	Ethanol	Tiny orange-red prisms	OOP NO ₂	855 1333, 1504
18b	<i>p</i> -CN	69	150.2 - 151.1	Ethanol	Lustrous creamy- orange plates	OOP C≡N	835 2217
18c	3-ру	79	Oil	Oil	Lustrous metallic needles	OOP	810
18d	<i>p</i> -CO ₂ CH ₃	59	146.3 - 147.0	Ethanol	Yellow prisms	OOP C=O C-O	855 1710 1282
18e	<i>p</i> -COCH ₃	61	166.4 - 166.8	Ethanol	Buff prisms	OOP C=O	850 1672
18f	<i>p</i> -CH ₃	55	111.7 - 112.3	Ethanol	Off-white needles	OOP	844
18g	o-Br	74	Oil	Oil	-	OOP	756

Synthesis and Characterization of a Series

(Table 35) contd.....

Series #	X	% Yield	M.P. (°C)	Recr. Solv.	Crystal Appearance	IR (cm ⁻¹)	
18h	Н	51	99.4 - 100.4	Ethanol	Large lustrous pale brown plates	OOP	758

Table 14. Summary of mass spectroscopic data of the 1-(2-pyridyl)-4-(2-aryl-1-diazenyl)-piperazine series (18).

Series #	X	Formula	Calc. Mass (amu)	Found Mass (amu)
18a	<i>p</i> -NO ₂	$C_{17}H_{19}N_5O_2$	312.1334	312.1339
18b	<i>p</i> -CN	$C_{16}H_{16}N_{6}$	292.1436	292.1431
18c	3-ру	$C_{14}H_{16}N_{6}$	268.1436	268.1438
18d	<i>p</i> -CO ₂ CH ₃	$C_{17}H_{19}N_5O_2$	325.1538	325.1538
18e	<i>p</i> -COCH ₃	$C_{17}H_{19}N_5O$	309.1589	309.1600
18f	<i>p</i> -CH ₃	$C_{16}H_{19}N_5$	281.1640	281.1629
18g	o-Br	$C_{15}H_{16}N_5Br$	345.0589	345.0588
18h	Н	$C_{15}H_{17}N_5$	267.1484	267.1495

Table 15. Physical and IR Spectroscopic data of the 1-(2-cyanophenyl-)4-(2-aryl-1-diazenyl-)piperazine series (19).

Series #	KS#	Х	% yield	m.p. °C	Recr. Solv.	Crystal appearance	IR cm. ⁻¹	
19a	KS72	p-CO ₂ CH ₃	87	130 - 131	Ethanol	Lustrous yellow needles	755 1714 2228	OOP C=O C≡N
19b	KS75	p-CH ₂	91	107- 108	Cyclohexane	Chunky pink needles	769 822 2224	OOP OOP C≡N
19c	KS74	p-Br	96	104.9- 105.3	Ethanol	Off-white plates	755 2221	OOP C≡N
19d	KS76	p-OCH ₃	36	130- 131	Ethanol	Metallic buff needles	765 828 1247 2218.5	OOP OOP C−O C≡N

Table 16. Mass spectroscopic data of the 1-(2-cyanophenyl)-4-(2-aryl-1-diazenyl)-piperazine series (19).

Cpd	KS	Formula	Calc. mass (amu)	Found mass (amu)
19a	KS72	$C_{19}H_{19}N_5O_2$	349.1538	349.1534
19b	KS75	$C_{18}H_{19}N_5$	305.1640	305.1640
19c	KS74	$C_{17}H_{16}N_5Br$	369.0589	369.0585
19d	KS76	$C_{18}H_{19}N_5O$	321.1589	321.1580

Infrared Spectral Analysis

All compounds in series 12 - 19 were characterized by IR spectroscopy in order to confirm the presence of the appropriate aryl substituents and to confirm the expected substitution pattern of the aryl rings with reference to the OOP bending vibrations of aromatic-Hgroups C. All of the compounds in series 12 show out-of-plane (OOP) bending vibrations of the substituted benzene ring. The compounds of other series display analogous IR bands. Aliphatic and aromatic carbon-hydrogen stretches are not reported because the nujol peaks overwhelm the peaks of interest. In the case of the oil (12i), for which the IR spectrum was collected as a neat liquid, aliphatic carbon-hydrogen peaks were found at 2820 and 2976 cm⁻¹, and an aromatic carbon-hydrogen peak was found at 3064 cm⁻¹.

Significantly, it should be noted here that the analysis of the compounds of series 12 with the strongly electronwithdrawing substituent, p-nitro-, p-cyano- and p-methoxycarbonyl-, namely compounds 12h, 12a and 12b, is not included in this paper. The reason for this omission is that the products of these reactions are not pure and we believe that the formation of these triazenes is accompanied by the formation of isomeric azo-compounds. The formation of azo-compounds is only observed in the case of these three compounds. All other compounds of series 12 behave "*normally*" and afford single compounds characterized as the triazenes shown. Furthermore, the compounds of series 13 - 19 behave "*normally*" and do not give rise to isomeric azo compounds. The evidence that corroborates the azo compound hypothesis is somewhat involved, requiring the synthesis and characterization of model azo compounds. These results will be described in full detail in a follow-up paper to this one.

¹H NMR Spectral Analysis of Series 12 to 19

The proton nuclear magnetic resonance data of the members of series 12 to 19 is listed in Tables 17-24. These results provided unequivocal structural information for the new triazenes of series 12 to 19. Fig. (1) shows the labeling of the piperazine-ring protons described in the analysis information found in the Tables 17-24. The aromatic resonance signals of the para-disubstituted compounds (12c-g) displayed the expected multiplicity of an AA'BB' system.

Table 17. Summary of ¹ H NMF	spectroscopic data of the	1-phenvl-4-(2-a)	rvl-1-diazenvl)-p	iperazine series (12).

Sorias #	x	Aromatic (9H)				I (II-)	x
Series #		Phenyl Ring	Aryl Ring	,	H _b (4H)	J _{ab} (IIZ)	Λ
12c	<i>p</i> -CH ₃	6.92 (1H, t, J=6.2), 7.00 (2H, d, J=7.6) 7.30 (2H, t, J=7.9)	7.16 (2H, d, J=8.1), 7.37 (2H, d, J=8.2)	3.36 (t)	3.92 (t)	5.2	2.35 (3H, s)
12d	<i>p</i> -Br	6.92 (1H, t, J=7.3), 6.98(2H, d, J=7.9), 7.31 (2H, t, J=8.0)	7.34 (2H, d, J=8.8), 7.46 (2H, d, J=8.8)	3.36 (t)	3.95 (t)	5.3	
12e	<i>p</i> -OCH ₃	6.89 - 6.93 (1H, m), 6.99 (2H, d, J=8.1), 7.30 (2H, t, J=7.9)	6.90 (2H, d, J=8.9), 7.44 (2H, d, J=8.9)	3.60 (t)	3.89 (t)	5.2	3.82 (3H, s)
12f	<i>p</i> -COCH ₃	6.84 (1H, t, J=7.3), 7.01 (2H, d, J=7.9), 7.26 (2H, t, J=7.9)	7.48 (2H, d, J=8.7), 7.97 (2H, d, J=8.7)	3.39 (br)	3.98 (t)	5.4	2.56 (3H, s)
12g	<i>p</i> -Cl	6.92 (1H, t, J=7.3), 6.98 (2H, d, J=7.8) 7.31 (2H, t, J=8.3)	7.28 - 7.32 (2H, m), 7.40 (2H, d, J=8.7)	3.36 (t)	3.95 (t)	5.3	
12i	o-Br	6.93 (1H, t, J=7.1), 6.99 - 7.05 (2H, m), 7.26 - 7.32 (2H, m)	6.99 - 7.05 (1H, m), 7.26 - 7.32 (1H, m), 7.44 (1H, d, J=8.1), 7.60 (1H, d, J=7.5)	3.38 (t)	4.04 (t)	5.1	

Table 18. Summary of 1H NMR spectroscopic data of the 1-(4-fluorophenyl)-4-(2-aryl-1-diazenyl)-piperazine series (13).

S	X	Aromatic (8	8H)		п (лп)		v	
Series #	А	4-F-Ph Ring	Aryl Ring	H _a (4H)	H _b (4H)	J _{ab} (Hz)	Х	
13 a	<i>p</i> -CO ₂ CH ₃	6.96 - 7.04 (4H, m)	7.51 (2H, d, J=8.7), 8.05 (2H, d, J=8.7)	3.29 (t)	4.04 (t)	5.2	3.92 (3H, s)	
13b	<i>p</i> -Br	7.01 - 7.04 (4H, m)	7.36 (2H, d, J=8.7), 7.48 (2H, d, J=8.8)	3.29 (t)	3.99 (br)	5.2		
13c	<i>p</i> -CH ₃	6.99 - 7.07 (4H, m)	7.29 (2H, d, J=7.8), 7.41 (2H, d, J=8.4)	3.30 (t)	3.96 (t)	5.2	2.39 (3H, s)	

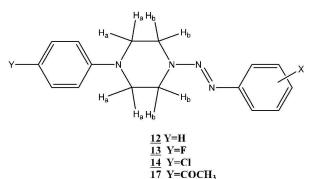


Fig. (1). Structure and substituents of 1-aryl-4-(2-aryl-1-diazenyl)-piperazines (12, 13,14, and 17)) with piperazine ring protons labeled.

Synthesis and Characterization of a Series

The piperazine resonance signals (12c - g and 12i) displayed the expected multiplicity of an A_2B_2 system. The 4-fluorophenyl ring resonance signals (13a - c) displayed a complicated splitting pattern. The signals were consistent within the series, and were found as a multiplet in the range $\delta 6.96 - 7.04$. This complicated pattern is due to the NMR activity of fluorine. The protons of the tolyl methyl substituent (13c) had $\delta 2$ a.39 singlet. The signal full NMR at information for series (13) can be found in Table 18.

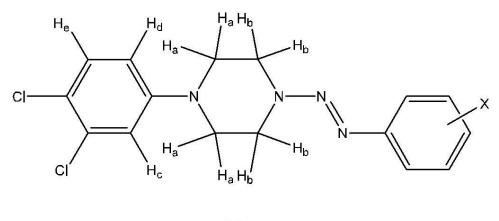
Series #	X	Aroma	tic (9H)	H _a (4H)	H, (4H)	J _{ab} (Hz)	х
Series #	А	4-Cl-Ph Ring	Aryl Ring	II _a (411)	п _ь (411)	J _{ab} (IIZ)	Λ
14a	<i>p</i> -CO ₂ CH ₃	6.94 (2H, d, J=8.9), 7.27 (2H, d, J=8.8)	7.51 (2H, d, J=8.4), 8.04 (2H, d, J=8.5)	3.36 (t)	4.05 (t)	5.3	3.93 (3H, s)
14b	<i>p</i> -CN	6.92 (2H, d, J=8.8), 7.27 (2H, d, J=9.0)	7.53 (2H, d, J=8.5), 7.64 (2H, d, J=8.7)	3.36 (br t)	4.05 (t)	5.1	
14c	<i>p</i> -Br	6.96 (2H, d, J=8.9), 7.29 (2H, d, J=8.6)	7.37 (2H, d, J=8.7), 7.51 (2H, d, J=8.7)	3.37 (t)	4.00 (t)	5.3	
14d	<i>p</i> -CH ₃	6.91 (2H, d, J=9.0), 7.25 (2H, d, J=9.0)	7.18 (2H, d, J=8.1), 7.38 (2H, d, J=8.3)	3.33 (t)	3.92 (t)	5.4	2.37 (3H, s)
14e	<i>p</i> -OCH ₃	6.89 - 6.92 (2H, m), 7.25 (2H, d, J=8.9)	6.89 - 6.92 (2H, m), 7.45 (2H, d, J=9.0)	3.33 (t)	3.89 (t)	5.3	3.83 (3H, s)
14f	<i>p</i> -NO ₂	6.94 (2H, d, J=8.9), 7.28 (2H, d, J=8.9)	7.55 (2H, d, J=9.0), 8.23 (2H, d, J=9.2)	3.38 (br)	4.10 (t)	5.4	

Table 19. Summary of	¹ H NMR spectrosco	opic data of the 1-(4	-chlorophenvl)-4-(2-a	rvl-1-diazenvl)-pipe	erazine series (14).
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· / · · · / / F F	

The ¹H NMR analysis information of the 1-(4-chlorophenyl)-4-(2-aryl-1-diazenyl)-piperazines (14) is shown in Table 19. ¹H NMR spectral analysis of the 1-(3,4-dichlorophenyl)-4-(2-aryl-1-diazenyl)-piperazines (series 15) provided unequivocal structural information for these triazenes. The NMR analysis information can be found in Table 20, and the proton labeling is shown in Fig. (2).

	x								
Series #		And Ding (411)		3,4-diCl-Ph Ri	H _a (4H)	H _b (4H)	J _{ab} (Hz)	Х	
		Aryl Ring (4H)	H _e (1H)	H _d (1H)	H _c (1H)				
15a	<i>p</i> -CN	7.51 (2H, d, J=8.5), 7.62 (2H, d, J=8.6)	7.32 (d, J=8.8)	6.81 (dd, J=2.8, 8.9)	7.03 (d, J=2.7)	3.37 (t)	4.03 (t)	5.2	
15b	<i>p</i> -COCH ₃	7.52 (2H, d, J=5.1), 7.97 (2H, d, J=4.9)	7.32 (d, J=9.0)	6.80 (dd, J=2.9, 8.8)	7.02 (d, J=2.9)	3.37 (t)	4.02 (t)	5.4	2.60 (3H, s)
15c	<i>p</i> -Br	7.34 (2H, d, J=8.7), 7.47 (2H, d, J=8.7)	7.30 (d, J=8.8)	6.79 (dd, J=2.9, 8.8)	7.01 (d, J=2.9)	3.35 (t)	3.93 (t)	5.3	
15d	<i>p</i> -OCH ₃	6.90 (2H, d, J=6.8), 7.44 (2H, d, J=8.9)	7.30(d, J=8.8)	6.78 (dd, J=2.9, 8.8)	6.78 (dd, J=2.9, 8.8)	3.33 (t)	3.87 (t)	5.4	3.82 (3H, s)
15e	<i>p</i> -NO ₂	7.55 (2H, d, J=9.0), 8.23 (2H, d, J=9.0)	7.33 (d, J=8.9)	6.80 (dd, J=2.8, 8.9)	7.02 (d, J=2.9)	3.39 (br)	4.07 (t)	5.4	
15f	<i>p</i> -CH ₃	7.19 (2H, d, J=5.3), 7.38 (2H, d, J=8.4)	7.32 (d, J=8.9)	6.80 (dd, J=2.9, 8.8)	7.02 (d, J=2.9)	3.35 (t)	3.91 (t)	5.3	2.39 (3H, s)
15g	3-ру	7.27 - 7.30 (1H, m), 7.76 (1H, dd, J=0.5, 8.2), 8.44 (1H, dd, J=0.5, 4.7), 8.72 (1H, d, J=2.3)	7.33 (d, J=8.9)	6.81 (dd, J=3.0, 8.9)	7.02 (d, J=2.9)	3.37 (t)	4.00 (t)	5.3	
15h	m-CF ₃	7.44 - 7.49 (2H, m), 7.64 (1H, d, J=7.2), 7.74 (1H, s)	7.33 (d, J=8.8)	6.81 (dd, J=2.9, 8.9)	7.03 (d, J=2.8)	3.37 (t)	4.00 (t)	5.3	

Table 20. Summary of ¹H NMR spectroscopic data of the 1-(3, 4-diclorophenyl)-4-(2-aryl-1-diazenyl)-piperazine series (15).


The 3, 4-dichlorophenyl ring resonance signals (15a - h) displayed the general splitting pattern of a 1,3,4trisubstituted aryl ring. Three hydrogen atoms, H_e, H_d, and H_e, were all identifiable (refer to Fig. 2). Proton assignments were based on multiplicity and coupling constants. H_e was assigned its position because of its doublet and small coupling constant due to W-coupling with H_d. Its doublet signals resonate in the range $\delta 7.30 - 7.33$. H_d was assigned its position because of its doublet of doublets and two coupling constants. The small coupling constant matches H_e's, and its large coupling constant corresponds to vicinal coupling with H_e . Its doublet of doublet signals resonates in the range δ 6.78 – 6.81. H_e was assigned its position because of its doublet and large coupling constant which matches H_d . Its doublet signals resonate between δ 7.01 – 7.03.

The piperazine resonance signals (15a - h) also displayed the expected multiplicity of an A₂B₂ system. The triplet signals were found between $\delta 3.33 - 4.07$. The O-methyl group of the alkoxy substituent (15d) appears as a singlet at δ 3.82. The methyl protons that were part of the acetyl group (15b) appear as a singlet at δ 2.60. The tolyl methyl substituent (15f) had a singlet signal at δ 2.39.

S #	X	Aromatic (8H)			н ап			V	
Series #		2-CH ₃ Ring	Aryl Ring	CH ₃ (3H)	H _a (4H)	Н _ь (4Н)	J _{ab} (HZ)	X	
16a	<i>p</i> -NO ₂	7.08 (2H, t, J=6.8), 7.21 (1H, d, J=7.6), 7.25 (1H, d, J=7.5)	7.56 (2H, d, J=9.2), 8.24 (2H, d, J=9.1)	2.41 (s)	3.14 (br)	4.11 (br)			
16b	<i>p</i> -Cl		7.42 (2H, d, J=8.7)	2.39 (s)	3.10 (t)	3.98 (t)	4.7		
16c	r 2 - 2 - 3	7.25 (1H, d, J=7.4)	7.52 (2H, d, J=8.7), 8.06 (2H, d, J=8.7)		3.16 (br)	4.11 (br)		1.41 (3H, t, J=7.1), 4.39 (2H, q, J=7.1)	
16d	F 3	7.25 (1H, d, J=7.3)	7.54 (2H, d, J=8.5), 7.98 (2H, d, J=8.4)	2.41 (s)	3.13 (br)	4.08 (br)		2.61 (3H, s)	
16e	<i>p</i> -CONH ₂	7.24 (1H, d, J=7.5)	7.85 (2H, U, J-8.4)	2.41 (s)	3.13 (br)	4.06 (br)		5.69 (1H, br), 6.03 (1H, br)	
16f	<i>p</i> -OCH ₃	6.91 (2H, d, 8.9), 7.20 (1H, d, J=7.3), 7.23 (1H, d, J=8.3)	7.04 - 7.06 (2H, m), 7.45 (2H, d, J=8.8)	2.37 (s)	3.08 (t)	3.90 (t)	5.1	3.84 (3H, s)	
16g	Н	6.90 (2H, d, J=7.9), 7.03 (1H, d, J=8.2), 7.10 (1H, d, J=7.2)		2.40 (s)	3.18 (t)	4.46 (t)	5.2		

Table 21. Summary of ¹H NMR spectroscopic data of the 1-(ortho-tolyl)-4-(2-aryl-1-diazenyl)-piperazine series (16).

Table 21 shows the details of the ¹H NMR analysis of the 1-(ortho-tolyl)-4-(2-aryl-1-diazenyl)-piperazines 16a-f. The piperazine resonance signals (16a - g) displayed the multiplicity of an A_2B_2 system. The triplet signals were found between $\delta 3.08 - 4.46$. ¹H NMR spectral analysis of the 1-(4-Acetophenyl)-4-(2-aryl-1-diazenyl)-piperazines (17 a-c) (Fig. 1) gave very similar results which are detailed in Table 22.

15

Fig. (2). Structure and substituents of the 1-(3, 4-dichlorophenyl)-4-(2-aryl-1-diazenyl)-piperazines (15).

	X	Aromatic (8H)						
Series #		4-COCH ₃ Ph	Aryl Ring	H _a (4H)	H _b (4H)	J _{ab} (Hz)	H _c (3H)	Х
17a	<i>p</i> -CO ₂ CH ₃	6.89 (2H, d, J=9.0), 7.89 (2H, d, J=9.0)	7.47 (2H, d, J=8.7), 8.01 (2H, d, J=8.7)	3.57 (t)	4.01 (t)	5.4	2.51 (s)	3.89 (3H, s)
17b	<i>p</i> -Br	6.92 (2H, d, J=9.0), 7.92 (2H, d, J=9.0)	7.35 (2H, d, J=8.8), 7.48 (2H, d, J=8.7)	3.58 (t)	3.98 (t)	5.4	2.55 (s)	
17c	<i>p</i> -CH ₃	6.93 (2H, d, J=9.0), 7.92 (2H, d, J=9.0)	7.18 (2H, d, J=8.1), 7.38 (2H, d, J=8.2)	3.57 (t)	3.94 (t)	5.5	2.54 (s)	2.36 (3H, s)
17d	<i>p</i> -NO ₂	6.96(2H, d, J=9Hz) 7.96(2H, d, J=9Hz)	7.59(2H, d, J=7Hz) 8.26(2H,d ,J=7.1HZ	4.14 (t)	3.66 br (t)	5.5	2.59 (s)	-
17e	<i>p</i> -CN	6.90(2H,d J=9Hz) 7.91(2H,d, J=9Hz	7.50(2H,d, J=8.7Hz 7.62(2H,d, J=8.6Hz)	4.05 (t)	3.59 (t)	5.3	2.53 (s)	-
17f	<i>p</i> -CO ₂ Et		7.48(2H,d, J=8.8Hz) 8.04(2H,d, J=8.8 Hz	4.04 (t)	3.59 (t)	5.5	2.53 (s)	1.39(3H,t, J=7.2Hz 4.36(2H,q, J=7.5Hz
17g	Н	6.91(2H,d, J=8.9Hz) 7.91(2H, d J=9.0Hz	7.20(1H,t J=7.3Hz) 7.36(2H,t, J=7.8Hz) 7.46(2H,dd J=5.8Hz)	3.96 (t)	3.57 (t)	5.4	2.53 (s)	_

Table 22. Summary of ¹H NMR spectroscopic data of the 1-(4-acetophenyl)-4-(2-aryl-1-diazenyl)-piperazine series (17).

¹H NMR analysis of the 1-(2-pyridyl)-4-(2-aryl-1-diazenyl)-piperazines (**18 a to h**) provided unequivocal structural information for these triazenes. The NMR analysis information can be found in Table **23**. ¹H NMR analysis of the 1-(2-cyanophenyl)-4-(2-aryl-1-diazenyl)-piperazines (**19 a to d**) provided unequivocal structural information for these triazenes. The NMR analysis information can be found in Table **24**.

Table 23. Summary of ¹H NMR spectroscopic data of the 1-(2-pyridyl)-4-(2-aryl-1-diazenyl)-piperazine series (18).

с	v	Aromatic (8H)					Х	
Series #	Х	2-Py Ring	Aryl Ring	H _a (4H)	н _ь (4н)	J _{ab} (HZ)	А	
18a	<i>p</i> -NO ₂	6.70 - 6.73 (2H, m), 7.53 - 7.57 (1H, m), 8.21 - 8.24 (1H, m)	7.54 (2H, d, J=9.0), 8.23 (2H, d, J=9.0)	3.83 (br t)	4.07 (t)	5.2		
18b	<i>p</i> -CN	6.70 - 6.73 (2H, m), 7.53 (1H, d, J=8.6), 8.24 (1H, dd, J=1.1, 4.9)	7.52 (2H, d, J=8.6), 7.63 (2H, d, J=8.7)	3.82 (br t)	4.03 (t)	5.4		
18c	3-ру	6.68 - 6.69 (1H, m), 6.72 (1H, d, J=8.7), 7.52 - 7.55 (1H, m), 8.23 (1H, dd, J=1.2, 4.9)	7.27 - 7.29 (1H, m), 7.77 (1H, d, J=8.3), 8.42 (1H, dd, J=1.6, 4.8), 8.72 (1H, d, J=2.3)	3.80 (t)	3.99 (t)	5.4		
18d	<i>p</i> -CO ₂ CH ₃	6.69 - 6.70 (1H, m), 6.72 (1H, d, J=8.9), 7.53 - 7.56 (1H, m), 8.24 (1H, dd, J=1.1, 4.9)	7.51 (2H, dd, J=1.8, 8.7), 8.04 (2H, dd, J=1.8, 8.7)	3.81 (br t)	4.01 (t)	5.4	3.92 (3H, s)	
18e	<i>p</i> -COCH ₃	6.69 - 6.70 (1H, m), 6.72 (1H, d, J=8.6), 7.54 - 7.56 (1H, m), 8.24 (1H, dd, J=1.2, 4.9)	7.52 (2H, d, J=8.5), 7.97 (2H, d, J=8.7)	3.81 (br t)	4.02 (t)	5.3	2.60 (3H, s)	
18f	<i>p</i> -CH ₃	6.67 - 6.70 (1H, m), 6.72 (1H, d, J=8.6), 7.52 - 7.55 (1H, m), 8.24 (1H, dd, J=1.1, 5.0)	7.17 (2H, d, J=8.1), 7.39 (2H, d, J=8.4)	3.78 (br t)	3.91 (t)	5.4	2.36 (3H, s)	
18g	o-Br	6.68 - 6.70 (1H, m), 6.72 (1H, d, J=8.6), 7.52 - 7.56 (1H, m), 8.24 (1H, dd, J=1.2, 4.9)	7.03 - 7.06 (1H, m), 7.26 - 7.29 (1H, m), 7.46 (1H, d, J=8.0), 7.61 (1H, d, J=7.9)	3.81 (br t)	4.02 (t)	5.4		
18h	Н	6.68 - 6.70 (1H, m), 6.72 (1H, d, J=8.5), 7.54 (1H, m), 8.24 (1H, dd, J=1.1, 4.7)	7.21 (1H, t, J=7.3), 7.37 (2H, t, J=7.9), 7.48 (2H, d, J=8.4)	3.79 (t)	3.95 (t)	5.4		

Series #	KS #	Х	Piperazine Ha and Hb	Aryl-p Hc & Hd	Aryl-o He-Hh	Х
19a	K872	p-CO ₂ CH ₃	3.55 4H, t 4.08 4H, t J=5.2Hz	8.02 2H, d 7.49 2H, d AA'BB'	7.05 2H, m 7.50 1H, m 7.60 1H, dd	3.90 3H, s
19b	KS75	p-CH ₃	3.35 4H t 3.98 4H t J=5.15Hz	7.37 2H d 7.16 2H d AA'BB'	7.05 2H ddd 7.51 1H dt 7.60 1H dd	2.35 3H s
19c	KS74	p-Br	3.34 4H t 4.01 4H t J=5.2Hz	7.45 2H d 7.34 2H d AA'BB'	7.10 2H m 7.51 1H dt 7.61 1H dd	-
19d	KS76	p-OCH ₃	3.35 4H t 3.95 4H t J=5.15Hz	6.89 2H d 7.43 2H d AA'BB'	7.05 2H m 7.51 1H dt 7.60 1H dd	3.82 3H s

Table 24. ¹ H NMR spectroscopic data of the 1	-(2-cyanophenyl)-4-(2-aryl-1-diazenyl)-piperazine series (19).
--	--

CONCLUSION

Eight series of 1-aryl-4-(2-aryl-1-diazenyl)-piperazines were successfully synthesized: 1-phenyl-4-(2-aryl-1-diazenyl)-piperazines, 1-(4-chlorophenyl)-4-(2-aryl-1-diazenyl)-piperazines, 1-(4-chlorophenyl)-4-(2-

CONFLICT OF INTEREST

The authors confirm that this article content has no conflict of interest.

ACKNOWLEDGEMENTS

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) for a Discovery Grant to the principal author (KV) and an Undergraduate Summer Research Award to Karen O'Malley (*née* Schurman). We are also grateful to the Faculty of Graduate Studies and Research at Saint Mary's University for ongoing support. We are also grateful to the Atlantic Region Magnetic Resonance Centre at Dalhousie University for providing NMR spectra, and to Dalhousie University for providing mass spectral data. In particular, we would like to thank Dr. Mike Lumsden for assistance with the NMR spectral data, and Mr. Xiao Feng for assistance with mass spectra.

REFERENCES

 Clarke, D.A.; Barclay, R.K.; Stock, C.C.; Rondestvedt, C.S. Jr. Triazenes as inhibitors of mouse sarcoma 180. Proc. Soc. Exp. Biol. Med., 1955, 90(2), 484-489.

[http://dx.doi.org/10.3181/00379727-90-22073] [PMID: 13273488]

- [2] Arrowsmith, J.; Jennings, S.A.; Clark, A.S.; Stevens, M.F. Antitumor Imidazotetrazines. 40. Radiosyntheses of [4- C-Carbonyl]- and [3-N- C-Methyl]-8-carbamoyl-3-methylimidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-one (Temozolomide) for Positron Emission Tomography (PET) Studies. J. Med. Chem., 2002, 45, 5458-5870.
 [http://dx.doi.org/10.1021/jm020936d] [PMID: 12459014]
- [3] Cocconi, G.; Bella, M.; Calabresi, F.; Tonato, M.; Canaletti, R.; Boni, C.; Buzzi, F.; Ceci, G.; Corgna, E.; Costa, P.; Lottici, R.; Papadia, F.; Sofra, M.C.; Bacchi, M. Treatment of metastatic malignant melanoma with dacarbazine plus tamoxifen. *N. Engl. J. Med.*, 1992, 327(8), 516-523.
 [http://dx.doi.org/10.1056/NEJM199208203270803] [PMID: 1635566]
- [4] Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R.C.; Ludwin, S.K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J.G.; Eisenhauer, E.; Mirimanoff, R.O. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. *N. Engl. J. Med.*, **2005**, *352*(10), 987-996. [http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
- [5] Caliendo, G.; Santagada, V.; Perissutti, E.; Fiorino, F. Derivatives as 5HT1A receptor ligands-past and present. Curr. Med. Chem., 2005, 12(15), 1721-1753.

[http://dx.doi.org/10.2174/0929867054367220] [PMID: 16029144]

- [6] Lopez-Rodriguez, M.L.; Ayala, D.; Benhamu, B.; Morcillo, M. J. Arylpiperazine derivatives acting as 5-HT1A receptors. Curr. Med. Chem., 2002, 9(4), 443-469.
- [7] Little, V.R.; Vaughan, K. Synthesis and Characterization of a series of 1-methyl-4-[2-aryl-1-diazenyl]piperazines and a series of ethyl 4-[2-aryl-1-diazenyl]-1-piperazinecarboxylates. *Can. J. Chem.*, 2004, *82*, 1294-1303.
 [http://dx.doi.org/10.1139/v04-081]
- [8] Little, V.R.; Tingley, R.; Vaughan, K. Triazene derivatives of [1,x]-diazacycloalkanes. Part III. Synthesis and characterization of a series of 1,4-di[2-aryl-1-diazenyl]piperazines. *Can. J. Chem.*, 2005, 83, 471-476. [http://dx.doi.org/10.1139/v05-064]
- Yanarates, E.; Disli, A. Yildirir. Y. New N,N'-bis-[substituted phenylazo]piperazines and their cleavage reactions in acetic acid. Org. Prep. Proced. Int., 1999, 31, 429-433.
 [http://dx.doi.org/10.1080/00304949909355733]
- [10] Moser, S.L.; Vaughan, K. Synthesis and Characterization of a series of 4-methyl-1-2-aryl-1-diazenyl]-1,4-diazepanes and 1,4-di-[2-aryl-1-diazenyl]-1,4-diazepanes. Can. J. Chem., 2004, 82, 1725-1735. [http://dx.doi.org/10.1139/v04-153]

© O'Malley and Vaughan; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.