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Abstract: New approach to hardware FIR filter implementation is described in this paper. Method includes the conver-

sion to the frequency domain, as well as the principles of residue number systems and number-theoretic transforms. Pa-

rameterized RTL IP-core generators were implemented for both conventional and developed methods. These IP genera-

tors were used to implement different devices for different filter orders and input widths. Filters were synthesized, and re-

sulting time and hardware evaluation allow one to consider the effectiveness of the method compared with the conven-

tional realization of FIR filter. 
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INTRODUCTION 

Filtering with finite impulse response (FIR) is a basic 
procedure in various digital signal processing devices in-
volved in such research areas as speech processing, radar 
signal processing, filtering all sorts of noise in a wide range 
of human activities. 

To improve performance of program filters, designers of-

ten move to frequency domain and use Fast Fourier Trans-

form procedures. This method is based on the so called con-

volution theorem, theorem, which allows reducing the num-

ber of operations for higher-order filters. Nevertheless, the 

program implementation of FIR filters in signal processors 

or general purpose processors is strictly sequential, that can-

not provide high performance in many practical cases. Often 

the bandwidth requirements in real devices can be met only 

for hardware implementation of constant-coefficient filters. 

Sacrificing flexibility in choosing coefficients as well as 

hardware costs, it is possible to provide the required level of 

performance using pipelined architecture for FIR filters im-

plementation. The problem of constructing hardware FIR 

filters with fixed coefficients has been actively discussed in 

foreign publications in recent years [1, 2].  

The process of further increase of the FIR filter’s perfor-

mance involves the use of mathematical apparatus of residue 

number system (RNS) arithmetic which has repeatedly 

proved its effectiveness in the field of digital signal pro-

cessing, in particular for digital filters design [3]. 

Besides using RNS principles, we propose to combine 
the idea of computation in frequency domain with the prin-
ciples of parallel data processing in the same hardware FIR 
filter. In addition, RNS implementation of FIR filter using  
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number-theoretic Fourier transform is proposed, which pro-
vides increased performance and better accuracy. 

PRELIMINARIES 

Conventional Implementations of FIR Filters 

Filter with finite impulse response, in essence, is no more 
than a linear convolution of the input sequence of some digi-
tal points with the sequence of filter coefficients. The task of 
choosing particular set of filter coefficients can be effective-
ly solved by modern software tools and is not considered in 
our work. Abstracting from the choice of the coefficient val-
ues, we turn directly to the computation of linear convolu-
tion. The formula for its calculation is as follows: 

  

s(n)= a b= a(m)
m=0

n

b(n - m),n= 0 ...N + M - 2  (1) 

where , , and ,  are 
discrete signals;  is the linear convolution of these sig-
nals. 

To compute the linear convolution, the signals  and 

 are shifted relative to each other, then point-wise mul-

tiplied and folded. It is assumed that  at  and 

, and  at  and . 

Architectures for computing linear convolution can be 
different. There are several types of architectures: 

• Sequential 

• Parallel 

• Sequential-parallel 

Sequential schematics is characterized by a small number 
of computing units, intensive memory exchange and low 
performance. In the extreme, this circuit consists of a multi-
plier-accumulator and a control device which provides the 
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necessary loading of coefficients from memory. In this case, 
N clock cycles are required to calculate one output count. 
This method is implemented as software in signal processors 
or general purpose computers.  

If the performance of digital signal processor (DSP) is 
not enough, the filter is implemented as hardware using par-
allel architectures. Parallel schematics exploit pipelining 
method, separating the pipeline stages by registers. Canoni-
cal form of FIR filter looks as follows (Fig. 1): 

 The advantage of this architecture is its speed and ability 
to work in real time. Its disadvantage is the considerable 
increase of hardware costs. 

Implementation of FIR Filters in Frequency Domain 

Besides the time-domain implementations, frequency 
domain implementation is also possible. It is based on the 
so-called convolution theorem, the essence of which is as 
follows: the spectrum of the cyclic convolution equals the 
product of the spectra of the convolved signals (convolution 
in one domain equals point-wise multiplication in the other 
domain): , where  and  are the 
spectra of the convolved signals, and  is the spectrum of 
the cyclic convolution of two signals (Fig. 2). 

Thus, instead of directly implementing the convolution 
according to the formula, we can convert the signals into 
frequency domain using fast Fourier transform (FFT), multi-
ply them point-wise, and then do reverse conversion. In this 
case the result corresponds to the cyclic convolution [4]. 
Moreover, if we add zeros to the sequences, cyclic convolu-
tion calculation becomes equivalent to calculation of the 
required linear convolution. The advantage of this method is 
the reduction of operations number, because using FFT 
schematics we need only n*log2(n) operations, which gives a 
gain for large values of n. 

However, there are some drawbacks. In most cases, the 
input signal is interpreted as a signal of infinite duration, 
which is filtered using a limited set of coefficients. Parallel 
circuit successfully copes with this task in "online" mode, 
but as regards the methods based on FFT, it is not so easy. 
Even if we create a converter for conditional infinite number 
of points, the circuit latency also goes to infinity, because for 
FFT, to start giving out the resulting values, all needed val-
ues should be uploaded beforehand. To solve this problem, 
various "overlap-add" methods have been developed. They 
allow to process small size segments and then combine them 
to get the necessary convolution for the theoretically infinite 
sequence of points at the output [5]. 

FIR Filters Implementation via Residue Number System 

For further improvement of performance, reliability, ac-

curacy and power consumption, methods based on RNS 

arithmetic are often used. Using the Chinese remainder theo-

rem, it is possible to decompose the filter structure into a 

number of parallel independent residue channels, each of 

which is a FIR filter over a finite field. Such parallelization 

reduces number of digits of the operands, that improves op-

erating speed and power consumption. Also, adding some 

redundancy, RNS arithmetic allows increasing device relia-

bility. 

Structure of RNS calculators is determined by the set of 
moduli , that are pairwise coprime. Dynam-
ic range of the RNS is characterized by an interval [0,M), 
where . Chinese remainder theorem 
guarantees unique representation of integer numbers from 
the dynamic range as the set of remainders of the number 
divided by the moduli from the given set, and also defines 
the method of restoring the number from its remainders. 
Thus, the number has the following RNS notation: 

 

Fig. (1). Canonical form of FIR filter. 

 

Fig. (2). Block diagram of the cyclic convolution calculation in frequency domain. 
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for i = 1,…,r. Symbol ° 

denotes any of the RNS operations: addition, subtraction, or 

multiplication for corresponding modulus. Thus, the calcula-

tions are performed in parallel, independently for each resi-

due channel, that eventually leads to the process accelera-

tion. 

One of the main difficulties regarding the practical imple-

mentation of RNS-based devices is the problem of effective 

implementation of forward and reverse converters - devices 

that convert information from binary to RNS notation and 

backwards. Building of reverse converters is especially hard 

because it requires simultaneous addressing all components of 

RNS notation. For implementing of FIR filters, in this paper 

we use efficient architectures of forward and reverse convert-

ers that were proposed in the previous works [6, 7]. 

DEVELOPMENT OF RNS-BASED FIR FILTER US-
ING THE CONVOLUTION THEOREM OVER FINITE 
FIELDS 

As it was already stated above, there are many ways of 

hardware implementation of FIR filters: sequential, parallel, 

in frequency/time domain, etc. RNS arithmetic provides 

means for structure parallelization at the level of arithmetic 

operations, and it can be used for the design of a FIR filter 

implemented by any method. However, the most promising 

is the use of RNS-based parallel implementation in frequen-

cy domain. There are several prerequisites for this conclu-

sion, the main of which is that for finite fields there is an 

analogue of the convolution theorem. More precisely, there 

exists a transform over finite fields similar to Fourier trans-

form, for which convolution theorem over finite fields holds 

and all symmetric properties are met, that allows using any 

fast algorithm for computing this transform. The conversion 

formula is as follows: 

  

A
k

= a
n

nk

n=0

2
t

1

p
p

 

Here  - is the number-theoretic spectrum of the signal, 
is the signal itself,  is the characteristic of the finite field, 

 - is the primitive root with index  [8]. If the number  is 
of the form , then the primitive root with index 

 always exists and equals . 

For a prime modulus m, there is at least one primitive 

root 
  

p 1 , such that the set 
  

i

m

: i = 0,1,2,...,m 2  

forms all nonzero residues modulo m. The following exam-

ple shows that  = 3 is a primitive root modulo m = 7 : 
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Exponents of the primitive root by an arbitrary modulo 
are called "indexes".  

Thus, the said conversion is an analog of the discrete 

Fourier transform for trigonometric basis, where the twiddle 

factors  are replaced by , and the operations of addi-

tion and multiplication of complex numbers – by the corre-

sponding operations over GF(p). 

Besides the obvious advantages such as of computations 
paralleling, we achieve better accuracy, since the calcula-
tions are carried out in finite fields with integer twiddle fac-
tors that eliminates representation errors typical for standard 
trigonometric method. [4] 

The RNS-based FIR filter implementation with the use of 
number-theoretic fast Fourier transform is presented in the 
(Fig. 3). 

The basic structure of the filter consists of forward and 

reverse converter units, as well as  residue channels of the 

same type that differ only in characteristic of the finite field 

over which all arithmetic calculations are carried out. All 

moduli must have the same binary rank, i.e. they must all be 

of the form . This fact guarantees that a prim-

itive root  with index  exists in every finite field, that 

allows to form RNS-based FFT of length . This parameter 

is the basis of FIR filter as a whole. It also determines the 

length of input data segments of the infinite sequence to be 

processed in residue channels and then "glued" in OVER-

LAP ADDITION block. Moreover, this parameter affects the 

filter order, and if it equals , the number of 

filter coefficients must equal . 

The modular channel consists of a zero padding block, 
forward FFT block, a unit for multiplication by filter coeffi-
cients, inverse FFT block (INV_FFT) and a module for data 
segments combination. FIR filter behavior in frequency do-
main implies that the relevant number of zeros are added to 
input data segments for correct “gluing” of the results in the 
block for combination of the processed data segments. Tak-
ing into consideration the pipelined device architecture, it is 
necessary to reduce data input frequency in half. In other 
words, internal FIR frequency  should be two times 
higher than discretization frequency . For this purpose fre-
quency divider block is added to the schematic (Fig. 4). 

Overlap addition block combines parts of processed data to 

make an infinite output sequence of filtered result. Inverse 

Fourier transform produces blocks of data of length , each 

of which must be divided into two parts. These two sequences 

must be combined through pairwise summation.  Let’s consid-

er t = 3, and show the overlapping process on (Fig. 5).  

 Now it is clear that for  samples of input data overlap 
addition block produces  output samples. It means that 
we must use discretization frequency  for output data. Ver-
ilog code for overlap addition block is given below. 
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Fig. (3). Block schematic diagram of FIR filter in frequency domain. 

 

Fig. (4). Zero padding block and frequency divider block. 

 

Fig. (5). Synthesis results for binary filter in the canonical form. 

 

module overlap_add_41 (dataout, datain, clk, reset, 
clk_enable); 

 parameter WIDTH=6;  

 input  [WIDTH-1:0] datain; 

 input  clk, reset, clk_enable; 

 output [WIDTH-1:0] dataout; 

 reg clk_2; 

 wire [WIDTH-1:0] shift1_out, adder_out; 

  

  // Block Statements 

 always @ (posedge clk or posedge reset) 

 begin 

  if (reset) 

   clk_2 <= 0; 

  else  

   clk_2 <= ~clk_2; 

 end  
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 shift_reg_4 #(WIDTH) shift1 (shift1_out, datain, 
clk, reset, clk_enable); 

 mod_adder #(41, 6) add (adder_out, shift1_out, da-
tain); 

 slow_down_4 #(WIDTH) slow (dataout, ad-
der_out, clk, clk_2, reset, clk_enable); 

endmodule 

 

 

All internal blocks including Fourier transform block 
(FFT) are maximally pipelined to achieve the smallest clock 
frequency. Control unit MANAGER provides for the syn-
chronization of device parts and device as a whole. It is also 
responsible for supplying the address of the cell holding the 
filter coefficient to the memory connected to the multiplier. 

SYNTHESIS RESULTS 

The result of the design is the IP core implementing RTL 
circuit description in Verilog HDL. All IP cores, developed 

during related work are available on the author’s web site 
[9]. IP core parameters are the filter coefficients and the in-
put data digit capacity. To evaluate the efficiency of the pro-
posed approach, experiment was carried out on the synthesis 
of RNS-based FIR filters using Synopsys CAD tools and 
Nangate 45 nm Open Cell Library. The order of the filter 
was chosen in the range of 4 to 32 points. Number of bits is 
in the range of 4 - 16. Critical path delay and circuit area 
were evaluated. Also, for the same set of parameters FIR 
filter in canonical form was designed. Results are presented 
in Figs. (6, 7) and Table 1. 

CONCLUSION 

The synthesis results show that the proposed schematic 

outperforms the traditional variant with regard to clock fre-

quency for large-scale input data and higher filter order, 

however, it requires sufficiently greater area. And if at first 

glance, the results may seem disappointing – actually it is 

not so. RNS-based filters have some advantages which are 

not reflected in the presented diagrams. First, the filtered 

output signal of the RNS block based on the FFT over a fi-

 

Fig. (6). Synthesis results for RNS filter based on convolution theorem over finite field. 

 

 

Fig. (7). Comparison of RNS and binary schematics for fixed filter orders. 
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nite field is much more accurate than the output signal of the 

conventional binary filter. This is due to the fact that for FFT 

over a finite field twiddle coefficients are the elements of 

this finite field, i.e. integer numbers. Thus, we avoid errors 

in the representation of the coefficients. Another advantage 

of the proposed approach is the fact that by adding extra 

modular channels we are able to control and even correct 

errors that arise during the computation. Future develop-

ments will be directed to the implementation of sequential 

RNS filters based on FFT over a finite field. 
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Table 1. Comparison of RNS and binary schematics for fixed filter orders. 

Input Data Width 

Timing Comparison, ns Area Comparison, m 

Canonical FIR Filter RNS FIR Filter Canonical FIR Filter RNS FIR Filter 

4 1.45 1.89 4326 102768 

5 1.58 1.93 5607 102456 

6 1.88 2.49 6667 151908 

7 2.13 2.53 8996 151088 

8 2.22 2.58 10374 150621 

9 2.5 2.55 12894 151169 

10 2.64 2.58 16386 167788 

11 2.92 2.95 18050 211303 

12 3.06 2.95 21777 211460 

13 3.21 2.92 23062 212172 

14 3.37 3.03 27726 210621 

15 3.57 3.16 31257 225272 

16 3.84 3.44 36158 268385 


