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Abstract: This paper introduces an artificial neural network (ANN) approach for the detection and identification of 

lightning-caused very fast transient (VFT) in gas insulated substation (GIS). VFT in GIS can be due to faults, lightning 

and switching operations. VFT in GIS has to be located and classified as soon as possible to start the processes of 

reconfiguration and restoration of the normal power supply. A practical case study is investigated in Talkha 220-kV GIS 

which represents a critical generation point in the Egyptian Electric Power Network. The layout of the Talkha 220-kV GIS 

is discussed and modeled using ATP/EMTP. The ANN-based approach is built and trained. Finally, the proposed 

approach is tested using bolt ground faults, high impedance faults, and lightning on the connected transmission lines. The 

results ensure the success of the proposed approach to classify and discriminate the faults and the lightning-caused VFT. 
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1. INTRODUCTION 

 In power system substations, faults that produced load 
disconnections or emergency situations have to be located as 
soon as possible. Faults location is necessary to start the 
substation reconfiguration for restoring normal energy 
supply. Failures in GIS are known to have occurred both 
during early years of operation and during site testing or 
assembling. From the statistical point of view, problems 
have occurred at the highest voltage levels rather than the 
lower level [1]. However, the identification of the faulted 
points is not always an easy task, delaying the restoration 
procedures. This usually occurs when the protection system 
does not behave as expected. Substation in commissioning 
phase or even the ones already in operation, but with 
complex constructive and operational natures, can have high 
indices of protection system failure. In these substations, 
fault location can take a long time due to the great amount of 
information to be analyzed. The difficulty in identifying the 
fault points significantly increases in non-conventional 
substation, as gas-insulated ones [2]. 

 In GIS a large number of restrikes occur across the 
switching contacts when disconnector, breaker operations, 
the closing of grounding switch, and by line-to-ground 
faults. Each strike leads to generation of VFT [2]. The 
generation and propagation of VFT from their original 
location throughout a GIS can produce internal and external 
overvoltages. In case of a line-to-ground fault, the voltage 
collapse at the fault location occurs in a similar way as in the 
disconnector gap during striking. Step-shaped traveling 
surges are generated and injected to GIS lines connected to 
the collapse location [3]. 
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 VFT in GIS can be divided into internal and external. 
Internal transients can produce overvoltages between inner 
conductors and the encapsulation. External transients can 
cause stress on secondary and adjacent equipment. 
Breakdown phenomena across the contacts of a disconnector 
during a switch operation or line-to-ground faults generate 
very short rise time traveling waves which propagate in 
either direction from the breakdown or fault location. Surges 
traveling throughout GIS and to other connected equipment 
are reflected and refracted at every transition point. As a 
consequence of multiple reflections and refractions, traveling 
voltages can increase above the original values and very high 
frequency oscillations occur. An internally generated VFT 
propagates throughout the GIS and reaches the bushing 
where it causes a transient enclosure voltage and a traveling 
wave that propagates along the overhead transmission line 
[2]. 

 In the areas of power systems, problems may have one or 
more of the following characteristics: dynamic, non-linear, 
large scale and random like. These factors make power 
system problems more difficult to solve. Therefore, 
computers are extensively applied to power system 
operation, planning, monitoring and control. Current 
approaches to power system computation are mainly based 
either on developing a mathematical model of a relevant part 
of the system or on expert systems. Artificial Neural 
Networks (ANNs) provide a promising and attractive 
alternative [4]. 

 ANNs have the inherent capacity of modeling functional 
relationships between input and output data without the 
explicit knowledge of an analytical model. ANNs have a 
great pattern recognition capabilities and their ability to 
handle noisy data. There are widespread applications of 
ANNs in a number of different areas of power systems such 
as: load forecasting, security assessment, control, system 
identification, protection, fault location, adaptive auto 
reclosing, operational planning, etc. Matlab/Simulink has a 
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suite of programs designed to build ANNs (Neural Networks 
Toolbox) [5]. There are three steps to using ANNs; design, 
training, and testing [6, 7]. 

 This paper concerns the lightning-caused VFT and the 
fault identification and detection in GIS. A practical case 
study is analyzed using Talkha 220-kV GIS. This GIS 
represents a critical generation point in the Egyptian Electric 
Power Network. The layout of the Talkha 220-kV GIS is 
discussed and modeled using ATP/EMTP. The ANN-based 
approach is built and trained. The proposed approach is 
tested using solidly ground faults, high impedance faults, and 
lightning on the connected transmission lines. 

2. MODELING OF TALKHA 220-KV GIS 

2.1. GIS Layout 

 Talkha 220 kV GIS is an important generation busbar in 
the north of Egypt. The fault in GIS at this point in the 
Egyptian power network may lead to severe stability events 
that may result in a complete or partial blackout. So, 
attention must be given to prevent or limit fault 
consequences. A typical 220 kV GIS installation of a one-

and-half circuit breaker arrangement is used in this paper as 
a case study. It consists of circuit breakers, disconnectors, 
busbars, surge arresters, transmission lines, transformers, 
generators, coupling feeders, earthing switches. 

 Fig. (1) illustrates the construction of Talkha 220 kV 
GIS. It consists of eight bays; each with three circuit 
breakers, six disconectors, six current transformers, and eight 
earthing switches. The GIS system contains two busbars 
which are supplied from seven generation sources using two 
150 MVA delta/star 11.5/220 kV transformers, two 200 
MVA star/star 11.5/220 kV transformers, and three 320 
MVA delta/star 16.5/220 kV transformers which supplies a 
66 kV substation through five 125 MVA, 220/70 kV star/star 
transformers, and six transmission lines which connect the 
GIS to the surrounding substations. 

2.2. GIS Modeling 

 Due to the traveling wave nature of the VFT, the GIS 
elements are modeled as electrical equivalent circuits 
composed of distributed parameter lines (defined by surge 
impedance and traveling times) as well as lumped elements. 
In order to achieve reliable simulation results the GIS is 

 

Fig. (1). A typical single line diagram of Talkha 220-kV GIS. 
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subdivided into several shorter sections. Table 1 gives the 
GIS components and how to be modeled [2, 8]. 

 The GIS installation is regarded as series of distributed 
parameters transmission lines and lumped capacitor 
elements. The parameters of each GIS section are calculated 
from the standard formula of capacitance. The capacitance is 
calculated with the assumption that the conductors are 
cylindrical [9]. Capacitance is calculated by the following [3, 
10]; 

C=2 o rl 2.3ln b a( )            (1) 

where b is the outer cylinder radius, a is the inner cylinder 
radius, and l is the length of the section. 

 Spacers are used for supporting the inner conductor with 
reference to the outer enclosure. They are made with 
Alumina filled epoxy material whose relative permittivity, r, 
is 4. The thickness of the spacer is assumed to be the length 
of the capacitor which is taken as 15~1000 pF. 

 The busbar is represented by the surge impedance, the 
velocity of surge propagation, and the length. The surge 
impedance of the busbar is calculated from the relation [9]; 

Z=60 ln B A( )             (2) 

where A is the diameter of the bus and B is the inner 
diameter of the enclosure. The surge impedance of the 220-
kV busbar is taken as 90  and the surge velocity is assumed 
be the velocity of light. 

 Fig. (2) illustrates the ATP/EMTP model of Talkha 220-
kV GIS. In this model each Bay consists of three partitions 
and each partition has six sections. So the fault can be 
applied at eighteen points for each Bay in the GIS. 

 The surge arrester is modeled by the frequency 
dependent model introduced in [11-13] shown in Fig. (3). 
The inductances Lo and L1 characterize the frequency 
dependence of the surge arrester, with respect to the 
lightning current surges, which are determined by the 
following relations [11, 14]: 

L0 = 0.01 * Vn  & L1 = 0.03 * Vn 

where Vn is the rated voltage of surge arrester. The input 
resistance R0 is implemented for numerical stability and its 
value is equal 1 M  [12]. A0 and A1 are non-linear resistors 
that represent the non-linear V-I characteristic of the model 
[12]. Fig. (4) shows the V-I characteristic [15]. The non-
linearities, A0 and A1, are modeled in ATP/EMTP using 
non-linear resistor (type-92) [12, 13, 16]. 

2.3. Simulation of Faults and Lightning 

 Faults in GIS are modeled using single-line-to-ground 
fault with two types; solidly to ground (SLG) and high 
impedance fault (HIF). The arc of the HIF is based on the 
energy balance of the arc and describes an arc in air by a 
differential equation of the arc conductance (g) [17]. Fig. (5) 
illustrates the main components of the HIF arc model using 
ATP/EMTP [18]. 

Table 1. Models of GIS Components 

 

GIS Component Equivalent Circuit Data in Simulation 

Open Distributed parameters transmission line in series with grading capacitor 

20 pF20 pF

2800 pF

17 ohms

Z=90 ohms Z=90 ohms

 Circuit Breaker 

Close Distributed parameters transmission line 

Z=110 ohms

L= 0.9 m & =300m/ s  

 Busbar Distributed parameters transmission line 

Z=90 ohms

L= 0.9 m & =300m/ s  

Earthing Switch Lumped capacitor to earth C= 20~45 pF

 

Open Distributed parameters transmission line in series with capacitor  
Z=90 ohms Z=90 ohms

C=20 pF  

Disconnector 

Close Distributed parameters transmission line 

Z=0.8 ohms

L= 0.60 m & =300m/ s
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 Fig. (6) shows the single-line diagram of Bay#1 and the 
fault scenarios at three points; node 1, node 2, and node 3, 
respectively. Fig. (7) illustrates the current waveforms of  
 

phase A of BB#1 for SLG in Bay#1 and Bay#7. Fig. (8) 
illustrates the current waveforms of phase A of BB#1 for 
HIF in Bay#1 and Bay#7. 

 

Fig. (2). ATP/EMTP model of Talkha 220-kV GIS. 
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Fig. (3). Simplified IEEE model (Pinceti-Giannettoni Model). 

 

Fig. (4). The current/voltage characteristics of the surge arrestor. 

 

Fig. (5). ATP/EMTP HIF Arc Model. 

 The current is measured at the middle of BB#1 near the 
bus-tie. The most of generation units are located in the upper 
part of GIS; as shown in Fig. (2). It is noted that for the fault 
on Bay#7, all the generation units feed this fault, so the 

monitored fault current at the measuring point at the middle 
of BB#1 for both HIF and SLG is greater than that measured 
for Bay#1. 

 Table 2 summarized the maximum monitored fault 
currents at different fault scenarios. It is clearly seen that the 
closer the fault points to the monitoring point, the higher the 
absolute peak of the monitoring fault currents. 

Table 2. Absolute Peak of the Monitoring Fault Current for 

Fault Scenarios 

 

Absolute Peak of the Fault Current (A) 
Fault 

SLG HIF 

node1 4492 8 

node2 4669 17 

B
a

y
#

1
 

node3 6416 92 

node1 12648 29 

node2 13049 35 

B
a

y
#

7
 

node3 15767 115 

 

 Lightning is simulated as an impulse current source of 51 
kA in parallel with a resistance of 400  [19]. Fig. (9) shows 
a double circuit transmission lines which are connected to 
the GIS; Line#1 and Line#2. Each of them is 10 km length. 
The lightning is applied at different points along the two 
lines. Figs. (10, 11) illustrate the current waveforms of phase 
A of BB#1 for lightning applied on Line#1 and Line#2, 
respectively, at different points. 

3. THE PROPOSED ANN-BASED CLASSIFIER 

 ANN have demonstrated the special capability of 
mapping the very complicated relationships between the 
inputs and the outputs and of revealing subtle differences in 
features between ill-defined patterns, particularly of the 
aforementioned types associated with wideband fault 
generated noise. 

 A large number of simulations are performed to generate 
a good representative data set for training and testing ANN. 
Once sets of training/testing patterns have been generated, 
the appropriate ANN architecture and associated parameters 
are chosen. The task of ANN is to learn to capture the VFT 
in GIS and detect the reason and its location. 

 

Fig. (6). Fault scenarios at Bay#1. 
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Fig. (7). Current waveforms of phase A of BB#1 at SLG fault. 

Fig. (8). Current waveforms of phase A of BB#1 at HIF. 

 It is important to give meaningful training patterns, 
which will contain all the necessary information to 
generalize the problem. Special care must be taken to include 
boundary patterns. It is possible that a particular ANN 
structure with the given training data may not train properly, 
i.e., the training process takes too long. The structure and/or 
parameters must be changed and the network retrained. Also, 
a trained network might not perform satisfactory because of 
inadequate training data, or due to the structure of the 
network. In that case, the structure of the network should be 
re-designed and the process should be repeated. 

 After the data have been collected, there are two steps 
that need to be performed before the data are used to train 

the network: the data need to be preprocessed, and they need 
to be divided into subsets. It is a standard practice to 
normalize the inputs before applying them to the network. 
Generally, the normalization step is applied to both the input 
vectors and the target vectors in the data set. In this way, the 
network output always falls into a normalized range [20]. 

 

Fig. (9). ATP/EMTP Simulation of lightning in double circuit 

transmission lines connected to the GIS. 

 

Fig. (10). Current waveforms of phase A of BB#1 for lightning 

applied on Line#1. 

 Multilayer feed forward network is the most widely used 
[21, 22]. The back propagation algorithm is the most 
commonly used procedure yielding usually good generalizat-
ion capabilities. Multilayer Feed forward networks consist of 
a series of layers. The first layer has a connection from the 
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network input. Each subsequent layer has a connection from 
the previous layer. The final layer produces the network's 
output. Feed forward networks can be used for any kind of 
input to output. A feed forward network with hidden layer 
can fit any finite input-output mapping problem. 

 

Fig. (11). Current waveforms of phase A of BB#1 for lightning 

applied on Line#2. 

 The back propagation learning rule is used in most 
applications and usually gives good generalization 
capabilities [5]. However; the algorithm requires long 
training periods and may possibly converge to local minima. 
Improvement techniques can be used to make back 
propagation more reliable and faster. The back propagation 
learning rule is used to adjust the weights and biases of 
networks to minimize the sum-squared error of the network. 
This is done by continually changing the values of the 
network weights and biases in the direction of steepest 
descent with respect to error. The function "scaled conjugate 
gradient" (Trainscg) gives best results in this work. 

 Various combinations of number of hidden layers and 
numbers of units are tested. The suitable network which 
gives satisfactory results is chosen. The selected network 
structure is shown in Fig. (12). The hidden layer is chosen to 
have 10 neurons. The training, validation and test 
performance of the proposed ANN are tested. It can be seen 
that the best training performance reaches 0.01, the best 
testing performance is 0.06, and the best validation 
performance is 0.0349. 

 The second step is to identify the location. A three 
parallel extended ANNs are designed to do this function; one 
for the HIF, the second for the solidly fault to ground, and 
the last one for the lightning, as shown in Fig. (13). 

 

Fig. (12). The proposed neural network architecture. 

Table 3. The Proposed ANN-Classifier Test Results 

 

Reason of VFT Desired Output Actual Outputs 

Type Location Type Location Type Location 

SLG Bay#1 1.0 1.0 1.0003 1.1053 

SLG Bay#2 1.0 2.0 1.0023 1.9833 

SLG Bay#3 1.0 3.0 1.0005 3.0440 

SLG Bay#4 1.0 4.0 1.0019 4.2000 

SLG Bay#5 1.0 5.0 1.0010 5.0093 

SLG Bay#6 1.0 6.0 1.0020 6.0089 

SLG Bay#7 1.0 7.0 1.0028 6.9924 

SLG Bay#8 1.0 8.0 1.0014 8.0055 

HIF Bay#1 2.0 1.0 1.9316 0.9941 

HIF Bay#2 2.0 2.0 1.9328 1.9719 

HIF Bay#3 2.0 3.0 1.9230 2.8000 

HIF Bay#4 2.0 4.0 1.9432 4.0049 

HIF Bay#5 2.0 5.0 1.9347 4.9949 

HIF Bay#6 2.0 6.0 1.9333 5.9919 

HIF Bay#7 2.0 7.0 1.9486 6.9629 

HIF Bay#8 2.0 8.0 1.9333 8.0053 

Lightning Line1 3.0 1.0 2.9996 1.0146 

Lightning Line1 3.0 1.0 2.9997 1.0568 

Lightning Line1 3.0 1.0 2.9999 1.0453 

Lightning Line1 3.0 1.0 2.9994 1.0687 

Lightning Line2 3.0 2.0 2.9931 1.9272 

Lightning Line2 3.0 2.0 2.9966 1.9649 

Lightning Line2 3.0 2.0 2.9993 1.9917 

Lightning Line2 3.0 2.0 2.9958 1.9769 

 

4. TEST RESULTS 

 Following the training of ANN, a separate set of the 
simulation results (24 inputs) is supplied to the proposed 
ANN in order to evaluate the validity of the proposed 
technique. Table 3 summarizes the test results. The left two 
columns of the table are the VFT type and location, 
respectively. Then the last two columns groups are the 
desired outputs and the actual outputs for VFT type and 
location, respectively. 

 It is evident from the results that, the proposed approach 
succeeds in detecting the VFT in any bay of the GIS. 
Furthermore, the proposed approach has the ability to 
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classify the lightning-caused VFT. The proposed approach 
depends on the measurement of only the current at one point 
in the GIS. The measurement point is selected in this study at 
the middle of BB#1; between Bay#4 and Bay#5. 

5. CONCLUSIONS 

 In this paper, an ANN-based approach is proposed and 
designed to detect and classify VFT in Talkha 220-kV GIS. 
The presented approach has the ability to detect, classify, and 
identify the lightning-caused VFT. The layout of the Talkha 
GIS is modeled using ATP/EMTP. A multi-stages ANN of 
multilayer feed-forward network is designed, trained, and 

tested. The proposed approach accurately discriminates 
between the bolt ground faults and the high impedance 
faults, and the lightning. Also, it has the ability to identify 
the location. 

 The proposed approach has distinct advantages; first of 
all, the high speed detection of the VFT in GIS, also, the 
accurate identification of the fault point or the lightning-
struck line. The high speed of this approach is very 
important in GIS which is considered critical in the electric 
power network and the accurate VFT type classification 
leads to take the right protective actions. 

Fig. (13). Structure of the proposed multi-stage feed-forward ANN. 
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