
156 The Open Astronomy Journal, 2010, 3, 156-166  

 
 1874-3811/10 2010 Bentham Open 

Open Access 

MOND Orbits in the Oort Cloud 

L. Iorio* 

*Ministero dell'Istruzione, dell'Università e della Ricerca (M.I.U.R.), Italy 

Abstract: We numerically investigate the features of typical orbits occurring in the Oort cloud ( r ! 50"150  kAU) in the 
low-acceleration regime of the Modified Newtonian Dynamics (MOND). We fully take into account the so-called 
External Field Effect (EFE) because the solar system is embedded in the Milky Way. In the framework of MOND this 
does matter since the gravitational acceleration of Galactic origin felt by the solar system is of the same order of 
magnitude of the characteristic MOND acceleration scale A

0
! 10

"10  m s !2 . We use three different forms of the MOND 
interpolating function µ(x) , two different values for the Galactic field at the Sun's location and different initial conditions 
corresponding to plausible Keplerian ellipses in the Oort cloud. We find that MOND produces highly distorted trajectories 
with respect to the Newtonian case, especially for very eccentric orbits. It turns out that the shape of the MOND orbits 
strongly depend on the initial conditions. For particular initial state vectors, the MOND paths in the ecliptic plane get 
shrunk extending over much smaller spatial regions than in the Newtonian case, and experience high frequency variations 
over one Keplerian orbital period. Ecliptic orbits with different initial conditions and nearly polar orbits are quite different 
getting distorted as well, but they occupy more extended spatial regions. These facts may have consequences on the 
composition and the dynamical history of the Oort cloud which are difficult to predict in detail; certainly, the MOND 
picture of the Oort region is quite different from the Newtonian one exhibiting no regularities.  
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1. INTRODUCTION 

 In many astrophysical systems like, e.g., spiral galaxies 
and clusters of galaxies a discrepancy between the observed 
kinematics of their exterior parts and the predicted one on 
the basis of the Newtonian dynamics and the matter detected 
from the emitted electromagnetic radiation (visible stars and 
gas clouds) was present since the pioneering studies, in 
recent times, by Bosma [1] and Rubin and coworkers [2] on 
spiral galaxies. More precisely, such an effect shows up in 
the galactic velocity rotation curves whose typical pattern 
after a few kpc from the center differs from the Keplerian 
1 / r  fall-off expected from the usual dynamics applied to 
the electromagnetically-observed matter. 

As a possible solution of this puzzle, the existence of 
non-baryonic, weakly-interacting Cold Dark (in the sense 
that its existence is indirectly inferred only from its 
gravitational action, not from emitted electromagnetic 
radiation) Matter (CDM) was proposed to reconcile the 
predictions with the observations [3] in the framework of the 
standard gravitational physics. 

Oppositely, it was postulated that the Newtonian laws of 
gravitation may have to be modified on certain acceleration 
scales to correctly account for the observed anomalous 
kinematics of such astrophysical systems without resorting 
to still undetected exotic forms of matter. One of the most 
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phenomenologically successful modification of the inverse-
square Newtonian law, mainly with respect to spiral 
galaxies, is the modified Newtonian Dynamics (MOND)  [4-
6] which postulates that for systems experiencing total 
gravitational accelerations A < A

0
, with [7] 

A
0
= (1.2± 0.27)!10

"10
m s

"2
,    (1) 

the overall gravitational acceleration felt gets modified 
according to   

A!A
MOND

= "
A
0
GM

r
r̂.     (2) 

More generally, it holds1   

A =
A
Newton

µ(x)
, x !

A

A
0

;       (3) 

µ(x)!1  for x >>1 , i.e. for large accelerations (with 
respect to A

0
), while µ(x)! x  yielding eq. (2) for x <<1 , 

i.e. for small accelerations. The most widely used forms for 
the interpolating function µ  are [8, 9] 

µ
1
(x) =

x

1+ x
,         (4) 

µ
2
(x) =

x

(1+ x2 )1/2
.       (5) 

                                                
1Actually,  eq. (3) is exactly valid for isolated mass distributions endowed 
with particular symmetries. 
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Such forms, and also others, as we will see later, can be 
reduced to the following high-acceleration limit ( x >>1)   

µ !1" k
0
x
"#
.        (6) 

 Indeed,  eq. (4) corresponds to k
0
=1 , ! =1 , while  eq. (5) 

corresponds to k
0
=1 / 2  and ! = 2 . It recently turned out 

that the simpler form of  eq. (4) yields better results in fitting 
the terminal velocity curve of the Milky Way, the rotation 
curve of the standard external galaxy NGC 3198 [8, 10, 11] 
and of a sample of 17 high surface brightness, early-type 
disc galaxies [12]. Eq. (3) strictly holds for co-planar, 
spherically and axially symmetric isolated mass distributions 
[13]; otherwise, for generic mass densities the full modified 
(non-relativistic) Poisson equation2 [9] 

!" µ
|!U |

A
0

#

$%
&

'(
!U

)

*
+

,

-
. = 4/G0,       (7) 

where U  is the gravitational potential, G  is the Newtonian 
constant of gravitation and !  is the matter density 
generating U , must be used. 

Attempts to yield a physical foundation to MOND, 
especially in terms of a relativistic covariant theory, can be 
be found in, e.g., [14-16]; for recent reviews of various 
aspects of the MOND paradigm, see [17-19]. 

After setting the theoretical background which we will 
use in the rest of the paper, we will explore the strong 
MONDian regime in the remote ( r = 50 !150  kAU) 
periphery of the solar system, where the Oort cloud [20], 
populated by a huge number of small bodies moving along 
very eccentric and inclined orbits, is supposed to exist in the 
standard Newtonian scenario. For preliminary investigations 
on such a topic, see [4, 21]. In particular, we will 
numerically investigate the modifications that MOND would 
induce on the Newtonian orbits of a test particle moving in 
such a region. We will also have to consider the subtle 
External Field Effect (EFE) which, in MOND, takes into 
account the influence of the Galactic field in the dynamics of 
the bodies of the solar system giving rise, in the regions in 
which x <<1 , to a total gravitational acceleration quite 
different from the scheme consisting of the Newtonian one 
plus some perturbative correction(s) to it. 

For other works on MOND in the inner regions of the 
solar system, see Ref. [4, 22-28, 32, 33].  

2. THE EXTERNAL FIELD EFFECT IN MOND 

In the framework of MOND, the internal dynamics of a 
gravitating system s embedded in a larger one S is affected 
by the external background field E  of S even if it is constant 
and uniform, thus implying a violation of the Strong 
Equivalence Principle: it is the so-called External Field 

                                                
2By posing A ! "#U , eq. (7) implies that, in general, 
µ(A / A

0
)A = A

Newton
+!"h ; it can be shown [9] that at great distances 

from an isolated matter distribution with mass M  it holds 

 
µ(A / A

0
)A = !(GM / r

2
)r̂ +O(r

!3
) . 

Effect (EFE). In the case of the solar system, E  would be 
A
cen
! 10

"10  m s !2  because of its motion through the Milky 
Way [4, 9, 21]. 

Clarifying EFE's concrete effects on the orbital dynamics 
of s is not an easy task also because of some possible 
misunderstandings due to the intrinsic difficulty of the 
subject. The existence in the inner regions of the solar 
system of its simplest form3, i.e. a constant and uniform 
vector field E  added to the standard Newtonian monopole 
with E !10"10  m s !2 , has been ruled out in Ref. [29] by 
comparing analytical calculation with the estimated 
corrections  ! &"  to the standard perihelion precessions of 
some planets determined with the EPM ephemerides by E.V. 
Pitjeva [30]; it turned out that the upper bound on an 
anomalous acceleration with the characteristics of E  is of 
the order of 10!14  m s !2 . Such a result has been recently 
confirmed by W.M. Folkner [31], although in a different 
context4, with a modified version of the latest DE epheme-
rides including a constant and uniform extra-acceleration 
with which he fitted long observational data records. 
Milgrom in Ref. [32] has put forth a different form for the 
planetary EFE yielding an additional quadrupolar extra-
acceleration which mimics the action of distant mass; some 
consequences have been investigated in Ref. [33]. 

Moving to the remote periphery of the solar system, 
which is our present target, let us define the following 
quantities  

! "
A
cen

A
0

>
~
1,          (8) 

r
t
!

GM

A
0

= 6.833 kAU,       (9) 

L !
x

µ

dµ

dx

"

#
$

%

&
',         (10) 

µ
g
! µ("),          (11) 

L
g
! L(").          (12) 

In the weak acceleration regime, for   

r >> r
t
!"1/2

,       (13) 

which is fully satisfied in the Oort cloud, the action of EFE 
is different, so that the total barycentric acceleration felt by 
an Oort comet is5 [9, 32] 

                                                
3This was, at least, the view about EFE in the solar system of some re-
searchers active in the field. 
4Actually, he considered an extra-acceleration directed radially towards the 
Sun. 
5It comes from  eq. (7) by imposing a particular boundary condition, i.e. that 
for r!" , !U "#E , and by assuming  A / E =1 [9]. 
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It must be stressed that, contrary to what it could be thought 
at first sight, eq. (14) is not a small correction to the 
Newtonian monopole A

Newton
= !(GM / r

2
)r̂  to be tackled 

with the usual perturbative techniques like, e.g., the Gauss 
equations for the variation of the elements. Indeed,  eq. (14) 
must be treated as a whole because it is the total gravitational 
pull felt by a body in the weak acceleration regime according 
to MOND; it fully embeds EFE which cannot be 
disentangled. The only consistent alternative to the 
MONDian acceleration of6 eq. (14) is the standard 
Newtonian term. It may be interesting to show, from a purely 
phenomenological point of view, that applying  eq. (14) to 
the major bodies of the solar system in its planetary regions 
yields absurd results. Indeed, by considering, e.g., the Earth, 
the discrepancy between eq. (14) and the standard 
Newtonian monopole turns out to be of the order of 
2 ! 8 "10

!4  m s !2  which corresponds to an enormous shift 
of up to 1!1010  m in the heliocentric radial distance of our 
planet. 

Note that, since the ecliptic longitude and latitude of the 
Galactic Center are about !

GC
"180  deg, !

GC
" #6  deg 

[33], EFE is directed along the X axis of the ICRF, i.e. the 
barycentric frame in which the motion of solar system's 
objects are usually studied. Concerning L , we have7  

µ
1
=

x

1+ x
! L

1
=

1

1+ x
,      (15) 

µ
2
=

x

(1+ x2 )1/2
! L

2
=

1

1+ x2
,    (16) 

µ
3/2
=

x

(1+ x3/2 )2/3
! L

3/2
=

1

1+ x3/2
.   (17) 

The value of !  depends on the Galactic field at the solar 
system's location which can be obtained from its centrifugal 
acceleration   

A
cen
=
V
2

R
,        (18) 

where V  is the speed of the Local Standard of Rest (LSR) 
and R = 8.5  kpc is the Galactocentric distance. The standard 
IAU value for the LSR speed is V = 220  km s !1  [34], but 
recent determinations obtained with the Very Long Baseline 

                                                
6Given the scenario considered here, i.e. the solar system embedded in the 
Milky Way, it would be inconsistent to consider the simple form of the 
MOND acceleration of eq. (2). Indeed, it does not encompass EFE, holding 
only for isolated systems or when 

 
E / A

O
=1  like, e.g., in the case of some 

satellites of the Milky Way embedded in the external field of M31 An-
dromeda. 
7The form µ

3/2
 is in Ref. [32]. 

Array and the Japanese VLBI Exploration of Radio 
Astronomy project yield a higher value: V = 254 ±16  km 
s !1 [35]. Thus, !  ranges from 1.5 to 2.3.  

3. ORBITS OF OORT COMETS IN MOND 

3.1. Ecliptic Orbits 

We will, now, consider an Oort comet whose Newtonian 
orbit covers the entire extension of the Oort cloud. It has 
semimajor axis a =100  kAU and eccentricity e = 0.5 , so 
that its perihelion is 50 kAU and its aphelion is 150 kAU; for 
the sake of simplicity, we will assume it lies in the ecliptic 
plane. Its Newtonian orbital period is P

b
= 31.6  Myr. We 

will, first, use µ
3/2

. The value ! = 2.0 , corresponding to 
V = 254 km s

-1 , yields  

µ
g
= 0.82 ,       (19) 

L
g
= 0.25 .       (20) 

Fig. (1) depicts the numerically integrated Newtonian 
(dashed blue line) and MONDian (dash-dotted red line) 
orbits for the same initial conditions. The integration has 
been performed backward in time over one (Keplerian) 
orbital period.  

In Fig. (2) we show the case ! =1.5 (V = 220 km s-1 )  
yielding  

µ
g
= 0.75 ,       (21) 

 
Fig. (1). Numerically integrated orbits of an Oort comet with 
a =100  kAU, e = 0.5 , P

b
= 31.6  Myr. Dashed blue line: Newton. 

Dash-dotted red line: MOND with µ
3/2

, ! = 2.0  (V = 254  

 km s !1 ). The initial conditions are 

 

x
0
= a(1! e), y

0
= z

0
= 0, &x

0
= 0, &y

0
= na

1+ e

1! e
, &z
0
= 0 . The 

time span of the integration is !P
b
" t " 0 . 
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L
g
= 0.34.        (22) 

The MOND trajectories are not closed and the points of 
minimum and maximum distances from the Sun do not 
coincide with the Newtonian ones. In general, they do not 
show a regular pattern. Moreover, the MOND paths are 
much less spatially extended that the Newtonian ones; the 
overall shrinking of the orbit is more marked for the standard 
value of the LSR circular speed (Fig. 2). Finally, the MOND 
trajectories experience high frequency variations during one 
(Keplerian) orbital period. Such effects are particularly 
notable for highly elliptical Newtonian orbits, as shown by 

Fig. (3, 4) for e = 0.9  and !P
b
" t " 0 . In the Newtonian 

case, their perihelia are at 10 kAU, while the aphelia lie at 
190 kAU, so that the condition of eq. (13) is still well 
fulfilled.  

The MOND orbits resemble involved clews comprised 
within 60 kAU !  60 kAU. 

At this point, it must be noted that in Fig. (1-4) we used 
the state vector at the perihelion as initial conditions for the 
numerical integrations. We have to check if the behavior 
described is somewhat related to the peculiar initial 
condtions chosen. To this aim, in Fig. (5,6) we consider 
paths starting at the (Newtonian) aphelion for e = 0.5 ,  

 
Fig. (5). Numerically integrated orbits of an Oort comet with 
a =100  kAU, e = 0.5 , P

b
= 31.6  Myr. Dashed blue line: Newton. 

Dash-dotted red line: MOND with µ
3/2

, ! = 2.0  (V = 254  km s !1 ). 
The initial conditions are x

0
= !a(1+ e), y

0
= z

0
= 0,  

 

&x
0
= 0, &y

0
= !na

1! e

1+ e
, &z
0
= 0 . The time span of the integration is 

!P
b
" t " 0 . 

 

Fig. (2). Numerically integrated orbits of an Oort comet with 
a =100  kAU, e = 0.5 , P

b
= 31.6  Myr. Dashed blue line: Newton. 

Dash-dotted red line: MOND with µ
3/2

, ! =1.5  (V = 220  km s !1 ). 
The initial conditions are 

 
x
0
= a(1! e), y

0
= z

0
= 0, &x

0
= 0,  

 

&y
0
= na

1+ e

1! e
, &z
0
= 0 . The time span of the integration is 

!P
b
" t " 0 . 

 
Fig. (3). Numerically integrated orbits of an Oort comet with 
a =100  kAU, e = 0.9 , P

b
= 31.6  Myr. Dashed blue line: Newton. 

Dash-dotted red line: MOND with µ
3/2

, ! = 2.0  (V = 254  km 

s !1 ). The initial conditions are x
0
= a(1! e), y

0
= z

0
= 0,  

 

&x
0
= 0, &y

0
= na

1+ e

1! e
, &z
0
= 0 . The time span of the integration is 

!P
b
" t " 0 . 

 

Fig. (4). Numerically integrated orbits of an Oort comet with 
a =100  kAU, e = 0.9 , P

b
= 31.6  Myr. Dashed blue line: Newton. 

Dash-dotted red line: MOND with µ
3/2

, ! =1.5  (V = 220  km 

s !1 ). The initial conditions are 
 
x
0
= a(1! e), y

0
= z

0
= 0, &x

0
= 0,  

 

&y
0
= na

1+ e

1! e
, &z
0
= 0 . The time span of the integration is 

!P
b
" t " 0 . 
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Fig. (6). Numerically integrated orbits of an Oort comet with 
a =100  kAU, e = 0.5 , P

b
= 31.6  Myr. Dashed blue line: Newton. 

Dash-dotted red line: MOND with µ
3/2

, ! =1.5  (V = 220  km 

s !1 ). The initial conditions are 

 

x
0
= !a(1+ e), y

0
= z

0
= 0, &x

0
= 0, &y

0
= !na

1! e

1+ e
, &z
0
= 0 . The time 

span of the integration is !P
b
" t " 0 . 

while the case e = 0.9  is depicted in Fig. (7, 8). Also in this 
cases we integrated the equations of motion backward in 
time over one (Keplerian) orbital period P

b
.  

 
Fig. (7). Numerically integrated orbits of an Oort comet with 
a =100  kAU, e = 0.9 , P

b
= 31.6  Myr. Dashed blue line: Newton. 

Dash-dotted red line: MOND with µ
3/2

, ! = 2.0  (V = 254  km 

s !1 ). The initial conditions are x
0
= !a(1+ e), y

0
= z

0
= 0,  

 

&x
0
= 0, &y

0
= !na

1! e

1+ e
, &z
0
= 0 . The time span of the integration is 

!P
b
" t " 0 . 

It can be noted that the MOND trajectories starting at the 
(Newtonian) aphelion are quite different with respect to 
those starting at the (Newtonian) perihelion depicted before. 
Again, they are not close and no regular patterns occur. In 
this case, the areas swept by the MOND paths are larger than 
in the previous case, and they occupy a large part of the 

Newtonian ones. For e = 0.9  the MOND orbits 
approximately lie within 180 kAU !  60 kAU. 

The case for µ
2

 is rather similar, so that we will not 
depict the related figures for saving space. 

Let us, now, examine the case µ
1
. In Fig. (9) we show 

the trajectory due to it of the Oort comet with e = 0.5  over 
P
b

 for ! = 2.0  which implies  

µ
g
= 0.67 ,       (23) 

L
g
= 0.33.        (24) 

 
Fig. (9). Numerically integrated orbits of an Oort comet with 
a =100  kAU, e = 0.5 , P

b
= 31.6  Myr. Dashed blue line: Newton. 

Dash-dotted red line: MOND with µ
1
, ! = 2.0  (V = 254  km s !1 ). 

The initial conditions are  

 

x
0
= a(1! e), y

0
= z

0
= 0, &x

0
= 0, &y

0
= na

1+ e

1! e
, &z
0
= 0 . The time span 

of the integration is !P
b
" t " 0 . 

 

Fig. (8). Numerically integrated orbits of an Oort comet with 
a =100  kAU, e = 0.9 , P

b
= 31.6  Myr. Dashed blue line: Newton. 

Dash-dotted red line: MOND with µ
3/2

, ! =1.5  (V = 220  km s !1 ). 
The initial conditions are x

0
= !a(1+ e), y

0
= z

0
= 0,  

 

&x
0
= 0, &y

0
= !na

1! e

1+ e
, &z
0
= 0 . The time span of the integration is 

!P
b
" t " 0 . 
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The MOND trajectories are not closed and the points of 
minimum and maximum distances from the Sun do not 
coincide with the Newtonian ones. In general, they do not 
show a regular pattern. Moreover, the MOND paths are 
much less spatially extended that the Newtonian ones; the 
overall shrinking of the orbit is more marked for the standard 
value of the LSR circular speed (Fig. 2). Finally, the MOND 
trajectories experience high frequency variations during one 
(Keplerian) orbital period. Such effects are particularly 
notable for highly elliptical Newtonian orbits, as shown by 
Fig. (3, 4) for e = 0.9  and !P

b
" t " 0 . In the Newtonian 

case, their perihelia are at 10 kAU, while the aphelia lie at 
190 kAU, so that the condition of  eq. (13) is still well 
fulfilled.  

The MOND orbits resemble involved clews comprised 
within 60 kAU !  60 kAU. 

At this point, it must be noted that in Fig. (1) Fig. (4) we 
used the state vector at the perihelion as initial conditions for 
the numerical integrations. We have to check if the behavior 
described is somewhat related to the peculiar initial 
conditions chosen. To this aim, in Fig. (5, 6) we consider 
paths starting at the (Newtonian) aphelion for e = 0.5 , while 
the case e = 0.9  is depicted in Fig. (7, 8). Also in this cases 
we integrated the equations of motion backward in time over 
one (Keplerian) orbital period P

b
.  

It can be noted that the MOND trajectories starting at the 
(Newtonian) aphelion are quite different with respect to 
those starting at the (Newtonian) perihelion depicted before. 
Again, they are not close and no regular patterns occur. In 
this case, the areas swept by the MOND paths are larger than 
in the previous case, and they occupy a large part of the 
Newtonian ones. For e = 0.9  the MOND orbits 
approximately lie within 180 kAU !  60 kAU. 

The case for µ
2

 is rather similar, so that we will not 
depict the related figures for saving space. 

Let us, now, examine the case µ
1
. In Fig. (9) we show 

the trajectory due to it of the Oort comet with e = 0.5  over 
P
b

 for ! = 2.0  which implies  

µ
g
= 0.67 ,      (25) 

L
g
= 0.33.       (26) 

The case ! =1.5 , yielding  

µ
g
= 0.60 ,       (27) 

L
g
= 0.39,        (28) 

is shown in Fig. (10) for !P
b
" t " 0 .  

The case of highly elliptic orbits ( e = 0.9 ) is more 
intricate, as shown by Fig. (11, 12).  

 
Fig. (10). Numerically integrated orbits of an Oort comet with 
a =100  kAU, e = 0.5 , P

b
= 31.6  Myr. Continuous blue line: 

Newton. Dash-dotted red line: MOND with µ
1

, ! =1.5  

(V = 220  km s !1 ). The initial conditions are 

 

x
0
= a(1! e), y

0
= z

0
= 0, &x

0
= 0, &y

0
= na

1+ e

1! e
, &z
0
= 0 . The 

time span of the integration is !P
b
" t " 0 . 

 

 

Fig. (11). Numerically integrated orbits of an Oort comet with 
a =100  kAU, e = 0.9 , P

b
= 31.6  Myr. Dashed blue line: Newton. 

Dash-dotted red line: MOND with µ
1

, ! = 2.0  (V = 254  km s !1 ). 
The initial conditions are 

 

x
0
= a(1! e), y

0
= z

0
= 0, &x

0
= 0, &y

0
= na

1+ e

1! e
, &z
0
= 0 . The 

time span of the integration is !P
b
" t " 0 . 

Indeed, the MOND paths resemble confuse clews 
confined within small spatial regions shifted with respect to 
the µ

3/2
 case. 

Also the trajectories of Fig. (9-12) start from the 
(Newtonian) perihelia. If, instead, we choose the 
(Newtonian) aphelia quite different paths occur also for this 
form of µ . Fig. (13-16) show them.  
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Fig. (13). Numerically integrated orbits of an Oort comet with 
a =100  kAU, e = 0.5 , P

b
= 31.6  Myr. Dashed blue line: Newton. 

Dash-dotted red line: MOND with µ
1

, ! = 2.0  (V = 254  km 

s !1 ). The initial conditions are 

 

x
0
= !a(1+ e), y

0
= z

0
= 0, &x

0
= 0, &y

0
= !na

1! e

1+ e
, &z
0
= 0 . The 

time span of the integration is !P
b
" t " 0 . 

3.2.  Nearly Polar Orbits 

Let us, now consider the case of orbits showing high 
inclinations I  to the ecliptic. For practical reasons, here we 
will only show some cases. In Fig. (17-19) we depict the 
sections in the coordinate planes of an orbit with a = 66.6  
kAU, e = 0.92 , I = 81  deg for µ

1
 and ! =1.5 . The initial 

conditions chosen are arbitrary in the sense that, contrary to 

Section 3.1, neither the perihelion nor the aphelion have 
been used as starting points. The case of µ3/2 and η = 1.5 is 
illustrated in Figs. (20, 22). 

4. CONSEQUENCES ON THE OORT CLOUD 

The features of the MOND trajectories shown in the 
previous pictures suggest that EFE may have consequences 
on the interaction of the Oort-like objects with passing stars 

 

Fig. (12). Numerically integrated orbits of an Oort comet with 
a =100  kAU, e = 0.9 , P

b
= 31.6  Myr. Dashed blue line: 
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Fig. (14). Numerically integrated orbits of an Oort comet with 
a =100  kAU, e = 0.5 , P

b
= 31.6  Myr. Continuous blue line: 

Newton. Dash-dotted red line: MOND with µ
1
, ! =1.5  (V = 220  

km s !1 ). The initial conditions are 
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Fig. (15). Numerically integrated orbits of an Oort comet  
with a =100  kAU, e = 0.9 , P

b
= 31.6  Myr. Dashed blue line: 

Newton. Dash-dotted red line: MOND with µ
1
, ! = 2.0   

(V = 254  km s !1 ). The initial conditions are 
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[20] by changing their perturbing effects and, thus, also 
altering the number of long-period comets launched into the 
inner regions of the solar system and the number of comets 
left in the cloud throughout its history. Indeed, in the 
standard picture, the comets moving along very (Newtonian) 
elongated orbits may come relatively close to a star of mass 

 
M

!
 suffering a change in velocity !v  which approximately 

is [20]. 

The case of µ
3/2

 and ! =1.5  is illustrated in Fig. (20-
22).  

 
Fig. (18). Section in the coordinate {XZ}  plane of the numerically 
integrated orbits of an Oort comet with a = 66.6  kAU, e = 0.92 , 
I = 81  deg. Dashed blue line: Newton. Dash-dotted red line: 
MOND with µ

1
, ! =1.5  (V = 220  km s !1 ). The initial conditions 

are 
 

x0 = 40 kAU, y0 = 30 kAU, z0 = 5 kAU, &x0 = !23 kAU Myr
!1,

&y0 = !15 kAU Myr
!1, &z0 = !15 kAU Myr

!1
. 

The time span of the integration is !P
b
" t " 0 . 

 
Fig. (19). Section in the coordinate {YZ}  plane of the numerically 
integrated orbits of an Oort comet with a = 66.6  kAU, e = 0.92 , 
I = 81  deg. Dashed blue line: Newton. Dash-dotted red line: 
MOND with µ

1
, ! =1.5  (V = 220  km s !1 ). The initial conditions 

are 
 

x0 = 40 kAU, y0 = 30 kAU, z0 = 5 kAU, &x0 = !23 kAU Myr
!1,

&y0 = !15 kAU Myr
!1, &z0 = !15 kAU Myr

!1
. 

The time span of the integration is !P
b
" t " 0 . 

 
Fig. (16). Numerically integrated orbits of an Oort comet  
with a =100  kAU, e = 0.9 , P

b
= 31.6  Myr. Dashed blue  

line: Newton. Dash-dotted red line: MOND with µ
1
, ! =1.5  

(V = 220  km s !1 ). The initial conditions are 

 

x
0
= !a(1+ e), y

0
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0
= 0, &x
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Fig. (17). Section in the coordinate {XY}  plane  
of the numerically integrated orbits of an Oort comet with  
a = 66.6  kAU, e = 0.92 , I = 81  deg. Dashed blue line:  
Newton. Dash-dotted red line: MOND with µ

1
, ! =1.5   

(V = 220  km s !1 ). The initial conditions are 

 

x0 = 40 kAU, y0 = 30 kAU, z0 = 5 kAU, &x0 = !23 kAU Myr
!1,

&y0 = !15 kAU Myr
!1, &z0 = !15 kAU Myr

!1
.  

The time span of the integration is !P
b
" t " 0 . 
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Fig. (20). Section in the coordinate {XY}  plane of the numerically 
integrated orbits of an Oort comet with a = 66.6  kAU,  
e = 0.92 , I = 81  deg. Dashed blue line: Newton. Dash-dotted  
red line: MOND with µ

3/2
, ! =1.5  (V = 220  km s !1 ).  

The initial conditions are 

 

x0 = 40 kAU, y0 = 30 kAU, z0 = 5 kAU, &x0 = !23 kAU Myr
!1,

&y0 = !15 kAU Myr
!1, &z0 = !15 kAU Myr

!1
.  

The time span of the integration is !P
b
" t " 0 . 

 
Fig. (21). Section in the coordinate {XZ}  plane of the numerically 
integrated orbits of an Oort comet with a = 66.6  kAU,  
e = 0.92 , I = 81  deg. Dashed blue line: Newton. Dash-dotted  
red line: MOND with µ

3/2
, ! =1.5  (V = 220  km s !1 ).  

The initial conditions are 

 

x0 = 40 kAU, y0 = 30 kAU, z0 = 5 kAU, &x0 = !23 kAU Myr
!1,

&y0 = !15 kAU Myr
!1, &z0 = !15 kAU Myr

!1
.  

The time span of the integration is !P
b
" t " 0 . 

 

!v =
2GM

!

v
!
d
,        (29) 

where 
 
v

!
 is the star's velocity with respect to the Sun and d  

is the distance of closest approach with the Oort object. 
Moreover, also the perturbing effects of the Galactic tides 

would be altered. In particular, for those particular initial 
configurations yielding highly shrunken paths with respect to 
the Newtonian case the perturbing effects of the passing stars 
and of the Galactic tides may get reduced. Anyway, it is very 
difficult to realistically predict the modifications that the 
Oort cloud would undergo under the action of MOND with 
EFE. Extensive numerical simulations like, e.g., the one in 
Ref. [36] performed in a different context, would be 
required; they are beyond the scope of the present paper.  

5. SUMMARY AND CONCLUSIONS 

We investigated the orbital motions of test particles 
according to MOND with EFE in the Oort cloud 
( r ! 50 "150  kAU). As MONDian interpolating function 
µ(x) , we extensively used the forms 

µ
1
=1 / (1+ x),µ

2
= x / 1+ x2 ,µ

3/2
= x / (1+ x3/2 )2/3 . We 

numerically integrated both the MOND and the Newtonian 
equations of motion in Cartesian coordinates sharing the 
same initial conditions backward in time over one 
(Keplerian) orbital period. We considered both ecliptic and 
nearly polar trajectories, all corresponding to high 
(Newtonian) eccentricities ( e = 0.5 ! 0.9 ). In order to 

 
Fig. (22). Section in the coordinate {YZ}  plane of the numerically 
integrated orbits of an Oort comet with a = 66.6  kAU,  
e = 0.92 , I = 81  deg. Dashed blue line: Newton. Dash-dotted 
red line: MOND with µ

3/2
, ! =1.5  (V = 220  km s !1 ).  

The initial conditions are 

 

x0 = 40 kAU, y0 = 30 kAU,z0 = 5 kAU, &x0 = !23 kAU Myr
!1,

&y0 = !15 kAU Myr
!1, &z0 = !15 kAU Myr

!1
.  

The time span of the integration is !P
b
" t " 0 . 
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evaluate the characteristic MONDian EFE parameters µg  
and Lg  entering the problem, we used two different values 

(V = 220  km s !1  and V = 254  km s !1 ) of the circular speed 
of the solar system's motion through the Galaxy yielding the 
Milky Way's gravitational field at the Sun's location. 

Our results show that the MOND orbits are quite 
different with respect to the Newtonian ones; in general, they 
are open trajectories which do not exhibit any regular 
patterns. Moreover, they are highly sensitive to the initial 
conditions in the sense that different sets of state vectors 
yielding the same Keplerian ellipses generate quite different 
MONDian paths. For certain initial configurations in the 
ecliptic, corresponding to Newtonian perihelion passages of 
highly eccentric orbits, the MOND trajectories reduce to 
intricate clews spanning very small spatial regions with 
respect to the Newtonian case. For other initial 
configurations, both in the ecliptic and outside it, the MOND 
trajectories are completely different: among other things, 
their spatial extensions are larger than in the ecliptic 
perihelion cases. As a consequence, the structure and the 
dynamical history of the Oort cloud, in the deep MONDian 
regime, would be altered with respect to the standard 
Newtonian picture in a way which is difficult to realistically 
predict. 

As further extensions of the present work, which are 
outside its scope, we suggest that extensive numerical 
simulations of the dynamics of the Oort cloud in MOND 
with EFE would be helpful. Moreover, an analysis based on 
standard techniques of classical dynamics able to display 
regularities in orbits, like, e.g., surface of section, may be 
fruitfully implemented. 

Finally, let us note that a further issue which may be the 
subject of future investigations consists of the following. The 
numerically integrated MONDian trajectories with EFE may 
come close the Sun enough to fall in a Newtonian or quasi-
Newtonian regime. If so, their further evolution should be 
obtained with a new integration of the Newtonian equations 
of motion starting from such new initial conditions. Conse-
quently, the pattern of the Oort cloud may further change. 
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