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Abstract: We consider the Kehagias-Sfetsos (KS) solution in the Ho!ava-Lifshitz gravity that is the analog of the general 

relativistic Schwarzschild black hole. In the weak-field and slow-motion approximation, we, first, work out the correction 

to the third Kepler law of a test particle induced by such a solution. Then, we compare it to the phenomenologically de-

termined orbital period of the transiting extrasolar planet HD209458b “Osiris” to preliminarily obtain an order-of-

magnitude lower bound on the KS dimensionless parameter !0 > 1.4 " 10
-18

. As suggestions for further analyses, the en-

tire data set of HD209458b should be re-processed by explicitly modeling KS gravity as well, and one or more dedicated 

solve-for parameter(s) should be estimated. 
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INTRODUCTION 

The recently proposed model of quantum gravity by 
Ho!ava [1-3] has recently attracted much attention, and many 
aspects of it have been extensively analyzed, ranging from 
formal developments, cosmology, dark energy and dark mat-
ter, spherically symmetric solutions, gravitational waves, and 
its viability with observational constraints; for a full list of 
references see, e.g., [4-7]. Such a theory admits Lifshitz’s 
scale invariance: x"bx, t"b

q
t and, after this, it is referred to 

as Ho!ava-Lifshitz (HL) gravity. Actually, it has anistropic 
scaling in the short distances domain (UV), since it is q = 3, 
while isotropy is recovered at large distances (IR). 

One of the key features of the theory is its good UV be-
havior, since it is power-counting renormalizable; for a dis-
cussion of the renormalizability beyond power counting ar-
guments, see [8]. However, in its original formulation, it 
experiences some problems: for instance, it leads to a non-
zero cosmological constant with the wrong sign, in order to 
be in agreement with the observations [9-11]. To circumvent 
these issues, it was suggested to abandon the principle of 
“detailed balance” [12, 13], initially introduced by Ho!ava in 
his model to restrict the number of possible parameters. As a 
consequence, phenomenologically viable extensions of the 
theory were proposed [11-14]. It was also shown that HL 
gravity can reproduce General Relativity (GR) at large dis-
tances [15, 16]; for other solutions non-asymptotically flat  
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see [17, 18]. However, there is still an ongoing discussion on 
the consistency of HL gravity, since it seems that modes 
arise which develop exponential instabilities at short dis-
tances, or become strongly coupled [19, 20]. Moreover, ac-
cording to [21], the constraint algebra does not form a closed 
structure. Perturbative instabilities affecting HL gravity have 
been pointed out in [22]. 

Actually, it is important to stress that, up to now, in HL 
gravity the gravitational field is purely geometrical: in other 
words, the way matter has to be embedded still needs to be 
studied. Nevertheless, there are interesting vacuum solutions 
that can be studied, such as the static spherically symmetric 
solution found by Kehagias and Sfetsos (hereafter KS) [16]. 
Such a solution is the analog of Schwarzschild solution of 
GR and, moreover, it asymptotically reproduces the usual 
behavior of Schwarzschild spacetime. It is interesting to 
point out that it is obtained without requiring the projectabil-
ity condition, assumed in the original HL theory, while 
spherically symmetric solutions with the projectability con-
dition are however available [23-26]. Nonetheless, because 
of its simplicity, it is possible to consider KS solution as toy 
model useful to better understand some phenomenological 
implications of HL gravity. Actually, in [24] it was shown 
that KS solution is in agreement with the classical tests of 
GR, while in a previous paper [25] we studied the correc-
tions to the general relativistic Einstein’s pericentre preces-
sion determined by this solution and compared the theoreti-
cal predictions to the latest determinations of the corrections 
to the standard Newtonian/Einsteinian planetary perihelion 
precessions recently estimated with the EPM2008 epheme-
rides. We found that the KS dimensionless parameter is con-
strained from the bottom at !0 > 10

-12
–10

-24
 level depending 

on the planet considered. 
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In our analysis, we assumed that particles followed 
geodesics of KS metric: however, it is important to point out 
that this is true if matter is minimally and universally 
coupled to the metric, which is not necessarily true in HL 
gravity, where, as we said above, the role of matter has not 
been yet clarified. In this paper, starting from the same 
assumption, we focus on the effects induced by the examined 
solution on the orbital period Pb of a test particle, on an extra 
solar system environment. We will explicitly work out the 
consequent correction P!0 to the usual third Kepler law in 
Section 2. In Sections 3-4 we compare it with the 
observations of the transiting extrasolar planet HD209458b 
“Osiris”. We point out that the resulting constraints are to be 
considered as preliminary and just order-of-magnitude 
figures because, actually, the entire data set of HD209458b 
should be re-processed again by explicitly modeling the 
effect of the KS gravity; however, this is outside the scopes 
of the present paper. Section 5 is devoted to the conclusions. 

2. KS CORRECTIONS TO THE THIRD KEPLER 
LAW 

As shown in [25], from [26] 
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it is possible to obtain the following radial acceleration act-
ing upon a test particle at distance d from a central body of 
mass M 

   

r
A
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4(GM )4
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0
c

6
d

5
d̂ ,  (2) 

valid up to terms of order 
   
G(!2 / c

2 ) . Its effect on the 

pericentre of a test particle have been worked out in [25]; 

here we want to look at a different orbital feature affected by 

eq. (2) which can be compared to certain observational de-

terminations. 

The mean anomaly is defined as 

    
E &= n(t ! t

p
);  (3) 

in it   n = GM / a
3  is the Keplerian mean motion, a is the 

semimajor axis and tp is the time of pericentre passage. The 

anomalistic period Pb is the time elapsed between two con-

secutive pericentre passages; for an unperturbed Keplerian 

orbit it is Pb = 2#/n. Its modification due to a small perturba-

tion of the Newtonian monopole can be evaluated with stan-

dard perturbative approaches. The Gauss equation for the 

variation of the mean anomaly is, in the case of a radial per-

turbation Ad to the Newtonian monopole [27], 
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where e is the eccentricity and f is the true anomaly counted 

from the pericentre position. The right-hand-side of eq. (4) 

has to be valuated onto the unperturbed Keplerian orbit 

given by (see [28]) 
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By using (see [28]) 
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it is possible to work out the correction to the Keplerian pe-

riod due to eq. (2); it is 
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Note that eq. (8) retains its validity in the limit e " 0 becom-

ing equal to 
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where d represents now the fixed radius of the circular orbit. 

It turns out that eq. (9) is equal to the expression that can be 

easily obtained by equating the centripetal acceleration 

  !
2
d , where $ is the particle’s angular speed, to the total 

gravitational acceleration 
  
GM / d

2
! 4(GM )4 /"

0
c

6
d

5
 with 

the obvious assumption that the Newtonian monopole is the 

dominant term in the sum. 

3. CONFRONTATION WITH THE OBSERVATIONS 

In the scientific literature there is a large number of pa-
pers (see, e.g., [29-41]) in which the authors use the third 
Kepler law to determine, or, at least, constrain un-modeled 
dynamical effects of mundane, i.e. due to the standard New-
tonian/Einsteinian laws of gravitation, or non-standard, i.e. 
induced by putative modified models of gravity. As ex-
plained below, in many cases such a strategy has been, per-
haps, followed in a self-contradictory way, so that the result-
ing constraints on, e.g., new physics, may be regarded as 
somewhat “tautologic”. 

Let us briefly recall that the orbital period Pb of two 
point-like bodies of mass m1 and m2 is, according to the third 
Kepler law, 

  
P

Kep
= 2!

a
3

GM
 (10) 

where a is the relative semi-major axis and M  &=  m1 + m2 is 

the total mass of the system. Let us consider an unmodeled 

dynamical effect which induces a non-Keplerian (NK) cor-

rection to the third Kepler law, i.e. 
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P

b
= P

Kep
+ P

NK,
 (11) 

where 

  
P

NK
= P

NK ( M ,a,e; p
j
),  (12) 

is the analytic expression of the correction to the third Kepler 

law in which pj, j = 1,2 …N, are the parameters of the NK 

effect to be determined or constrained. Concerning standard 

physics, PNK may be due to the centrifugal oblateness of the 

primary, tidal distortions, General Relativity; however, the 

most interesting case is that in which PNK is due to some 

putative modified models of gravity. As a first, relatively 

simple step to gain insights into the NK effect one can act as 

follows. By comparing the measured orbital period to the 

computed Keplerian one it is possible, in principle, to obtain 

preliminary information on the dynamical effect investigated 

from 
   
!P &= P

b
" P

Kep
. Actually, one should re-process the 

entire data set of the system considered by explicitly model-

ing the non-standard gravity forces, and simultaneously solv-

ing for one or more dedicated parameter(s) in a new global 

solution along with the other ones routinely estimated. Such 

a procedure would be, in general, very time-consuming and 

should be repeated for each models considered. Anyway, it 

is outside the scopes of the present paper, but it could be 

pursued in further investigations. 

Concerning our simple approach, in order to meaning-
fully solve for pj in 

  !P = P
NK

 (13) 

it is necessary that 

• In the system considered a measurable quantity 
which can be identified with the orbital period and 
directly measured independently of the third Kepler 
law itself, for example from spectroscopic or pho-
tometric measurements, must exist. This is no so ob-
vious as it might seem at first sight; indeed, in a N-
body system like, e.g., our solar system a directly 
measurable thing like an “orbital period” simply 
does not exist because the orbits of the planets are 
not closed due to the non-negligible mutual perturba-
tions. Instead, many authors use values of the “or-
bital periods” of the planets which are retrieved just 
from the third Kepler law itself. Examples of sys-
tems in which there is a measured orbital period are 
many transiting exoplanets, binaries and, e.g, the 
double pulsar. Moreover, if the system considered 
follows an eccentric path one should be careful in 
identifying the measured orbital period with the pre-
dicted sidereal or anomalistic periods. A work whose 
authors are aware of such issues is [42]. 

• The quantities entering P
Kep

, i.e. the relative semima-

jor axis a and the total mass M, must be known inde-

pendently of the third Kepler law. Instead, in many 

cases values of the masses obtained by applying just 

the third Kepler law itself are used. Thus, for many 

exoplanetary systems the mass 
    
m

1
&= M

!
 of the host-

ing star should be taken from stellar evolution mod-

els and the associated scatter should be used to 

evaluate the uncertainty 
  
!M

!
 in it, while for the 

mass m2 = mp of the planet a reasonable range of 

values should be used instead of straightforwardly 

taking the published value because it comes from the 

mass function which is just another form of the third 

Kepler law. Some extrasolar planetary systems rep-

resent good scenarios because it is possible to know 

many of the parameters entering P
Kep

 independently 

of the third Kepler law itself, thanks to the redun-

dancy offered by the various techniques used. Such 

issues have been accounted for in several astronomi-

cal and astrophysical scenarios in, e.g., [43-47]. 

4. THE TRANSITING EXOPLANET HD209458B 

Let us consider HD 209458b “Osiris”, which is the first 
exoplanet

1
 discovered with the transit method [48, 49]. Its 

orbital period Pb is known with a so high level of accuracy 
that it was proposed to use it for the first time to test General 
Relativity in a planetary system different from ours [50]; for 
other proposals to test General Relativity with different or-
bital parameters of other exoplanets, see [51-54]. 

In the present case, the system’s parameters entering the 

Keplerian period i.e. the relative semimajor axis a, the mass 

  
M

!
 of the host star and the mass mp of the planet, can be 

determined independently of the third Kepler law itself, so 

that it is meaningful to compare the photometrically meas-

ured orbital period Pb = 3.524746 d [55] to the computed 

Keplerian one P
Kep

: their difference can be used to put genu-

ine constraints on KS solution which predicts the corrections 

of eq. (2.8) to the third Kepler law. Indeed, the mass 
  
M

!
= 

1.119±0.033 M
 !

 and the radius                                   of the 

star [55], along with other stellar properties, are fairly 

straightforwardly estimated by matching direct spectral ob-

servations with stellar evolution models since for HD 

209458 we have also the Hipparcos parallax #Hip = 

21.24±1.00 mas [56]. The semimajor axis-to-stellar radius 

ratio 
   
a / R

!
 = 8.76±0.04 is estimated from the photometric 

light curve, so that                                         [55]. The mass 

mp of the planet can be retrieved from the parameters of the 

photometric light curve and of the spectroscopic one entering 

the formula for the planet’s surface gravity gp (eq. (6) in 

[55]). As a result, after having computed the uncertainty in 

the Keplerian period by summing in quadrature the errors 

due to !a, !M
!

, !mp, it turns out 

   
!P &= P

b
" P

Kep
= 204±5354 s;  (14) 

the uncertainties !M
!

, !a, !mp, contribute 4484.88 s, 

2924.77 s, 2.66 s, respectively to !(%P) = 5354 s. 

The discrepancy %P between Pb and P
Kep

 of eq. (14) is 

statistically compatible with zero; thus, eq. (14) allows to 

constrain the parameter !0 entering P!0. Since 

                                                
1 See on the WEB http://www.exoplanet.eu/ 

   
R
!
=1.555 +0.014

 !0.016  
R

!

  a = 0.04707 +0.00046

 !0.00047 
AU
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P
NK

&= P
!0
=

C

!
0

,  (15) 

with 

    
C &=

4!(GM )
5/2

c
6
d

3/2
= 8"10#15 s,  (16) 

by equating the non-Keplerian correction P!0 to the meas-

ured %P one has 

   
!

0
=

C

"P
.  (17) 

Since %P is statistically compatible with zero, the largest 

value of !0 is infinity; from eq. (4) a lowerbound on |!0| can 

be obtained amounting to 

 
!

0
"1.4#10

$18
.  (18) 

A confrontation with the solar system constraints
2
 Our 

previous paper [25] shows that such a lower bound is at the 

level of those from Jupiter and Saturn, while it contradicts 

the possibility that values of !0 as small as those allowed by 

Uranus, Neptune and Pluto 
 
(!

0
"10#24

#10#22 ).  may exist. 

However, tighter constraints are established by the inner 

planets for which 
 
!

0
"10

#15
#10

#12
.  

5. CONCLUSIONS 

We have investigated how the third Kepler law is modi-
fied by the KS solution, whose Newtonian and lowest order 
post-Newtonian limits coincides with those of GR, by using 
the standard Gauss perturbative approach. The resulting ex-
pression for P!0, obtained from the Gauss equation of the 
variation of the mean anomaly E, in the limit e & 0 reduces 
to the simple formula which can be derived by equating the 
centripetal acceleration to the Newton+KS gravitational ac-
celeration for a circular orbit. 

Then, after having discussed certain subtleties connected, 

in general, with a meaningful use of the third Kepler law to 

put on the test alternative theories of gravity, we compared 

our explicit expression for P!0 to the discrepancy %P be-

tween the phenomenologically determined orbital periods Pb 

and the computed Keplerian ones P
Kep

 for the transiting ex-

trasolar planet HD209458b “Osiris”. Since %P is statistically 

compatible with zero, it has been possible to preliminary 

obtain the lower bound 
 
!

0
"1.4#10

$18
 on the dimension-

less KS parameter. However, the entire data set of 

HD209458b should be re-processed by including KS gravity 

as well, and a dedicated, solve-for parameter should be esti-

mated as well. The previously reported constraint rules out 

certain smaller values allowed by the lower bounds obtained 

from the perihelia of Uranus, Neptune and Pluto 

(
 
!

0
"1.4#10

$12
). On the other hand, our exoplanet bound 

                                                
2 To avoid confusions with the perihelion ", the KS parameter is dubbed #0 

in [25]. 

still leaves room for values of !0 too small according to the 

constraints from the perihelia of Mercury, Venus and the 

Earth (
 
!

0
"10

#15
#10

#12
). 
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