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I. INTRODUCTION  

 Determining the nature of dark energy [1] has become, 
undoubtedly, one of the central issues in modern cosmology 
as well as in theoretical physics. The interest in this problem 
has grown to such level that nowadays much of the research 
work in theoretical cosmology is focused on the quest of a 
theoretical framework in which dark energy can be 
explained. One idea that has recently gained much popularity 
is that dark energy has a geometrical nature i.e. it is 
originated not by some unknown new form of energy density 
that dominate the cosmic evolution, but by the fact that the 
gravitational interaction, at least on cosmological scales has 
to be modified.  

 Among the many modified versions of General Relativity 
(GR), higher order theories of gravity, and particularly one 
of its subclass, called f(R)-gravity, has been thoroughly 
studied (see e.g. [2-4] for some reviews). In these models the 
action for the gravitational interaction is written as a generic 
analytic function of the Ricci scalar and they can be 
recovered naturally in the low energy limit of fundamental 
theories (see e.g. [5]). However, the reason why those 
models have attracted such attention is that it has been 
proven in many different ways that these theories are able to 
reproduce in a natural way the cosmological “footprint” of 
Dark Energy i.e. the cosmic acceleration [2,3,6-8]. Such 
phase cannot be achieved if one considers only GR without 
the introduction of some additional field with suitable (and, 
unfortunately, odd) thermo dynamical properties.  

 However, f(R)-gravity is not the only model capable to 
achieve this kind of results and the modification of a theory 
as well established as GR requires a serious, careful and 
unbiased analysis. To be completely fair so far although 
many concerns have been raised, there is no definite 
argument against f(R)-gravity or, for what matters, an 
argument that proves definitively the presence of corrections 
to the gravitational interaction. Therefore there is a great  
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need to devise observable features of these models and 
compare them to the observations. In this respect cosmology 
is of great help. In fact, the cosmological models of any 
theory of the gravitational interaction are by far the easiest 
application of these schemes and, because of the very nature 
of the cosmological processes, their analysis is able to give 
insights of the behavior of these theories in a wide range of 
energy scales.  

 Following this spirit in this paper I will review what it 
has been discovered so far on the behavior of the scalar 
(matter) perturbations and the structure formation in this 
frame work. On this topic many papers have been published 
that employ a variety of different techniques/approximations 
[9]. In what follows I will only consider the results obtained 
with a specific method: the Covariant Gauge Invariant 
(CoGI) approach. This approach was proposed at the 
beginning of the eighties by Bruni and Ellis [10] and 
generalized also by Hwang and Dunsby [11-14]. It is 
constructed on a formalism optimized to analyze 
cosmological models: the1+3 covariant approach [15, 16]. 
Using the CoGI approach we will realize that the behavior of 
the perturbation in this type of fourth order gravity can be 
very different from the one of the standard picture, but not 
necessarily incompatible with the observations. I will show 
that the process of structure formation offers in some cases 
very specific signatures, which can be easily tested with the 
data currently available.  

 The paper will be organized as follows. In Section II the 
general equations for f(R)-gravity are briefly described. In 
Section III I will review briefly the 1+3 covariant approach 
to cosmology and its application to f(R)-gravity. In Section 
IV on the base of the 1+3 approach the CoGI approach is 
developed for the study of the scalar perturbations. In 
Section V I will summarize the results obtained for some 
simple specific models. Finally section VI is dedicated to the 
conclusions.  

 Unless otherwise specified, natural units (  = c = kB = 
8 G = 1) will be used throughout the paper, Latin indices 
running from 0 to 3. The symbol  represents the usual 
covariant derivative and  corresponds to partial 
differentiation. I use the ,+,+,+ signature and the Riemann 
tensor is defined by  
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 (1) 

where the 
 
W

bd

a

 are the Christoffel symbols (symmetric in the 

lower indices), defined by 

 (2) 

 The Ricci tensor is obtained by contracting the first and 
the third indices  

 (3) 

 Symmetrization and antisymmetrization over the indices 
of a tensor are defined as 

 (4) 

 Finally, the Hilbert-Einstein action in the presence of 
matter is given by  

 (5) 

II. GENERAL EQUATIONS FOR FOURTH ORDER 

GRAVITY 

 In four dimensional homogeneous and isotropic space 
times i.e. Friedmann Lemaître Robertson Walker (FLRW) 
universes, a general action for fourth order gravity can be 
written as an analytic function of the Ricci scalar only:  

 (6) 

where Lm represents the matter contribution. Varying the 
action with respect to the metric gives the generalization of 
the Einstein equations:  

 (7) 

where f = f(R), f = 
  

df (R)

dr
,  and 

   

T
ab

M
=

2

g

( gL
m

)

g
ab

 

represents the stress energy tensor of standard matter. These 

equations reduce to the standard Einstein field equations 

when f(R)= R. It is crucial for our purposes to be able to 
write (7) in the form

1
 

 (8) 

where 

 

T
ab

m
=

T
ab

m

f
 and  

 (9) 

                                                

1For this step to make sense it is crucial that we suppose f
‘
(R)  0 at all time. 

This could be problematic when one deals with cosmologies in which the 

Ricci scalar is zero (like the radiation dominated ones) and functions f such 

that f (0)= 0. In the following, although we will retain a general barotropic 

factor, we will consider matter to be dust in all but one case.  

represent two effective “fluids”: the curvature “fluid” 

(associated with 
 
T

ab

R
) and the effective matter “fluid” 

(associated with 
 
T

ab

m
) [4, 18]. In this way fourth order gravity 

can be treated as standard Einstein gravity plus two 

“effective” fluids and we can adapt easily many of the 

techniques developed for GR-based models.  

Let us look at the conservation properties of these effective 
fluids using the Bianchi identities [7]. The covariant 
derivative of the total stress energy momentum in (8) yields:  

 (10) 

 Using the field equations and the definition of the 

Riemann tensor, it is easy to show that the sum of the first 

two terms on the RHS of the previous expression is zero. 

Thus, 
  
T

ab

tot ;b
T

ab ;b

m
 and the total conservation equation 

reduces to the one for matter only. A general, independent 

proof of this result has been given by Eddington [17] and 

then by others (like in [18]). They showed that the first 

variation for the gravitational action is divergence free 

regardless of the form of the invariants that we choose for 

the Lagrangian. This means that no matter how complicated 

the effective stress-energy tensor 
 
T

ab

tot
 is, it will always be 

divergence free if 
  
T

ab ;b

m
= 0.  As a consequence, the total 

conservation equation reduces to the one for standard matter 
only. For our purposes this is important because it tells us 

that no matter how the effective fluids behave, standard 

matter still follows the usual conservation equations 

  
T

ab

m ;b
= 0.   

 The form (8) of the field equations allows us to use 
directly the 1+3 covariant approach that will be introduced in 
the next section.  

III. THE 1+3 COVARIANT APPROACH TO 
COSMOLOGY  

 Basically all the calculations and the results that will be 
given in this paper are based on the 1+3 covariant approach 
[15, 16]. Such approach is, conceptually, not different from 
the ADM one, but it is specifically adapted to treat 
homogeneous and isotropic space times and can simplify 
quite a lot the calculations. Therefore, before starting, it is 
worth to give a very brief review of this approach and its 
application to f(R)-gravity.  

 The 1+3 approach is based on the choice of a specific 
family of preferred world lines which represent specific 
classes of observers and can be associated to a time like 
vector field u

a
. Using this field one can split the metric tensor 

as  

gab = hab  ua ub,  (11)  

i.e. the space time is foliated in hyper surfaces with metric 
hab orthogonal to the vector field ua. In this way any affine 
parameter on the world lines associated to ua can be chosen 
to represent “time” and the tensor hab (h

a
ch

c
b = h

a
bh

a
a = 3, hab 

u
b
 = 0) determines the geometry of the instantaneous rest-
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spaces of the observers we have chosen. Using ua and hab, 
one can then define the projected volume form abc = u

d
abcd 

on the rest spaces, the covariant time derivative (˙) along the 
fundamental world lines, and the fully orthogonally projected 
covariant derivative   

% :  

 (12) 

 Also, performing a split of the first covariant derivative 
of ua into its irreducible parts, namely  

 (13) 

one can define, in analogy with classical hydrodynamics [16, 

20], the basic kinematical quantities of this formalism [15]. 

In (13),  = 
  

%
a
u

a
 represents the rate of volume expansion of 

the world lines of ua so that the standard Hubble parameter is 

H: H = 3 ; ab = 
   
%

(a
u

b)  is the trace-free symmetric rate of 

shear tensor describing the rate of distortion of the observer 

flow and we have ab = (ab), ab u
b
 = 0, 

a
a = 0; ab = 

   
%

[a
u

b]  

is the skew-symmetric vorticity tensor describing the 

rotation of the observers relative to a Fermi-propagated (non-

rotating) frame and ab = [ab], ab u
b
 = 0; ab = 

  
&u

b  is the 

acceleration vector, which describes the non-gravitational 
forces acting on the observers.  

 The matter energy-momentum tensor Tab of a general 
fluid can also be decomposed locally using ua and hab:  

Tab = ua ub + qa ub + ua qb + phab + ab ,  (14)  

where  = (Tabu
a
u

b
) is the relativistic energy density relative 

to u
a
, q

a
 = Tbc u

b 
h

ca 
is the relativistic momentum density, 

which is also the energy flux relative to u
a
 (qa u

a
 = 0), p = 

 

1

3
 

(Tabh
ab

) is the isotropic pressure, and ab = Tcd h
c 

(a h
d

b) is the 
trace-free anisotropic pressure for which 

a
a =0, ab = (ab). 

This allows us to extract information on the 
thermodynamics associated to this fluid.  

 The kinematics and thermodynamics quantities presented 
above completely determine a cosmological model. The 
advantages in using these variables is that they allow a 
treatment of cosmology that is both mathematically rigorous 
and physically meaningful and they are particularly useful in 
the construction of the theory of perturbations. Their 
evolution and constraint equations, also known as 1+3 
covariant equations (see [15]), are completely equivalent to 
the Einstein equations and characterize the full evolution of 
the cosmology.  

A. The 1+3 Covariant Approach for f(R)-Gravity  

 Following the above scheme let us apply the 1+3 

formalism to f(R)-gravity. As first step one needs to choose 

suitable frame, i.e., a 4-velocity field ua. Following [19, 20], 

we will choose the frame 
 
u

a

m
 comoving with standard matter 

represented by galaxies and clusters of galaxies. This frame 

basically coincides to our specific point of view: as earth 

bound observers we are comoving with these object. We will 

also assume that in 
 
u

a

m
 standard matter is a barotropic 

perfect fluid with equation of state p
m
 = w

m
.  

Relative to 
 
u

a

m
, the stress energy tensor 

 
T

ab

tot  
given in (8) can 

be decomposed as  

 (15) 

 (16) 

with  

 (17) 

 Since we assume that standard matter is a perfect fluid in 

 
u

a

m
, 

 
q

a

m
 and 

 ab

m
 are zero, so that the last two quantities 

above also vanish. The effective thermodynamical quantities 

for the curvature “fluid” are  

 (18) 

 (19) 

 (20) 

 (21) 

 The twice-contracted Bianchi Identities lead to evolution 

equations for 
m
, 

R
, 

 
q

a

R
 and are given in [19]. In this way 

the 1+3 equations for f(R)-gravityin the frame 
 
u

a

m
 can be 

written as:  

Expansion propagation (generalized Raychaudhuri 
equation):  

 (22) 

Vorticity propagation:  

 (23) 

Shear propagation:  

 
(24) 
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Gravito-electric propagation: ˙1 cd 

 

 

 (25) 

Gravito-magnetic propagation:  

 (26) 

 (27) 

Shear constraint:  

   

% b

ab
curl

a

2

3
% + 2[ , &u]

a
= q

a

R
.  (28) 

Gravito-magnetic constraint: 

   

curl
ab
+ %

a b
H

ab
+ 2 &u

a b

= 0.  (29) 

Gravito-electric divergence: 

 (30) 

Gravito-magnetic divergence: 

 (31) 

Standard Matter Conservation (twice contracted Bianchi 
identities) 

 (32) 

 (33) 

Curvature fluid Conservation (twice contracted Bianchi 
identities) 

 (34) 

 (35) 

In the equations above the spatial curl of a vector and a 
tensor is  

 

 (36) 

respectively.  

 Finally, 
  

a
=

1

2
a

bc

bc
 and the covariant commutators 

are 

 

 Note that for f(R) = R, one has f (R) = 1 and 
R
,p

R
,
  
q

a

R
,
 ab

R  
= 0 and therefore the above equations reduce 

to the ones for GR. Using(22)-(35) one can analyze any type 

of f(R) cosmology. Such analysis can be performed either 

directly or with the use of alternative techniques, like the 

Dynamical System Approach (see e.g. [7, 8, 22, 23]).  

IV. COVARIANT GAUGE INVARIANT PERTUR-
BATIONS  

 Once the evolution of a cosmological model has been 
determined, one can investigate the perturbations around a 
specific metric which is a solution for the background 
cosmology

2
. In order to analyze the behavior of the 

perturbations we will use the 1+3 covariant approach 
described above to construct a Covariant Gauge Invariant 
(CoGI) theory of perturbations. Such theory will characterize 
the evolution of the perturbations as covariant equations 
written in terms of variables which have a very straight 
forward physical meaning and are naturally gauge in variant.  

 The first step is the choice of the background. In the 
CoGI approach this is not done by assigning a metric, but 
rather by recognizing which 1+3 quantities are zero in the 
background and which are not. In what follows we will 
consider expanding (   0) homogeneous and isotropic ( ab 

= 0, ab = 0) backgrounds. In this setting we will characterize 
the perturbations in terms the of 1+3 quantities seen in the 
previous Section and their projected gradients.  

 For example, to characterize the energy density 

perturbation, the natural variable is Xa = 
   

%
a
μ.  This vector 

represents any spatial variation of the energy density  (i.e. 

any over-density or void) and it is in principle directly 

measurable [11]. However, a more suitable quantity to 

describe density perturbation is  

 (37) 

where the ratio Xa/  allows one to evaluate the magnitude of 

density perturbations relative to the background energy 

density and the presence of the scale factor S guarantees that 

it is dimensionless and comoving in character. The 

magnitude of Da (D = 
 

D
a
D

a
) is closely related with the 

quantity / , but represents a real covariant and gauge 

                                                

2It is worth to stress here that this last prescription is a particularly important 

one. Choosing a random background which is incompatible with the 0 order 

cosmological equations can potentially destroy the entire predictive power 

of the perturbation equations. 
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invariant spatial fluctuation. In fact, it is easy to show that 

the Bardeen variable m which corresponds to /  in the 

commoving gauge, is the scalar harmonic component of Da 

(i.e. its scalar “potential”) [10].  

 Other important quantities relevant to the evolution of 
density perturbations in GR are  

 (38) 

which represent, the spatial gradient of the expansion and the 
spatial gradient of the 3-Ricci scalar respectively. These 
variables are not independent from (37), but they are related 
by a constraint coming from the spatial derivative of the 
Gauss equation [19, 20]. Moreover it can be proven that 
these variables, as well as any other quantity which vanish in 
the background, are gauge-invariant [24].  

 The variables defined above contain a lot of information, 
such as evolution of non-spherically symmetric structures 
and vortical motions, which is not directly associated to the 
evolution of matter fluctuations. In the following we will 
focus on this last type of perturbations only and, specifically, 
on the ones directly related to spherically symmetric 
collapse. To extract this information from the variables (37) 
and (38), we use the local splitting  

 (39) 

where 

 (40) 

and 

 (41)  

 Because of its geometrical properties it is clear that only 

the scalar part X can describe a spherically symmetric 

collapse. As a consequence, from now on, we will deal only 

with the scalar part of the perturbation variables. Such part 

can be extracted applying the comoving differential operator 

  
S %

a
 to (37) and (38):  

 (42) 

 Clearly these variables are gauge invariant, for the same 
reasons for which Da,Za,Ca are. In dealing with f(R)-gravity, 
however, (42) will not be able to describe all the degrees of 
freedom of the theory. In the next section we will see how 
this can be addressed.  

A. CoGI Perturbations for f(R)-Gravity  

 Let us now derive explicitly the perturbation equations 

around an homogeneous and isotropic background for f(R) 

gravity as seen by an observer associated to 
 
u

a

m
 and in 

presence of a fluid which is perfect in this frame and has an 

mm equation of state p
m
 = 

m
. In this setting the (22)-(35) 

give the following background equations:  

 (43a) 

 (43b) 

 (43c) 

 (43d) 

where 
R 

and p
R 

are given in (18) and (19) and R3 =6K/S
2 

with the spatial curvature index K = 0, ± 1.  

 As mentioned above f(R)-gravity contains more degrees 
of freedom than standard GR. Therefore in order to complete 
the description of the evolution of the perturbations in this 
framework we will need to define some additional 
perturbation variables. Following the tradition to consider 
the Ricci scalar an additional effective field of the theory 
[25] a choice for these additional variables is given by  

    
J

a
S %

a
,

a
S %

a

&R,  (44) 

where Ra determines the fluctuations in the Ricci scalar R 
and a the ones of its momentum R

˙
. As for the other 

perturbation variables here we will consider only their scalar 
part  

    
J = S % 2

R, = S
2 % 2 &R.  (45) 

 The results of [25] will guarantee that these new 
quantities are indeed gauge in variant. The set of variables 

,Z,C,R,  completely characterizes the evolution of the 
density perturbations in f(R)-gravity once the background is 
given. Using equations (43) one can derive the evolution and 
constraint equations for the variables (42) and (45). These 
equations constitute a system of first order partial differential 
equations [19, 20]:  

 (46a) 

 

 

 

 

 (46b) 

 (46c)  

 

 

 

 

 

 

 

 

 (46d)  
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 (46e) 

together with the constraint  

 (47) 

where we have assumed f R  0 i.e. we are excluding the 
GR case. Note that this system is made up of four equations, 
which means that the evolution of every single perturbation 
variable is determined by a fourth order differential equation. 
This differs from the case of GR, in which these equations 
are of second order, and it means that in general the solutions 
will have four modes. Hence the perturbations in these 
theories have a much richer structure with respect to the GR 
ones. In addition to that, the coefficients depend on 
derivatives of the scale factor of order up to four, so that the 
behavior of the perturbation is much more sensitive to the 
feature of the background than GR.  

 In order to reduce the system above to a set of ordinary 
differential equations, one defines the eigenfunctions of the 
spatial Laplace-Beltrami operator:  

 (48) 

where k =2 S/  is the wave number and 
  
&Q  = 0, and expands 

every first order quantity in the above equations:  

 (49) 

where  stands for both summation over discrete or 
integration over continuous indices. In this way, one obtains 
the equations describing the k

th 
mode for scalar perturbations 

in f(R) gravity. They are [19, 20]:  

 (50a) 

 

 

 

 (50b) 

 

 (50c) 

  

 

 

(50d) 

 

 

 

 (50e) 

 

 

 

 (51) 

 This system takes a more manageable form if we reduce 
it to a pair of second order equations:  

 (52a) 

 (52b) 

where  

 (53a) 

 (53b) 

 (53c) 

 (53d) 

 (53e) 

 (53f) 

 (53g) 

 (53h) 

 In the f(R) = R case these equations reduce to the 
standard equations for the evolution of the scalar 
perturbations in GR:  

 (54a) 

 (54b) 

 If one compares the system (52) with the equations for 

the evolution of scalar perturbations for two interacting 

fluids in GR one notices that they have the same structure, 

i.e., one finds friction terms and source terms due to the 

interaction and the gravitation of the two effective fluids. It 
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is then natural to ask ourselves if this analogy can be useful 

to better understand the physics of these models. The answer 

is affirmative, but with some very important caveats. First all 

a more correct way to draw this analogy would be to write 

the system of equations for m and R = 

   

S
2 %

μR

2

μ
R

 and analyze 

their structure rather than using the ones above. Also, as 

stated in [19], one has to be careful in remembering that we 

are dealing with effective fluids and, as such, they might 

violate some basic constraints that standard fluids usually 

follow (such as the energy conditions) or present subtleties 

in the definition of their comoving frame.  

 However, in spite of these differences one can still use 
the coefficients of the ( m, R) equations to obtain in 
formation about the interaction between standard matter and 
the curvature fluid. In fact, the coefficients of these 
equations are found to behave as a ratio of polynomials in 
the wave number and have a non trivial behavior in t. This 
kind of behavior is very different to what is found in a GR-
two fluid system. In a photon-baryon system, for example, 
the dissipation terms grow as k

2 
and behave like 1/t in time. 

Therefore, unlike the Thompson scattering in the baryon-
photon system, the effect of the interaction between matter 
and non-linear gravitation can influence large and small 
scales alike, depending on the structure of the action. Hence, 
from the distribution of the structures in the observed sky 
one can deduce constraints on the nature of the theory of 
gravity. Another important difference with GR is that (52) 
are scale dependent for any value of the barotropic factor. 
This means that whatever the equation of state of standard 
matter, the perturbation solutions will always depend on the 
scale at which they are calculated. This is true even in the 
special case of dust which in GR is associated to a scale in 
variant perturbation.  

 An additional interesting feature is the meaning of the 

long and short wave length limit in (52). As it is clear from 

(54), in GR these limits can be defined by comparing the 

values of the quantity 
  

k
2

S
2 2

 and the ratio between matter 

term in the m coefficient and 
2
. However, looking at (52) 

it is clear that the situation here is more delicate. For 

example, the short wavelengths regime cannot be defined as 

simply 
  

k
2

S
2 2

 ≫ 1, but 
  

k
2

S
2 2

 has to be bigger than all the 

other quantities appearing in the coefficients B, C and F 
divided by 

2
. The same reasoning holds for the long 

wavelengths: 
  

k
2

S
2 2

 has to be smaller than all the other 

quantities appearing in the coefficients B, C and F
3
. In this 

sense the structure of (52) suggests the presence of a least 

three different regimes in the evolution of the perturbations. 

                                                

3However, there is a difference between the two limits because in the long 

wavelength limit one can always set 

  

k
2

S
2 2

0,  while in the short 

wavelength the definition is completely dependent on the values of the 

coefficients and, as consequences, on the features of the background. 

Firstly, the “deep super-horizon” regime in which k is 

effectively zero, an intermediate one (or two depending on 

the value of the barotropic factor ) which is determined by 

the details of the background and a “deep sub horizon” 

regime in which one has effectively k  . The situation 

seems to become even more complicated when the fourth 

order gravity action posses dimensional constants (like in the 

case f(R) = R + R
n
). Since these constants are associated 

with the scales at which the different contributions to the 

action become dominant, one would expect the introduction 

of additional scales into the theory, i.e., further possible 

evolution regimes for scalar perturbations.  

V. EXAMPLES  

 The considerations drawn above are the most that we can 
extract from the system of perturbation equations in its 
general form (52). In order to obtain more information we 
need to apply these equations to some specific models. The 
main issue related to this, is the lack of exact or numerical 
backgrounds in the most popular models of f(R)-gravity. This 
is due on a side to the complexity of the equations which 
makes very difficult their resolution, on the other to the 
difficulty in findings constraints on the values of the 
parameters which are needed to perform numerical 
integration. The error due to the use of a background which 
is not a solution of the cosmological equations is very 
difficult to estimate and it could well depend on the detailed 
of the model considered. For this reason we will investigate 
here some very simple models for which some backgrounds 
are known in order to gather as much information as possible 
and test our general conclusions.  

A. The Case of R
n
-Gravity 

 Let us consider the case f(R)= R
n
, called also sometimes 

R
n
-gravity, whose action reads  

 (55) 

where Lm is the matter Lagrangian. The above theory 
constitutes the simplest possible example of fourth-order 
gravity. In this toy model the cosmological equations 
associated with a Friedmann-Lemaître-Robertson -Walker 
(FRLW) metric are particularly easy to deal with. The 
FLRW dynamics of this model has been investigated via a 
complete phase space analysis in [7]. This analysis shows 
that for specific intervals of the parameter n there is a set of 
initial conditions with non-zero measure for which the 
cosmic histories include a transient decelerated phase which 
evolves towards an accelerated expansion one. This first 
phase, characterized by  

 (56) 

was argued to be suitable for the structure formation to take 
place. For this reason we will use (56) as background.  

1. The Long Wavelength Limit  

 Let us start analyzing the evolution of the long 
wavelength perturbations during the phase (56). In the long 
wavelength limit the wave number k is considered to be so 
small that the wavelength  =2 S/k associated with it is 
much larger than the Hubble radius. Equation (48) then 
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implies that all the Laplacians can be neglected and the 
spatial dependence of the perturbation variables can be 
factored out. In GR, one can prove [26] that in this limit and 
in spatially flat (K = 0) backgrounds the equations for the 
variable C reduces to   

&C
 
= 0 i.e. the variable C is conserved. 

From the structure of equations (46e) above one can see that 
in this limit and in spatially flat (K = 0) backgrounds the 
(50e) reduces to   

&C  = 0 i.e. the variable C is conserved also 
in the f(R) case. This means that the number of equations in 
(50) can be reduced to three.  

 Substituting the background (56) in the equations thus 
obtained and decupling the density perturbation equation one 
obtains:  

 (57) 

where, C0 is the conserved value for the quantity C and  

 (58) 

 (59) 

 (60) 

This equation admits the general solution  

 (61) 

where  

 (62) 

 (63) 

 Let us now focus on the case of dust (  = 0). The above 
solution becomes  

 (64) 

where 

 (65) 

 (66) 

 A graphical representation of the behavior of the 
exponent of the modes of (64) as n changes is given in Fig. 
(1). This solution has many interesting features. For 0.33 < n 

< 0.71 and 1 < n < 1.32
4
 the modes t

±| =0 
become 

oscillatory. However, since the real part of the exponents 

±| =0 is always negative, the oscillation are damped and 
bound to become subdominant at late times. The appearance 
of this kind of modes is not associated with any peculiar 
behavior of the thermodynamic quantities in the background 
i.e. none of the energy condition are violated for the values 
of n which are associated with the oscillations. The nature of 
these oscillations is then an higher order phenomenon. Also, 
for most of the values of n the perturbations grow faster in 
R

n
-gravity than in GR. In fact only for 1.32  n < 1.43 all the 

modes grow with a rate slower than t
2/3

.  

 Probably the most striking feature of the solutions (64) 
and (61) is that the long wave length perturbations can grow 
if the Universe is in a state of accelerated expansion (see Fig. 
(1)). The consequence of this feature is quite impressive 
because it implies, against our (GR-based) in tuition, that in 
R

n 
gravity large scale structures can in principle also be 

formed in accelerating backgrounds. The suppression of 
perturbations due to the presence of classical forms of Dark 
Energy (DE) is one of the most important sources of 
constraints on the nature of DE itself. Our example shows 
that if one considers DE as a manifestation of the non-
Einsteinian nature of the gravitational interaction on large 
scales, there is the possibility to have an accelerated 
expanding background that is compatible with the growth of 
structures.  

 In the limit n  1 two of the modes of (61) reproduce 
the two classical modes t

2/3 
and t

1 
typical of GR, but the 

other two diverge. At first glance this might be surprising, 
but it does not represent a real pathology of the model. In 
fact, when n = 1, equation (57) reduces to a first order 
differential equation with a forcing term, which presents a 
two modes solution. This implies that in this case the 
additional modes in the solution (61) can be discarded and 
GR is recovered.  

 Solving for the other variables we can also obtain the 
solution for the other scalars:  

 (67) 

 (68) 

where  

 (69) 

 (70) 

and the constants K5,..K12 are all functions of K1,..K4. These 
expressions are rather complicated and will not be given 
here. It is interesting that these quantities have an oscillatory 
behavior for the same values of n for which m is oscillating. 

                                                

4The values of n presented here and in the following are the result of there 

solution of algebraic equations of order greater than two. These values have 

been calculated numerically. This means that the values we will give for the 

interval n will be necessarily an approximation. 
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Also for these quantities the oscillating modes are always 
decreasing.  

2. Short Wavelengths 

 The analysis of the properties of the small scale 
perturbations is more complicated than long wavelength 
ones. This because, if, as often happens, it is not possible to 
obtain exact solutions in this regime one is bound to find 
other means the relevant physical information.  

 A way of doing that, based on a statistical treatment of 
the behavior of the perturbation at different scales, is to 
define some characteristic quantities which help extract 
physical content from these solutions. One of the most 
important of these quantities is the power spectrum PX(k) of a 
perturbation variable X. Mathematically PX(k) is defined as 
the variance of the amplitudes of the Fourier transform of X 
at a given value of k [27]: 

X(k1)X(k2)  = PX(k1) (k1 + k2),  (71)  

where ki are two wave vectors characterizing two Fourier 

components of X and P(k1) = P(k1) because of isotropy in the 
distribution of the perturbations. The power spectrum PX(k) 

tells us how the fluctuations associated to X depend on the 

wave number at a specific time and carries information about 
the amplitude of these perturbations (but not on their spatial 

structure). Its features are directly connected with the 

structure of the equations. For example, (54) shows that in 
the case of GR and pure dust the matter fluctuations equation 

does not depend on k, so the matter power spectrum can be 

considered constant (i.e. scale in variant) [28].  

 A spectrum of one of the perturbation variables is a 

powerful tool for comparing the predictions of the system 
(52) with observations and is able to reveal a great deal of 

information on the physics of scalar perturbations. In what 

follows we will focus on the matter perturbation spectrum 
P (k) only, because this spectrum is the one that can be 

directly measured via large scale surveys. Our spectra will be 

normalized in such a way that it is unity on super-horizon 
scales. This normalization can then be scaled with current 

observations of the power spectrum on large scales (see [29] 

for the latest constraints). We will also analyze the time 

variation of this spectrum in order to obtain information on 
the ways in which the perturbations evolve in time on 

different scales.  

 Let us then consider P (k) for (52) at  = S/S0 = 1 (Figs. 
(2a), (2b), (3)). As mentioned above the k-structure of 
Equations (52) suggests that in fourth order gravity there 
exist at least three different growth regimes of the 
perturbations. This is confirmed by our results for this 
example. In particular, in the case of dust and for any values 
of the remaining parameters we have that: (i) on very large 
scales the spectrum goes like GR i.e. it is scale in variant; (ii) 
as k becomes bigger the scale in variance is broken and 
oscillations in the spectrum appear; (iii) for even larger k the 
spectrum becomes again scale invariant. However, on these 
scales the spectrum can contain either an excess or deficit of 
power depending on the value of n. In particular for n  1

+ 

small scales have more power than large scales, but, as one 
moves towards larger values of n, the small scale modes are 
suppressed. For 0 < n < 1, instead the drop in power seems 
to decrease as one moves from n = 0 towards 1

 
and we see a 

sudden increase for n  1 . It is worth noting the case n  0.8 
for which there is basically no difference in power between 
large and small scales and there are no significant 
oscillations in the spectrum.  

 Further indication of the link between the k structure of 
(52) and the different regimes of the matter power spectrum 
can be seen if one analyzes the power spectrum in a radiation 
dominated era. In this case the perturbations equations 
contain an additional k-term which is not present in the dust 
case. This means that one would expect four different 
regimes, rather than three. In Fig. (4) we have plotted the 
matter power spectrum of R

n
-gravity in the case of radiation 

and n = 10 (this value of n is chosen only for convenience), 
and as expected one can recognize four different regimes. 
Note that we obtain the same k scaling as in GR on small 
scales.  

 Finally, further information on the dynamics of the 
matter perturbations can be obtained examining the time 
evolution of the power spectrum. In Fig. (5) we give the 

 

Fig. (1). Plot against n of the real part of the long wavelength modes for R
n
-gravity in the dust case (blue, red green and yellow lines) 

together with the GR modes (red and purple line) [19].  
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power spectrum for n = 1.4 at different times. One can see 
that, as the universe expands, the small scale part of the 
spectrum is more and more suppressed and oscillations start 
to form. On the other hand the large scales do not seem to be 
evolving, which might appear in contrast with what 

mentioned above. However, this is a byproduct of the 
normalization: for clarity we have normalized the spectrum 
in such a way that every curve has the same power in long 
wavelength limit.  

 

(a) 

 

(b) 

Fig. (2). Matter power spectra for R
n
-gravity(from [20]). (a) Plot of P (k) at  = 1 for R

n
-gravity and n > 1. Note that the spectrum is 

composed of three parts corresponding to three different evolution regimes for the perturbations. (b) Plot of the P (k) as a function of k for 

R
n
-gravity at  = 1 and 0 < n < 1. The spectra for n = 0.6 and n = 0.5 only approach the scale invariant plateau at extremely high k when 

compared to the other curves. Note the behavior of the spectrum for n  0.8, differently from all the other cases, there is basically no loss of 

power in the spectrum at large k. 
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 The features of the spectra that we have derived can be 
then interpreted in terms of the interaction between the 
curvature fluid and standard matter [20]. On very large and 
very small scales, the coefficients of equations (52) become 
independent from k so that the evolution of the perturbations 
does not change with the scale and the power spectrum is 
scale invariant. On intermediate scales the interaction 
between the two fluids is maximized and the curvature fluid 
acts as a relativistic component whose pressure is 
responsible for the oscillations and the dissipation of the 
small scale perturbations in the same way in which the 
photonsoperate in a baryon-photon system

5
. The result is a 

considerable loss of power for a relatively small variation of 
the parameter n. For example, in the case n = 1.4 the 
difference in power between the two scale in variant parts of 
the spectrum for n = 1.1 is of one order of magnitude while 
for n = 1.6 is about ten orders of magnitude.  

 Probably the most important consequence of the form of 
the spectrum presented above is the fact that the effect of 
these type of fourth order corrections is evident only for a 

                                                

5This suggests the following interesting interpretation for the perturbation 
variables R and . These quantities can be thought to represent the modes 

associated with the contribution of the additional scalar degree of freedom 
typical of f(R)-gravity. In this sense the spectrum can be explained 

physically as a consequence of the interaction between these scalar 
modes, which function as a scalar gravitational wave, and standard matter. 

special range of scales, while the rest of the spectrum has the 
same k dependence of GR (but different amplitude). This 
implies that we have a spectrum that both satisfies the 
requirement for scale invariance and has distinct features that 
one could in principle detect, by combining future Cosmic 
Microwave Background (CMB) and large scale surveys 
(LSS) [30, 31].  

B. The Case f(R)= R + R
n  

 

 Let us now consider an f(R) theory characterized by the 
following action,  

 (72) 

 This theory has gained much popularity as a fourth order 
gravity model with in the context of both inflation and dark 
energy [33-36].  

 Unlike R
n
-gravity, (72) includes explicitly the Hilbert-

Einstein term, so that one can consider it as the result of an 
additive correction to GR. As a consequence this model 
posses an additional physical scale which is related, in our 
units, to the coupling constant  by the relation L = 

2(n 1)
, 

making (72) the simplest fourth order gravity theory with an 
additional scale for the gravitational interaction.  

 In the following we will take , which in our units is the 
ratio between the coupling constant of the fourth order 
corrections, to be positive definite. Of course, we expect this 

 

Fig. (3). Detail of the plot of P (k) for R
n
-gravity at  = 1. As expected, for these values of n we find the presence of the three regimes 

mentioned in the text. Note also that for n  1
+ 

the small scales are characterized by an excess of power [21]. Such features are compatible 

with some of the results found in [9].  
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model to behave much in the same way as the model 
discussed in the previous section for   , and to recover 
GR for  = 0. This also means that any new feature in this 
model will emerge for intermediate values of the coupling.  

 The f(R) = R + R
n 

model has been analyzed at the level 
of the background using many different approaches (see for 
example [32-36]), but probably some of the most interesting 
results for cosmology have been found using the dynamical 

 

Fig. (4). P (k) for R
n
-gravity at  = 1 in the case of radiation for GR and R

n
-gravity with n = 10. As expected in this last plot we find four 

different regimes instead of the three of the dust case: a first regime for k  0 which is scale invariant; a second and a third regime which 

correspond to the two different slopes between k  10
2 

and k  10
1/2 

and a fourth regime which has the same slope of the GR plot [20].  

 

Fig. (5). Evolution of P (k) for R
n
-gravity for n = 1.4. The spectrum has been normalized in such a way that the curves coincideat large 

scales. Note how, as time passes, small scale perturbations are dissipated and oscillation appear [20].  
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system approach [8, 37]. The dynamical systems analysis 
proved that this class of models has, like R

n
-gravity, an 

unstable fixed point associated with the Friedmann-like 
solution

6 
a = t2n/3(1+ ).  

 One can then analyze the behavior of the perturbations of 
this background in f(R)= R + R

n 
and compare it with the 

one found in R
n
-gravity. However, dealing with this model 

is considerably more complicated than dealing with R
n
-

gravity. For example, one is unable to find exact solutions 
for the perturbation equations, even in the long wavelength 
limit. For this reason in the following we will focus directly 
on the features of the power spectrum which are shown for 
various values of the parameters  and n in Fig. (6). As one 
can clearly see, these plots resemble the ones we have 
derived in the previous example. There are, of course, 
differences in the position of the oscillations and the amount 
of the power drop, but one finds again three different 
regimes in the case of dust and two of them (k  0 and k  

) correspond to scale invariance. Particularly interesting is 
the fact that in principle the values of  and n can be fine 
tuned in such a way to obtain a spectrum in which the small 
scales have the same power as the large ones. In a situation 
like this most of the spectrum would be scale invariant and 
all the deviations would be concentrated around a specific 
scale. 

 The time evolution of these spectra also reveals some 
interesting insights into the dynamics of the matter 
fluctuations. As usual for large values of  the evolution is 
very similar to the one obtained for R

n
-gravity as it is shown 

in Fig. (7a). However, when the value of the coupling 
changes the behavior of the perturbations can change 
dramatically. An example is given in Fig (7b) representing 
the power spectrum of the model (n = 1.4,  = 0.01) in 
which the small scale perturbations are first dissipated and 
successively start to grow again. This means that in principle 
one could choose n and , such that for example the small 
scale perturbation grow at different rates at different times. 
This property could be useful in the resolution of open 
problems in GR structure formation, like the cosmological 
dark matter or the excess of dwarf red galaxies.  

 Therefore, in spite of the presence of an additional scale, 
the power spectrum in this class of model seems to preserve 
most of the main structure of the one in R

n
-gravity. This 

implies that all the considerations made in the previous 
section concerning the physical mechanisms behind the form 
of the spectrum can be made also in this case. At this point 
the natural question that arises is about the generality of this 
result. Is it possible that we have found a characteristic 
feature of f(R)-gravity? Unfortunately, due to the lack of 
exact background solutions (many of the more complicated 
models of f(R) do not admit power law solutions) and the 

                                                

6Unlike the previous example, the structure of the phase space for this 

model is not well known. This means that, although in this theory one has a 

fixed point that resembles the one of R
n
-gravity, it is not obvious that it 

plays the same role. In addition, this background is not, in general, a 

physical solution of the cosmological equations [8]. This means that there 

are cosmic histories in which the general integral of these equations 

approximates the behavior we consider, but it will never be exactly the 

same. We choose to treat this as a further approximation in our 

investigation. 

difficulties related with the numerical resolution of the 
perturbation equations, one is unable to answer directly to 
this question. However, the important point is that if, as we 
have argued in the previous sections, the structure of the 
power spectrum is determined only by the k-structure of the 
perturbation equations, one can make the conjecture that the 
features we have observed in our two simple models are 
indeed common to all the f(R) models. If this is confirmed 
then we would have found a crucial method to test the 
existence of higher order corrections and it would be a 
powerful constrain for the parameters of any f(R) model. 
Another issue concerns the relevance of the form of the 
background in emergence of the features listed above. Can 
specific choices of background influence the presence of this 
characteristic feature? In order to answer this question we 
will consider another simple example: a de Sitter Universe.  

C. Perturbations of the de Sitter Space Time in a General 
f(R)-Gravity 

 Let us consider now the cosmological perturbations 
around a de Sitter background in f(R)-gravity. The presence 
of a de Sitter background in f(R)-gravity is one of the most 
important features of these theories because it has the 
potential to model both inflation and dark energy [38, 39]. 
Infact, it has been proven that a viable f(R)-gravity model 
unifying inflation and late time acceleration in the form of 
double de Sitter solution can be always constructed 
numerically [40]. As we will see, however, such 
backgrounds are not suitable for structure formation, because 
matter is dissipated very quickly. Notwithstanding this 
physical issue, the peculiar properties of this metric allow us 
to go deeper in the understanding of the perturbation 
equations.  

 Let us consider a Universe in which the background is 
given by a de Sitter space time characterized by a scale 
factor S = S0e

t 
and vacuum (

m
 = 0). Substituting in the 

cosmological equations it is easy to show that  has to satisfy 
the equation  

 (73) 

where 
  
f

0
 = f (R0),f0 = f(R0) and R0 = 12

2
. The (73) also 

implies that not all the f(R) theories of gravity admit de 

Sitters solutions, consistently with what one finds in [7,8].  

 Let us now consider a perturbation of this space time in 
which a fluid, constituted for instance by standard matter, is 
present. According to what has been said in the previous 
sections, this fluid will be described by first-order quantities.  

 We will also assume that the fluid is actually barotropic 
in its rest frame i.e. its equation of state is p

m
 = 

m
.  

 Choosing a set of observers comoving with it
7
, the 

perturbations equations turn out to be [41]  

                                                

7Since the definition of the fluid flow ua is made at the level of the perturbed 

Universe this choice is legitimate. In addition to that, the de Sitter solution is 

frame invariant so any choice of frame in the background is equivalent. 
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 (74a) 

 (74b) 
 

 

 (74c) 

where, as usual, we have assumed f   0 i.e. we are 
excluding the GR case. Note that these equations cannot be 
obtained plugging the background we defined directly from 
(46). This because the fact that the matter thermo dynamical 
variables are of first order changes the structure of linearized 
1+3 equations, which, in turn, leads to changes in the 
differential structure of the equations rather than only in the 
coefficients. Performing the harmonic decomposition and 
substituting (74b) in (74c) we obtain [41]  

 

(a) Plot of P (k) for n > 1,  = 10 and various values of k    (b) Plot of P (k) for n > 1,  = 1 and various values of k  

 

(c) Plot of P (k) for n > 1,  = 0.1 and various values of k    (d) Plot of P (k) for n > 1,  = 0.01 and various values of k  

 

Fig. (6). Plot of P (k)as a function of k for R + R
n
-gravity at  = 1 for n > 1 [20].  
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 (75a) 

 (75b) 

 In this system the equation for  is scale invariant and, as 
expected, matter perturbations are exponentially suppressed 
with a time constant which depends on w and the time 
constant of the de Sitter solution. The Ricci scalar 
perturbations, instead, are governed by a second-order 
equation which is forced by the matter term.  

 In the long wavelength limit k = 0 the above equations 
yield the general solutions  

 (76) 

 (77) 

where  

 (78) 

 Here R0,i and 0 are constants of integration and we have 
dropped the apex “(0)” to make the notation lighter. It is 
plain from this solution that, in a de Sitter background, 
standard matter is clearly made homogeneous, but this is not 
the case for the perturbation of the Ricci curvature. If one 
considers R as representing the scalar gravitational waves 
normally associated to the scalar degree of freedom of this 
type of theories, one can see that, depending on the form of 

the function f, this kind of perturbation is able to grow. In 
addition, if we imagine our f(R)-model to be an inflationary 
one, we can see that the analysis of the scalar waves would 
constitute a direct and purely classical test of the nature of 
the gravitational interaction, based on the gravitational wave 
relics of the inflationary era.  

 The form of the exponents of the modes the solutions 
above for some popular models of f(R)-gravity [22, 38, 39] 
are given in Table I.  

 It is easy now to derive the properties of the power 
spectrum for the matter perturbations. It is clear from (75a) 
that their spectrum it is scale invariant and remains 
constantly scale invariant at all times. Comparing these 
results with the ones of the previous section one realizes that 
f(R) de Sitter inflation is very different from an f(R) power 
law inflation. This result is similar to what happens in GR 
when de Sitter and power law inflation are compared: also in 
this case power law inflation is accompanied by a loss of 
power in the infrared part of the spectrum [44].  

 The fact that with a de Sitter background the power 
spectrum of the theory is flat seems to be in contrast with the 
claim of the presence of characteristic signature made in the 
previous section. However one must remember that the 
reason why this happens is the very special properties of the 
de Sitter metric and the fact that in our background there is 
no matter. This eliminates all the k dependence from the 
equation of the matter perturbations giving rise to a scale 
invariant spectrum. Such result reminds us that, 
independently from the form of f(R), a specific choice of the 
background can change deeply the system (50) and 
conditions the appearance of our characteristic signature. 
Therefore one can conclude that, in the appearance of the 

 

(a) Plot of P (k) for n = 1.4,  = 10 and evaluated at various values of          (b) Plot of P (k) for n = 1.4,  = 0.01 and evaluated  

                      at various values of   

Fig. (7). The time evolution of the matter power spectrum in R + R
n
-gravity for n = 1.4 and differing values of . Note the drastically 

differing vertical scales in the plots. Additionally, note the rise in power at small scales at late times in the case of n = 1.4 and  = 0.01 [20].  

6
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characteristic signature in the power spectrum the structure 
of the perturbation equations due to the background is more 
important than the additional scales contained in the function 
f(R). This result shows again how the choice of a correct 
background is crucial to make any reliable prediction in 
perturbation theory.  

VI. DISCUSSION AND CONCLUSIONS  

 In this paper I have reviewed the construction of a 
covariant and gauge in variant formalism that allows the 
description the perturbations around any cosmological 
background for a generic f(R) theory of gravity. Using this 
technique I have been able to derive, in a frame comoving 
with matter, a system of equations that describes the 
evolution of the scalar perturbations which are traditionally 
associated with structure formation. The covariance of the 
formalism guarantees that we are able to write these 
equations in any other frame. Differently from the case of 
GR, this system appears to be of order four rather two, and 
the coefficient of the equations depends on derivatives upto 
four of the scale factor. Also, in their harmonic decomposed 
form, the equations present a nontrivial dependence on the 
wave number k, so that perturbations of dust can depend on 
the scale in spite of the absence of fluid pressure. Such 
features are originated by the additional Laplacians 
appearing in the equations which, in turn, are a direct 

consequence of the fourth order terms in the gravitational 
field equations.  

 The application of these equations to some simple f(R)-
theories helps to further clarify their properties. We have 
seen that the behavior of the perturbations in these theories 
can be very different from the one in GR. For example, in 
R

n
-gravity long wavelength perturbations can grow in a 

power law inflationary scenario. Also we learned how 
important are the features of the background in the 
determination of the behavior of the perturbations. For 
example, form the analysis of the de Sitter backgrounds one 
learns that the specific k-structure of the equations can be 
changed by the use of backgrounds with special properties. 
Our results also help in the understanding of more general 
features of perturbations in f(R)-gravity. The comparison of 
the results in R

n 
and R + R

n 
on the same background, shows 

us that the presence of an additional universal constant in the 
action (and the associated length scale), although introducing 
changes in the dynamics, has little influence on the power 
spectrum. In this sense the structure of the power spectrum, 
should preserve some basic characteristics, like the presence 
of at least three regimes of which two are scale in variant 
(but not necessarily at the same power).  

 Can we speak then of “characteristic signature” of f(R)-
gravity? And in what sense? The information that we have 
discovered so far seems to show that the introduction of 

Table I.  Some of the values of  and the exponents of the modes of the scalar fluctuation solutions for various popular f(R)-gravity 

models in pure de Sitter backgrounds [41]. For the more complex forms of f(R) the implicit equations to be solved in order 

to find the parameters have been given. Of special interest are the models f(R) = 

   

R
m

+

1+ R
n

and their generalizations, which 

can provide a unique theoretical frame work for early time inflation and late time acceleration [38,39] (the first unified 

models of this type were proposed in [42,43]) 
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additional scales i.e. additive terms in the function f does not 
affect the basic features of the matter power spectrum, 
because they are only related to the k-structure of the 
perturbation equations. However, such structure can be 
modified by the specific features of the background. In this 
sense one can conclude that a class of background which do 
not change k-structure of the equation are bound to generate 
for any (nonpathological) f(R) theory spectra with similar 
features in terms of regimes and behavior at large and small 
scales. This similarity is what we call a “characteristic 
signature” of these models. 

 On a more observational point of view the important 
consequence of this conclusion is that a deviation from the 
scale invariance of the power spectrum can be interpreted as 
caused by non Einstenian gravitational interaction. Therefore 
the large scale structure surveys can be used as powerful 
tests for the gravitational interaction.  

 The same hold in the case of inflationary models based 
on f(R)-gravity. As in the case of GR, power law inflation is 
different from de Sitter inflation, and the detection of scalar 
gravitational waves, could not only be a footprint of non 
Einsteinian gravity at work, but also could allow us to 
distinguish between power law inflation and de Sitter one, 
and even give information on what form of f(R)-gravity is 
most likely to be at work.  

All these results look very promising. In spite of the many 
difference between f(R)-gravity and GR, the observable seem 
not completely in contrast with the observations. Of course 
the next step is now to try to refine the rough models we 
have used up to now to obtained better results. These will 
help shedding more light on this fascinating topic.  
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