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Abstract: In a previous work, we established the closet form of the potential generated by a massive inhomogeneous 

straight segment. We studied the dynamical behavior in the field of this segment at rest. Now, we plane to explore the 

case where the segment is in rotation around the axis perpendicular to the plane of study. We prove the existence of col-

linear and isosceles points of equilibrium. Their stability depend both on the rate of rotation as on the parameter governing 

the mass distribution of the parabolic profilE of density. 
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I. INTRODUCTION  

Many ways and methods were used to model the poten-
tial of irregular bodies. The main target for this is to study 
gravitational behavior, equilibrium and stability of a test 
particle around them. This subject is in fact an old/new one 
[1, 2]. The discoveries of binary asteroids have opened this 
important field of research. Space missions to minor bodies 
in the solar system have piqued new interest in this subject. 
Many attempts have been made to estimate the potential. A 
harmonic polyhedron was used by Werner and Scheeres for 
asteroid 4769 Castalia [3, 4]. Ellipsoids, material points and 
a segment of double material were used by Bartczak and 
Breiter in [5] and Bartczak et al., [6], as the model of irregu-
lar elongated bodies. Riaguas et al., [7] proposed a homoge-
neous straight segment. Ellipe and Lara [8] described the 
motion around asteroid 433 Eros with the same homogene-
ous model. In a former work in our laboratory Najid et al., 
[9] studied and developed a new model in which we estab-
lished the analytically closed expression of the potential gen-
erated by a massive inhomogeneous straight segment at rest. 
To be consistent with the geometrical shape, we used a para-
bolic profile of mass distribution. In our present work, we 
explore the case in which the inhomogeneous segment is 
rotating around an axis perpendicular to the plane of motion. 
In the first part, we establish the set of differential equations 
of motion in the synodical referential and we define the ef-
fective potential. The second part is devoted to the points of 
equilibrium, we prove the existence of two collinear points 
and isosceles others. In the third part, we study the linear 
stability. All over this work, we compare our results to the 
particular cases of homogeneous study made by Ellipe et al., 
[10] we prove the existence of two kinds of equilibrium de-
pending on the rate of rotation, concerning the isosceles 
points, and the parameter governing the mass distribution of 
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the parabolic profile of density. It is of great importance 
when exploring the formation of new structures around as-
teroids and even protoplanets. 

II-Dynamical Study 

We consider an inhomogeneous straight segment of 

length 2I and mass M which lies along the x-axis,  

with a parabolic profile of density, expressed by 

  
(x) = ax

2
+ b  in which  a  and  b  are linked by 

  

a < 
b

l
2

 

and 
  

M =
2

3
al

3
+ 2bl . The gravitational potential created 

by this one dimensional body at a certain point P in the space 

may be expressed in closed form [9]  

  

U (P) =
G

32l2
12alsd 2 16al3s + 8l2a s2 2 p( ) 3as2d 2 16l4a + 32bl2

ln
s + 2l

s 2l
                                                                             (1) 

as 
  
s = r

1
+ r

2
, 

  
d = r

1
r

2
 and

  
p = r

1
.r

2
, are auxiliary functions 

depending only on distances 
  
r
1
 and 

  
r

2
 of the particle to the 

end points of the segment. G is the gravitational constant. 

We suppose that the segment uniformly rotates with angular 

velocity  about the Z-axis perpendicular to the segment 

and fixed in the space. We study the motion of a test particle 

P, with unit mass, in a synodic reference frame (Oxyz), with 

origin at the center of mass O as shown in Fig. (1). 

The Newton law in synodical referential R yields 

   

d
2
OP

dt
2

R

+ 2
dOP

dt
R

+ OP( ) = U (P)      (2)  

The projection of (2) in the synodical referential gives 
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Fig. (1).  Synodical referential. 

   

x 2 y =
2
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By defining an effective potential W, we get 

  
W (x, y, z) = U (x, y, z)

2

2
x

2
+ y

2( )                                   (4) 

In which 
  
U (x, y, z)  is expressed by (1). The system (3) 

then becomes 

   

x 2 y =
2
x

U

x
= W

x

y + 2 x =
2
y

U

y
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With 
 

W
x

=
W

x
, 

 

W
y

=
W

y
 and 

 

W
z

=
W

z
. The expres-

sions (1) and (4) give 

  

W =
G
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16l4a + 32bl2 ln
s + 2l

s 2l

2
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II-1-Expressions of 
 
W

x
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W
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 and 
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z
 

The expressions of 
 
W

x
, 

 
W

y
 and 

 
W

z
 allow us to complete 

the system of differential equation governing the motion of 

the test particle. After a long and laborious calculation we 

reach 

II-2-Equations of Motion 

By substituting (7), (8) and (9) in the system (5), we ob-
tain the equations of motion of the test particle 

   

z =
G

32l2 p

32al2zp ln
s + 2l

s 2l
4lazs 3d 2

+ 4l2( )

4lzs
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The case of homogeneous profile of density, a=0, lead to 
the equations 

   

x 2 y =
2x 1

2GM

sp 2

y + 2 x =
2 y 1

2GM
2

s

p s2
4l2( )

z =
G

32l2 p

4lzs
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The use of the following scaling  t = t  and
  

r =
r

2l
, and 

the dimensionless parameter 

  

k =
GM

2l( )
3

2

defined by the 

ratio of the gravitational acceleration to the centrifugal ac-

celeration give the particular case as in [10]. The inhomoge-

neous straight rotating segments (10), (11) and (12) are 

strongly non linear and coupled. It needs a deep numerical 

treatment. In fact, it is out of question to plan to work it out 

in an analytical way. 

III-THE EQUILIBRIA  

The dynamical system defined by equations (5) admit the 

Jacobi integral 
   
C = 2W (x, y, z) + (x

2
+ y

2
+ z

2 ) . For a given 

set of initial conditions, the orbit must be inner 

  
2W (x, y, z)  C( )  the surface of zero velocity expressed 

by
  
C = 2W (x, y, z) . The equilibrium positions are given by 

solving the equations (10), (11) and (12). The conditions 

are:   x = 0 ,    x = 0 , 
   
y = 0 , 

   
y = 0 ,    z = 0  and    z = 0 . The  

equation (12) implies that  z = 0 , we will then restrict our 

study to the plane
  
(x, y) . In this case then, we have 

  
C = 2W (x, y,0) . The contour level of the surface given 

by
  
g(x, y,C) = 2W C = 0  are shown in Fig. (2). We notice 

that we have four equilibrium positions: two of them, 

  
E

1
and

  
E

2
, are hyperbolic located along the x-axis and the 

two others, 
  
E

3
and

  
E

4
, are elliptical located along the y-axis. 

(10) and (11) are reduced to 
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Fig. (2). Zero velocity curves on the (x,y) plane. 
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Fig. (3). Effect the ratio k on the equilibrium positions  with a=0.5, 

b=1 and k=1. 

The equilibrium positions depend on the parameters  a  

and . For a given rate of rotation ( = cte ) and by varying 

the value of  a , which act as a parameter of the profile of the 

density of the inhomogeneous straight segment, we establish 

the Table (1). We deduce after a close insight that when the 

gravitation is stronger the equilibrium positions along the y-

axis are farthest; this is to balance the centrifugal effect. In 

contrary, the equilibrium positions along x-axis are less con-

cerned. We can check the concordance with the values of 

homogeneous segment as in [10]. 

For a given value of a, and by varying the values of , 
we have the Table 2. We notice that when  increases the 
two kinds of equilibrium positions become closer to the 
segment. This can be interpreted as an effect to balance the 
gravitation. Fig. (3). Shows the effect of both gravitation and 
rotation on the equilibrium positions. 

IV-LINEAR STABILITY 

In order to determine stability of the equilibrium points 

found above, one needs the variational equations of the sys-

tem (5). We define a vector 
   

= x, y, x, y( )  as the varia-

tions of the vector space phase and the vector deriva-

tion
   

= x, y, x, y( ) [11]. The variational equations of the 

system (5) give: 

   

= A =

0 0 1 0

0 0 0 1

W
xx

W
xy

0 2

W
yx

W
yy

2 0

x

y

x

y

  

Where: 
 

W
xx

=
W

x

x

, 

 

W
xy

=
W

x

y
, 

 
W

yx
=

W
y

x
 and 

 

W
yy

=

W
y

y
. 

Table 1. Position's Equilibria for 
 = 1  and Different Values of a 

Value of a (x, y) Coordinates of Equilibrium Positions 

0 (0,0.72), (0,-0.72), (0.95,0), (-0.95,0) 

0.5 (0,0.714), (0,-0.714), (0.94,0), (-0.94,0) 

1 (0,0.715), (0,-0.715), (0.936,0), (-0.936,0) 

1.5 (0,0.715), (0,-0.715), (0.935,0), (-0.935,0) 

2 (0,0.716), (0,-0.716), (0.934,0), (-0.934,0) 

2.5 (0,0.716), (0,-0.716), (0.933,0), (-0.933,0) 

3 (0,0.718), (0,-0.718), (0.932,0), (-0.932,0) 

4 (0,0.719), (0,-0.719), (0.931,0), (-0.931,0) 

5 (0,0.721), (0,-0.721), (0.930,0), (-0.930,0) 

Table 2. Position's Equilibria for a=1 and Different Values of  

Value of  
  
(x, y) Coordinates of Equilibrium Positions 

0.1 (0,4.632), (0,-4.632), (2.153,0), (-2.153,0). 

0.3 (0,2.213), (0,-2.213), (1.500,0), (-1.500,0). 

1 (0,0.962), (0,-0.962), (1.038,0), (-1.038,0). 

1.5 (0,0.715), (0,-0.715), (0.936,0), (-0.936,0). 

2 (0,0.580), (0,-0.580), (0.880,0), (-0.880,0). 

2.5 (0,0.482), (0,-0.482), (0.672,0), (-0.672,0). 

3 (0,0.415), (0,-0.415), (0.568,0), (-0.568,0). 

5 (0,0.267), (0,-0.267), (0.299,0), (-0.299,0). 
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IV-1-STABILITY OF THE COLLINEAR EQUILIBRIA 

 
E

1
 AND 

 
E

2
  

The problem is symmetric, the stability of the point E1 is 

the same as its symmetric E2. The numerical results which 

appear in Tables (3), (4), and (5), show that for every inho-

mogeneous body   a 0  there is a critical value
 c

, for which 

if 
 

<
c
 all eigenvalues have null real part, hence the collin-

ear equilibria are stable, and they are unstable for
 

>
c
. The 

Table (6) corresponds to the homogeneous body a = 0, we 

notice that the collinear equilibria are always unstable as in 

[10]. 

Table 3. a=0.5, b=5 and  is Variable 

Value of  
 
(x, y)  Coordinates of 

 
E

1
 Eigenvalues 

0.5 (1.63,0) 
  0.5.10

16
+1.5.I ;   0.5.10

16
1.5.I  

  0.2.10
15

+ 0.4.I ;   0.2.10
15

0.4.I  

1 (1.07,0) 
  0.26.10

15
+1.1.I ;   0.26.10

15
1.1.I  

  0.27.10
15

+ 0.66.I ;   0.27.10
15

0.66.I  

1.5 (0.86,0)  1.4 , 
 1.4 , 

  1.9.I , 
  1.9.I  

2 (0.75,0)  2.21 , 
 2.21 , 

  2.81.I , 
  2.81.I  

 

Table 4. a=1, b=5 and  is Variable 

Value of  
  
(x, y)  Coordinates of 

  
E

1
 Eigenvalues 

0.5 (1.63,0) 
  0.2.10

14
+ 0.9.I ;   0.2.10

14
0.9.I  

  0.16.10
14

+ 0.4.I ;   0.16.10
14

0.4.I  

0.6 (1.45,0) 
  0.27.10

15
+1.4.I ;   0.27.10

15
1.4.I  

  0.9.10
16

+ 0.4.I ;   0.9.10
16

0.4.I  

0.8 (1.22,0) 
  0.94.10

15
+ 0.7.I ;   0.94.10

15
0.7.I  

  0.37.10
15

+ 0.2.I ;   0.37.10
15

0.2.I  

1 (1.07,0) 
 0.77 ; 

 0.77  

  0.1.10
14

+1.1.I ;   0.1.10
14

1.1.I  

 
Table 5. a=2, b=5 and  is Variable 
 

Value of  
  
(x, y)  Coordinates of 

  
E

1
 Eigenvalues 

0.5 (1.63,0) 
  0.9.10

15
+ 0.9.I ;   0.9.10

15
0.9.I  

  0.52.10
15

+ 0.4.I ;   0.52.10
15

0.4.I  

0.7 (1.32,0) 
 0.1+ 0.6.I ;  0.1 0.6.I  

 0.1+ 0.6.I ;  0.1 0.6.I  

0.8 (1.22,0) 
  0.1.10

14
+ 0.7.I ;   0.1.10

14
0.7.I  

  0.8.10
15

+ 0.2.I ;   0.8.10
15

0.2.I  

1 (1.07,0)  2.21 , 
 2.21 , 

 2.81.I , 
 2.81.I  

 

Table 6. a=0, b=0.5 and  is Variable 

Value of  
  
(x, y)  Coordinates of 

  
E

1
 Eigenvalues 

0.5 (1.63,0)   0.15.10
15

+1.9.I ;   0.15.10
15

1.9.I  

 0.33 ; 
 0.33  

1 (1.08,0)  1.33 , 
 1.33 , 

 2.1.I , 
 2.2.I  

1.6 (0.84,0)  2.8 , 
 2.8 , 

  2.8.I , 
  2.8.I  

2 (0.76,0)  3.9 , 
 3.9 , 

  3.5.I , 
  3.5.I  
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IV-2-STABILITY OF THE ISOSCELES EQUILIBRIA 

 
E

3
 AND 

 
E

4
 

The problem is symmetric, the stability of the point 
  
E

3
 is 

the same as its symmetric
  
E

4
. The numerical results which 

appear in Tables (7), (8) and (9), show that for every inho-

mogeneous body   a 0  there is a critical value
 c

, for which 

if 
 

<
c

 all eigenvalues have null real part, hence the isos-

celes equilibria are stable, and they are unstable for
 

>
c

. 

The table (10) shows the results of the particular case as in 

[10]. 

Table 7. a=0.5, b=5 and  is Variable 

Value of  
 
(x, y)  Coordinates of 

 
E

3
 Eigenvalues 

0.5 (0,1.56) 
  0.3.10

15
+1.8.I ;   0.3.10

15
1.8.I  

  0.6.10
17

+ 0.15.I ;   0.86.10
17

0.15.I  

1 (0,0.96) 
  0.8.10

15
+1.2.I ;   0.8.10

15
1.2.I  

  0.83.10
15

+ 0.7.I ;   0.83.10
15

0.7.I  

1.5 (0,0.71) 
 0.9 + 0.9.I ;  0.9 0.9.I  

 0.9 + 0.9.I ;  0.9 0.9.I  

2 (0,0.57) 
 1.4 + 0.9.I ;  1.4 0.9.I  

 1.4 + 0.9.I ;  1.4 0.9.I  

 
Table 8. a=1, b=5 and  is Variable 

Value of  
 
(x, y)  Coordinates of 

 
E

3
 Eigenvalues 

0.5 (0,1.56) 
  0.1.10

15
+1.6.I ;   0.1.10

15
1.6.I  

  0.1.10
15

+ 0.33.I ;   0.1.10
15

0.33.I  

0.6 (0,1.38) 
  0.2.10

15
+1.4.I ;   0.2.10

15
1.4.I  

  0.9.10
16

+ 0.4.I ;   0.9.10
16

0.4.I  

0.8 (0,1.22) 
  0.9.10

15
+ 0.7.I ;   0.9.10

15
0.7.I  

  0.3.10
15

+ 0.2.I ;   0.3.10
15

0.2.I  

1 (0,0.96) 
 0.7 + 0.9.I ;  0.7 0.9.I  

 0.7 + 0.9.I ;  0.7 0.9.I  

 
Table 9. a=2, b=5 and  is Variable 

 

Value of  ( , )x y  Coordinates of 
 
E

3
 Eigenvalues 

0.5 (0,1.56) 
  0.4.10

16
+1.6.I ;   0.4.10

16
1.6.I  

  0.1.10
15

+ 0.33.I ;   0.1.10
15

0.33.I  

0.6 (0,1.38) 
  0.4.10

15
+1.4.I ;   0.4.10

15
+1.4.I  

  0.2.10
15

+ 0.4.I ;   0.2.10
15

0.4.I  

0.8 (0,1.13) 
  0.3.10

14
+ 0.7.I ;   0.3.10

14
0.7.I  

  0.8.10
15

+ 0.2.I ;   0.8.10
15

0.2.I  

1 (0,0.96) 
 0.7 + 0.9.I ;  0.7 0.9.I  

 0.7 + 0.9.I ;  0.7 0.9.I  
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CONCLUSION 

On this work we studied the gravitational behavior of a 

particle of unimportant mass in the field of an rotating inho-

mogeneous straight segment. The segment is modelised by a 

parabolic profile of mass density. For the analytical expres-

sion of the potential we found four positions of equilibrium, 

two of them are collinear located along the axis of the seg-

ment, they are hyperbolic. The two others are isosceles lo-

cated symmetrically with respect to the segment along its 

mediatrix, they are elliptical. The new result concerning this 

analytical potential for the inhomogeneous segment, corre-

sponds to the stable region for the collinear points. That is 

the difference in the cas of homogeneous segment as in [10]. 

This situation could explain the existence of halo around the 

segment like Gegenschein effect [12]. 

The main interest to study the location of equilibrium 

points is similar to that of Lagrangian points in three body 

problem. To explore irregular bodies, it is an opportunity to 

have equilibrium positions around them. In this way many 

spatial missions, like NEAR and ROSETTA were fulfilled 

by space agencies such as ESA and NASA [13] and [14]. As 

an extension of this work, we are planing to explore the case 

of a more detailed mass distribution. In fact many asteroids 

are far of a regular or symmetrical shape. 
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Table 10. a=0, b=0.5 and  is Variable 

 

Value of  
 
(x, y)  Coordinates of 

 
E

3
 Eigenvalues 

0.5 (0,1.56) 
  0.2.10

15
+1.9.I ;   0.2.10

15
1.9.I  

  0.4.10
17

+ 0.03.I ;   0.4.10
17

0.03.I  

1 (0,0.96) 
  0.4.10

15
+1.7.I ;   0.4.10

15
1.7.I  

  0.13.10
15

+ 0.2.I ;   0.13.10
15

0.2.I  

1.5 (0,0.71) 
 0.3+ 0.9.I ;  0.3 0.9.I  

 0.3+ 0.9.I ;  0.3 0.9.I  

2 (0,0.57) 
 0.9 + 0.9.I ;  0.9 0.9.I  

 0.9 + 0.9.I ;  0.9 0.9.I  


