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Abstract: A new type of exact solutions for photogravitational restricted three-body problem (a case of spiral motion) is 

presented here. 

A key point is that we obtain the appropriate specific case of spiral motions from the Jacobian-type integral of motion for 

photogravitational restricted three-body problem (when orbit of small 3-rd body is assumed to be like a spiral). 

Besides, we should especially note that there is a proper restriction to the type of spiral orbital motion of small 3-rd body, 

which could be possible for choosing as the exact solution of equations for photogravitational restricted three-body 

problem. 

The main result, which should be outlined, is that in a case of quasi-planar orbital motion (of the small 3-rd body) the 

asymptotic expression for component z of motion is proved to be given by the proper elliptical integral. 
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1. INTRODUCTION 

In this contribution, we present a new type of exact 
solutions for photogravitational restricted three-body 
problem [1-3], which is the case of spiral motions. 

According to the Bruns theorem [4], there is no other 

invariants except well-known 10 integrals for three-body 

problem (including integral of energy, momentum, etc). But 

in the case of restricted three-body problem, there is no other 

invariants except only one, Jacobian-type integral of motion 

[5, 6]. 

The main idea is to obtain the appropriate specific case of 

spiral motion for photogravitational restricted three-body 

problem from the Jacobian-type integral of motion (when 

orbit of small 3-rd body is assumed to be like a spiral); 

besides, such a case of spiral motion should be adopted by 

the structure of the Jacobian-type integral of motion. 

In addition, we should emphasize the appropriate 

astrophysical application of the constructed (exact) solutions 

of a spiral motion: for example, we could consider the Sun-

Jupiter system as primaries and assume that only the larger 

primary (Sun) radiates. Besides, we could consider small 

objects such as meteoroids or small asteroids (about 10 cm to 

10 km in diameter) as the small 3-rd body for such a case.  
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2. EQUATIONS OF MOTION 

Let us consider the system of ODE for photogravitational 

restricted three-body problem, at given initial conditions [2]. 

We consider three bodies of masses m , m  and m such 
that m  > m  and m is an infinitesimal mass. The two 
primaries m  and m  are sources of radiation; q  and q  are 
factors of the radiation effects of the two primaries 
respectively, {q , q }  (- , 1]. 

We assume that m  is an oblate spheroid. The effect of 
oblateness [7, 8] is denoted by the factor A . 

Let ri (i =1, 2) be the distances between the centre of 
mass of the bodies m  and m  and the centre of mass of body 
m. The unit of mass is chosen so that the sum of the masses 
of finite bodies becomes equal to 1. 

We suppose that m  = 1 - μ and m  = μ, where μ is the 
ratio of the mass of the smaller primary to the total mass of 
the primaries and 0  μ  0,5. The unit of distance is taken 
as the distance between the primaries. The unit of time is 
chosen so that the gravitational constant is equal to 1. 

The three dimensional restricted three-body problem, 
with an oblate primary m  and both primaries radiating, 
could be presented in barycentric rotating co-ordinate system 
by the equations of motion below [7, 8]: 

x 2n y =
x

,

y + 2n x =
y

,

z =
z

,

 (2.1) 



30    The Open Astronomy Journal, 2014, Volume 7 Sergey V. Ershkov 

  

=
n

2

2
x

2+ y
2( ) +

q
1
(1 μ)

r
1

+

q
2
μ

r
2

1+
A

2

2r
2

2
1

3z
2

r
2

2

 (2.2) 

where 
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,  

is the angular velocity of the rotating coordinate system and 
A  - is the oblateness coefficient. Here 
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where AE is the equatorial radius, AP is the polar radius and 
R is the distance between primaries. Besides, we should note 
that 
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are the distances of infinitesimal mass from the primaries. 

We neglect the relativistic Poynting-Robertson effect [9-
10] which may be treated as a perturbation for cosmic dust 
or for small particles (less than 1 cm in diameter), we neglect 
the Yarkovsky effect of non-gravitational nature [11-13], as 
well as we neglect the effect of variable masses of 3-bodies 
[14, 15]. 

The possible ways of simplifying of equations (2.1): 

if we assume that the effect of oblateness is zero, A  = 0 
(  n = 1), it means m  is non-oblate spheroid (we will 
consider only such a case below); 

if we assume q  = q  = 1, it means a case of restricted 
three-body problem. 

3. EXACT SOLUTION (A CASE OF SPIRAL 
MOTION) 

Regarding the orbit of small 3-rd body, let us assume 
such an orbit to be presented like a spiral (Fig. 1). 

 Besides, let us remind that we could obtain from the 
equations of system (2.1) a Jacobian-type integral of motion 
[5, 6]: 

   
(x) 2

+ ( y) 2
+ (z) 2

= 2 (x, y, z) + C
 

(3.1) 

where C is so-called Jacobian constant. 

As per assumption above, it means that components of 
solution {xi } = {x(t), y(t), z(t)} (i =1, 2, 3) should be 
presented as below: 

x = (t) cos(w t), y = (t) sin(w t), z = z (t), (*)  

where the angular velocity is chosen w = 1;  (t) - is a spiral 
factor. For example: 

1) If (t) = a t + c, z(t) = b t - we should obtain the spiral 
of screw line type, 

2) If (t) = a exp(b t), z(t) = c t - we should obtain the 3-D 
logarithmic spiral, 

here{a,b,c} are supposed to be the arbitrary positive real 
constants. 

Thus if we substitute the representation (*) for the 
components of solution {xi } = {x(t), y(t), z(t)} into the 
Equation (3.1), the following equation is obtained 

   

( (t) cost (t) sin t) 2
+ ( (t) sin t

+ (t) cost) 2
+ (z) 2

= 2 (x, y, z) + C ,

2 (t) +
2 (t) + (z) 2

= 2 (x, y, z) + C

 
(3.2) 

where the expression for  (t) in (2.2) should be simplified 
in the case of non-oblateness A  = 0 (n = 1): 
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(3.3) 

So, taking into consideration the expression (3.3) for  
(t), we obtain from (3.2) 
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 (3.4) 

Besides, we should note from (3.4) that the proper 
restriction below should be valid: 

 

Fig. (1). Type of spiral motion. 
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here {q , q }  (- , 1]. There are two possibilities to solve 

the equation (3.4): 

1) First, we assume z (t) to be given as a proper function 
of parameter t, then we should obtain a solution of ODE of 
the 1-st kind for  (t); 

2) or the 2nd , we assume  (t) to be given as a proper 
function of parameter t, then we should obtain a solution of 
ODE of the 1-st kind for z (t). 

For example, if we choose the 2-nd way of above, we 
should obtain from (3.4):  
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(3.5) 

We should also note that the question ‘Will the spiral (*) 

converge to a fixed point or diverge to infinity?’ should be 

researched additionally, depending on initial data of the 

proper case. So, the stability of a spiral motion is an open 

problem in celestial mechanics.  

4. CONCLUSION 

We have obtained a new type of exact solutions for 
photogravitational restricted three-body problem [1-3] (the 
case of spiral motion). 

According to the Bruns theorem [4], there is no other 
invariants except well-known 10 integrals for three-body 
problem (including integral of energy, momentum, etc.). But 
in the case of restricted three-body problem, there is no other 
invariants except only one, Jacobian-type integral of motion 
[5, 6]. 

A key point is that we obtain the appropriate specific 

case of spiral motion from the Jacobian-type integral for 

photogravitational restricted three-body problem (when orbit 

of small 3-rd body is assumed to be like a spiral). Besides, 

we should especially note that there is a proper restriction to 

the type of spiral orbital motion of small 3-rd body, which 

could be possible for choosing as the exact solution of 

equations for photogravitational restricted three-body 

problem. 

Let us demonstrate the proper asymptotic simplifications 

of the considered solutions; Eq. (3.5) could be simplified if 

we consider a quasi-planar case of orbital motion:  
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where the left side of Equation (4.1) could be transformed to 
the proper elliptical integral [16] in regard to z.  

The case below should be excluded from the variety of 
possible solutions: 
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Indeed, in such a case we could obtain from Eq. (3.5) that 
component z is under the linear dependence on the time-
parameter t (but we assumed: {(z/r ), (z/r }  0).  

Besides, the appropriate restrictions of meanings of 
variables should be valid for all meanings of parameter t  0 
in (4.1) as below: 
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Under a quasi-planar assumption above: {(z/r ), (z/r )} 
 0, it means that the proper restrictions at choosing of the 

spiral factor  (t) should be given as below: 
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For example, if  (t)  1 we should obtain for the 
asymptotical final motions t   (constants are chosen as 
below):  
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It means that we should choose a polinomial function 
with extent of time-parameter t less than < 2/3 as the spiral 
factor for the modelling of a spiral motion in such a case. 

DISCUSSIONS 

We obtain the appropriate specific case of a spiral 
motion for photogravitational restricted three-body problem 
from the Jacobian-type integral of motion (when orbit of 
small 3-rd body is assumed to be like a spiral). 

The main result, which should be outlined, is that in a 
case of quasi-planar orbital motion (of the small 3-rd body) 
the asymptotic expression for component z of motion is 
proved to be given by the proper elliptical integral. But the 
elliptical integral is known to be a generalization of the class 
of inverse periodic functions. 

Thus, by the proper obtaining of re-inverse dependence 
of a solution from time-parameter we could present the 
expression of z(t) as a set of periodic cycles. So, the meaning 
of component z(t) is proved to be limited in the proper range 
of values.  
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