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Abstract: Launch Vehicles are subject, at lift-off and during flight ascent, to acoustic and aeroacoustic loads, which are 

random in nature. Because electronic units are very sensitive to mid and high frequency loads, it is important to 

numerically predict and specify the vibration levels to be applied to units for qualification test. The general objective of 

the activity presented in this paper is to develop a methodology to predict mid and high frequency structure-borne 

transmissions in launch vehicles. As the loads of interest are random, it has been chosen to investigate energy-based 

modeling approaches, combined with the Finite Element Method. For energy-based modeling, the structure is divided into 

subsystems. For high frequency predictions, the purely numerical Power Injection Method, derived from Statistical 

Energy Analysis, is used to estimate the Coupling Loss Factor between structural subsystems. For the mid frequency 

predictions, an approach close to Statistical Energy Analysis, called Statistical Energy Analysis-Like (SEA-like), is 

investigated. In this approach, a relation between total energies of subsystems and input powers is established, by 

identifying a matrix composed of Energy Influence Coefficients. The objective of the study is to establish the 

methodology to compute with accuracy, using the Finite Element Method, Coupling Loss Factors and Energy Influence 

Coefficient. It is shown that the excitation of subsystems by ‘Rain on the Roof’ loads defined by the ‘Influence Circle’ 

and the Optimal Latin Hypercube methods provide accurate coupling data. A validation of the methodology on academic 

and industrial cases is presented. 

1. INTRODUCTION 

 Launch vehicles are subject to several types of broadband 

loads such as acoustic loads due to rocket engines, at lift-off, 

and aeroacoustic loads due to the external aerodynamic 

environment during flight ascent. Those excitations are 

random. The induced random acoustic and vibration 

environment may create physical discomfort or damage to 

the structures and electronic equipment. Consequently, it is 

very important to use reliable and predictive tools to estimate 

the response of launch vehicle structures to those loads. The 

specification of random vibration qualification levels to be 

applied to equipment during qualification tests before flights 

is an activity of great importance, given the severity of the 

in-flight environment. 

 The frequency band of interest ranges from 20 Hz up to 

2000 Hz. Consequently, several vibroacoustic methods have 

to be used in order to cover the full domain. For the low 

frequency regime, a mode by mode analysis is for example 

used [1], using the Finite Element Method, the fluid being 

represented by Green’s function. In the high frequency  

domain, where high modal overlap occurs, SEA [2, 3], is 

 

 

*Address correspondence to this author at the EADS ASTRIUM ST, 66, 

Route de Verneuil, BP 3002 78133 Les Mureaux Cedex, France;  

E-mail: bernard.troclet@astrium.eads.net 

better suited [4]. A predicting gap exists in the mid 

frequency domain. Moreover, structure-borne transmissions 

are not well predicted. To bridge this mid frequency gap, a 

SEA-Like method [5], is proposed. 

 This paper focuses on structure-borne transmissions in 

the mid and high frequency domains for structural 

configurations subject to normal excitations, such as pressure 

fields. Very few closed formulations are available to 

estimate structure-borne transmissions between coupled 

structures encountered in industrial real life, except, for 

example, structure-borne transmissions between 

perpendicularly coupled homogeneous plates [6]. 

 In this paper, we propose to perform this estimate using a 

purely numerical PIM method in the high frequency range 

[7-9], and a SEA-Like method in the mid-frequency range. 

The PIM method is an experimental method to estimate CLF 

of SEA by exciting the structure. This method has been 

investigated, described and justified in the literature [7-9]. 

But, as described in paragraph III, we intend to apply it to 

purely numerical models, as the real structure is not always 

available for experimental measurements. 

 In the mid frequency range, hybrid FEM/SEA 

approaches have already been investigated, using for 

instance classical modal analysis [4, 10], the influence of 

modal overlap has been shown and several cases where the 
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indirect CLF had to be taken into account were pointed out. 

To solve those problems, we introduce in paragraph IV, the 

SEA–Like methodology to compute the Energy Influence 

Coefficients (EIC) between the structures. 

 After a general presentation of the classical SEA 

analysis, the methodology combining the Finite Element 

Method and energetic method, such as SEA for high 

frequency predictions and SEA-Like for mid frequency 

predictions, is presented in this paper, and validated on 

academic and industrial cases. The choice of SEA-Like 

method for predicting mid frequency responses is discussed 

in section 4. FEM is used to provide key parameters for SEA 

and SEA computations. As in the experimental PIM, the 

FEM model has to be correctly excited by forces to 

determine accurate CLF for SEA on one hand, and EIC for 

SEA-Like on the other hand. In our approach the FEM 

model is excited by a so-called ‘Rain on The Roof’ force 

field. However, the way of applying the forces is not 

standardized and we have adopted the method described in 

[7]. In this paper, it is stated that a number of three point 

loads are sufficient to obtain accurate coupling data whereas 

it is of course not sufficient to excite all modes of the 

structures in the mid frequency domain. 

 The key and innovative points of our method described in 

this paper are: 

• The methodology proposed for exciting the FEM 

model to obtain accurate CLF for SEA and EIC for 

SEA-Like, based on the ‘Influence Circle’ method 

and on OLH method, in order to have a rational basis 

to estimate EIC and CLF. The ‘Influence Circle’ is 

presented later. The way of exciting the structure is a 

problem of great importance, because all modes in the 

frequency bands of concern have to be excited 

simultaneously in order to obtain accurate results. 

• The computation in the time domain using an explicit 

code and its use in the context of energy methods. 

Indeed, explicit codes allow easy computations in 

time domaine, and provide mid & high frequencies 

results (via adequate post-processing) with reasonable 

computation times for industrial structural 

configurations. 

• The application of the methodology presented to real 

industrial case. 

2. PRESENTATION OF THE SEA METHOD 

 Energy based methods are often applied to the 

characterization of the vibrating behaviour of structures in 

the high frequency domain. The most common approach is 

the SEA, Lyon [2, 3]. The method consists of decomposing a 

complete system into subsystems in order to estimate their 

total mean energy, averaged in time and space. This method 

is based on the energy equilibrium equation: the sum of the 

dissipated power in a given subsystem and the power 

exchanged with the other coupled subsystems is equal to the 

power supplied by the external loads to this subsystem. An 

important issue is the definition of a proper SEA model. 

From the point of view adopted in this paper, a proper SEA 

model must satisfy the following four conditions: 

 The first condition is that the connected structural 

subsystems must have similar dynamic properties. The 

second condition is that the modal overlap criterion must be 

satisfied. This criterion for subsystem i can be written as: 

ni ii 1             (1) 

 The third condition is that no indirect coupling occurs 

between structural subsystems. This condition leads to the 

absence of coupling between not directly coupled 

subsystems. 

 The fourth condition is that “weak coupling” condition 

has to be satisfied. The weak coupling hypothesis is the 

subject of large discussion in the SEA literature. However, 

we share the view of B. Mace [5], in that two coupled 

subsystems are in weak coupling condition, if the 

transmission, in the frequency band of concern, they involve 

local modes, and, as a consequence, do not involve global 

modes of the coupled subsystems. 

 The power flow between subsystems can be written as a 

relation between DLF, CLF and the modal densities of the 

subsystems. In the case of n coupled subsystems, a relation 

between the input powers and the total energy of the 

subsystems can be written in a matrix form, as follows: 

 

1tot 12 1n

21 2tot 2n

n1 n2 ntot

E1

n1

E2

n2

En

nn

=

P1,inj

n1

P2,inj

n2

Pn,inj

nn

             (2) 

 The input powers Pi,inj  are assumed to be known and 

characterized. Power inputs due to aero-acoustic loads are 

difficult to identify because the broadband pressure field has 

to be characterized with accuracy [4]. The characterization of 

the power inputs is out of the scope of this paper. If the 

modal densities of the subsystems, the DLF and the CLF, are 

known, the total energies of subsystems can be determined. 

The Dissipation Loss Factors are experimentally identified in 

most cases or extracted from a database. The modal densities 

of subsystems and the CLF per frequency bands must be 

estimated for solving the SEA matrix system (2). For 

estimating CLF between simply connected structures, the 

vibrational field in structures is represented by incoherent 

plane waves. The high frequency CLF are then obtained by 

computing the transmission coefficient between subsystems, 

averaged over all angles of incident plane waves [6]. 

However, this methodology does not provide satisfactory 

results if the connections are complex. An alternative 

method has, consequently, to be investigated. The methods 

of interest in this paper are the numerical PIM and the SEA-

Like methods, for the high frequency and mid frequency 

domain respectively. 
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3. THE PIM METHOD 

 For more complex structures, the CLF and DLF are often 

determined using an experimental approach such as the 

Power Injection Method (PIM). This approach has been 

largely investigated in the literature [7, 9]. Once the vibrating 

total averaged energies and the power inputs are measured, 

an inverse energetic approach by writing SEA equations and 

inverting the SEA matrix of total energies can be applied. 

But a prototype of the structural configuration of interest is 

not always available to carry out such an experimental 

analysis. Consequently, the idea is to replace the 

experimental PIM by a numerical PIM, by combining FEM 

and SEA. This approach is called in this paper the hybrid 

FEM/SEA approach. The hybrid FEM/SEA approach is 

based on experimental PIM and consists of estimating the 

energies and the power injected by a FEM. 

 Let us consider a structural configuration composed of n 

subsystems, of which a Finite Element Model has been 

realized. The conditions mentioned in paragraph II, in order 

to be a proper SEA model, are assumed to be satisfied. By 

using the reciprocity relation: 

ijni = jin j              (3) 

 The matrix system defined in Eq. (2) can be rewritten: 

*
1tot j1 n1

ij jtot nj

1n ... ntot

*

E1

Ej

En

=

P1

Pj

Pn

         (4) 

 The numerical PIM consists in numerically exciting the 

subsystems one after each others using predefined forces. 

The total energies of the subsystems, the time and space 

averaged power injected are estimated by forced response 

analysis using a FEM. 

 First, only subsystem 1 is excited. The injected power is 

denoted P1 . By normalizing the total energies by the injected 

power, the matrix system defined in Eq. (4) becomes: 

*
1tot j1 n1

ij jtot nj

1n ... ntot

*

E11

Ej1

En1

=

1

0

0

         (5) 

where: 

Ei1 =
Ei1

P1

 

 The n-1 other subsystems are then excited one by one 

and the following matrix system is obtained: 

1i 21 ... n1

12 2i ... ...

... ... ki ...

1n ... ... ni

*

E11 E12 ... E1n

E21 E22 ... ...

... ... Ekk ...

En1 ... ... Enn

=
1

*

1 0 ... 0

0 1 ... ...

... ... ... ...

0 ... ... 1

        (6) 

With: 

Eij =
Eij

PJ

            (7) 

 The coupling loss factors can be obtained by inversing 

the matrix Eij : 

1i 21 ... n1

12 2i ... ...

... ... ki ...

1n ... ... ni

=
1

*

E11 E12 ... E1n

E21 E22 ... ...

... ... Ekk ...

En1 ... ... Enn

1

    (8) 

 The matrix system defined in Eq. (8) can be written in a 

simplified form as follows: 

[ ] =
1

* E
1

           (9) 

 The inversion of the total energies matrix can involve 

numerical errors due to ill-conditioning of the matrix and 

may lead to non-physical results. According to the main 

hypothesis of a proper SEA model, no indirect coupling 

exists. As a consequence, the CLF between two connected 

subsystems can be determined by extracting the two 

subsystems from the complete model and by exciting these 

two subsystems one by one. The application of the Lalor 

development [11] consists in solving two separate systems 

for the DLF and the CLF. The CLF can be written as: 

ij =
1 En

ii

En
ji

En
ij

En
jj

1

1

En
jj

        (10) 

 In the case of weak coupling, ie: 

 
Eij

n E jj
n

  

 Eq. (10) can be simplified as follows: 

ij =
1 Eji

n

,s

Eii
n

,s
. Ejj

n

,s

        (11) 

 Eqs. (10) and (11) use time and space averaged total 

energies of the subsystems divided by the mean power input: 

ij =
1 Eji

n

,s

Eii
n

,s
. Ejj

n

,s

        (12) 

 The vibrational velocities uk at any node k of the 

subsystem can be computed with the FEM method. Total 

averaged energy E
s
 of subsystems s in a frequency band 

is then obtained as follows: 

E
s

=
2 mk uk

2

k=1

N

         (13) 

 Eq. (13) is accurate in the high frequency domain. This 

equation is not acceptable in the mid frequency domain, but 

has been used as a first step to estimate the total energies, 

though the RADIOSS software can provide the kinetic and 

potential energies, and consequently, an accurate estimate of 

the total energies. 

4. THE SEA-LIKE METHOD 

 In the mid frequency domain, the conditions to get a 

proper SEA matrix are not satisfied for the following 
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reasons: indirect coupling between non connected structures 

can occur, and the subsystems damping have a strong 

influence on the CLF, according to the SEA assumptions. At 

high frequencies, the intrinsic structural damping has no 

significant influence on power flow between subsystems. In 

the high frequency domain, the intrinsic damping becomes 

low. On the contrary, in the mid frequency domain, the 

damping has a great role on energetic transfer between 

subsystems. Consequently, in the mid frequency range, the 

damping cannot be separated from the coupling factors, as it 

is in SEA equations. In references [12] and [13], the 

Energetic Influence Coefficient EIC method is presented. 

 The approach consists, as in SEA, in considering N 

isolated structures (subsystems) and to assemble them, in 

order to constitute the complete structure. The 

eigenfrequencies and modes shapes of the total system are 

calculated. Under some assumptions [12]: 

• The loads applied to subsystems j and l are 

uncorellated, if j and l are different, 

• The loads applied to each subsystem are 

deltacorrelated, 

• The space and time variables can be separated, 

it is shown that the column matrix of subsystems kinetic 

energies is equal to the product of two matrices: a column 

matrix, the terms of which are the EIC, and a matrix of 

power spectral densities of forces applied to subsystems. 

 The SEA-Like method is very close to the EIC method, 

but the kinetic energy is replaced by the total energy. 

 The SEA-like approach can be combined with FEM in 

the same way as presented before. Direct FEM computations 

in the time or frequency domain can provide inputs to SEA-

Like approach. In this case, all the subsystems are part of a 

Finite Element Model and the forced response of the whole 

system is computed with the FEM. 

 In the SEA-Like method, the subsystem total energies 

and input powers are related by: 

E[ ] = A[ ] P[ ]           (14) 

where the A matrix is composed of Energy Influence 

Coefficients (EIC), Aij . 

E1

...

En

=

A11 ... A1n

... ... ...

An1 ... Ann

P1

...

Pn

        (15) 

 By exciting numerically the subsystems one by one, the 

following matrix system is obtained: 

E11 E12 ... E1n

E21 E22 ... ...

... ... Ekk ...

En1 ... ... Enn

=

A11 A12 ... A1n

A21 A22 ... ...

... ... Aktot ...

An1 ... ... Ann

*

1 0 ... 0

0 1 ... ...

... ... ... ...

0 ... ... 1

    (16) 

 Consequently, the EIC Aij  can be computed: 

A11 A12 ... A1n

A21 A22 ... ...

... ... Aktot ...

An1 ... ... Ann

=

E11 E12 ... E1n

E21 E22 ... ...

... ... Ekk ...

En1 ... ... Enn

      (17) 

 At high frequencies, the following matrix relation has to 

be asymptotically satisfied: 

A11 A12 ... A1n

A21 A22 ... A2n

... ... Ajj ...

An1 ... ... Ann

=
1

1i 21 ... n1

12 2i ... ...

... ... ki ...

1n ... ... ni

1

  (18) 

 This equation is written: 

A[ ] =
1

*[ ]
1
          (19) 

 This approach has been performed using the classical 

modal analysis by C. R. Fredö [10], and B. Mace [5]. B. 

Mace has shown the influence of the modal overlap on the 

coupling terms and has pointed out the cases in which the 

indirect CLF need to be taken into account. It is important to 

note that, in the methodology developed in this paper, the 

SEA-Like (mid frequency predictions) subsystems and the 

SEA (high frequency prediction) subsystems are the same. 

5. LOADING OF THE STRUCTURAL FINITE 
ELEMENT MODEL 

 The main difficulty of the methodology lies in the 

loading of the structure. The question is to know how to 

excite the structural Finite Element Model to obtain accurate 

CLF and EIC for energetic methods of concern, such as SEA 

and SEA-Like respectively. It has been chosen to apply to 

the Finite Element Model ‘rain on the roof’ excitations, to 

estimate unknown quantities. The ‘rain on the roof’ loading 

consists in impulse forces randomly distributed both in time 

and space over the surfaces of the subsystems defined as 

follows in the time domain: 

F = fi (t ti ) (x xi )
i=

         (20) 

fi (t ti )  gives the time dependency of the force during the 

impact with ti  the peak time of the i -th impact, and xi  the 

location of the i -th impact. In the frequency domain, the 

‘rain on the roof’ excitation is represented by a white noise, 

with random relative phases, applied to nodes of the mesh. 

This loading is compatible with SEA deep assumptions: the 

forces applied to subsystems have to be steady, random and 

of constant spectral densities. Of course, ‘rain on the roof’ 

excitation is very far away from real excitations encountered 

during launch vehicles flights. The problem of taking into 

account real excitations, such as aero-acoustic excitations is 

under investigations [14, 15]. 

 This paper is here focused on the accurate application of 

‘rain on the roof’ excitation for needs of the energetic  
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methods of interest, SEA and SEA-Like, in the case of 

flexural loading. The number of ‘rain of the roof’ loads to be 

applied to the subsystems, and the distribution of the ‘rain of 

the roof’ loads on a subsystem in order to excite all modes of 

the subsystems are the key problems to solve. The number of 

'rain on the roof' forces required to excite all modes of the 

structures in the frequency band of concern, which is the 

main point of discussion, is not discussed a lot in the open 

literature. D. A. Bies [7], has written that a number of three 

loads per subsystem is sufficient to excite the modes. A more 

objective criterion, “Influence Circle” criterion [4], is 

proposed here for defining the number of excitations points. 

A. “Influence Circle” Method 

 The key point is to define a loading, which excites all 

flexural modes. As mentioned before, the loads are punctual, 

and spatially and temporally uncorrelated. The main question 

is the number of point loads to be applied to the structure to 

excite all flexural modes. The idea is to estimate the area of 

the structural zone influence by a point load. Let us consider 

a circular plate subject to a perpendicular point force. The 

solution of the flexural motion equation of this plate subject 

to a point force is a Bessel function, which has a pseudo-

period [16]. Let us define the spatial influence zone of this 

point load as the value of this pseudo period. The radius inf  

of the circle of influence, which depends on the frequency, is 

defined as follows [16]: 

inf =

s

D

          (21) 

 This formulation is valid at high frequencies where the 

surface of the plate are much higher the surface of the 

influence zone. In the case of circular plate of radius a, it 

leads: 
s

D

a2
. It follows: 

a2 s

D

 

 The idea is to determine the optimal number of loads 

nbloadsoptim  by dividing the subsystem total surface Splate  by 

the spatial influence zone, called “influence circle” surface: 

nbloadsoptim 2 inf = Splate         (22) 

 It is not sufficient to define the optimal number of point 

loads to excite all structural flexural modes. The point loads 

have to be uniformly distributed all over the surface of the 

subsystem to be excited. The distribution of the point loads 

over the surface is defined using the OLH method. 

B. OLH Loads Distribution 

 In order to achieve a set of of ‘rain on the roof’ 

excitations to the FEM model which excites all modes of the 

structure, we use an OLH (Optimal Latin Hypercube) 

scheme (Hyperstudy/Dss sampling module [17]). 

Classically, a “Monte Carlo” simulation is used to obtain a 

random distribution (N stochastic variables, ie coordinates) 

of the samples which are chosen from their own distribution 

independently from each other. This method is not fully 

satisfactory and does not provide a coverage of all excitation 

modes. The main drawback [18], is that samples may be 

unevenly distributed, very close to each other in one region 

and not enough density elsewhere. 

 The purpose of LH is to divide space into regions of 

equal probability (squares if the number of variable is 2, 

cubes if 3) depending on the desired number of samples. The 

LH algorithm makes sure that all regions have at least one 

sample. The OLH method adds an algorithm that allows, by 

measuring distances, an optimal repartition among a number 

of LH distributions, thus ensuring that not only the coverage 

is evenly distributed, but that it is also optimal in the 

“geographic” sample positions selected. 

 The definition of an OLH distribution is a two steps 

process. The first one consists in defining p stochastic 

variables (with given distributions) as inputs to characterize 

the loaded subsystem surface geometry (lengths, or radius 

for instance). Once the OLH computation is done, the output 

leads to N excitations locations, where N is the number of 

samples. Clustered samples situation is avoided using 

descriptive sampling, which consists of setting the grid. Each 

square (if p = 2) has equal probability. Final point 

coordinates are the centers of these areas. Therefore the 

problem becomes discrete and will be solved using 

optimized OLH. Calculation of OLH is only dependant on 

the number of samples (N) and the number of variables (p): 

Considering points Xi{ }i=1

N
 with integer coordinates in the 

interval 1, ..., N[ ]  in p space dimensions. The coordinates of 

the points can be arranged in the following L-matrix: 

 

L =

X1

XN

=

x11 x1p

xN1 xNP

        (23) 

 The points constitute a LH if each column in L is a 

permutation of 1, ..., N{ } . For OLH, two criteria can be used 

to describe the optimal repartition: 

 The first is the minimum distance between points: 

d L( ) = min
1 i, j N ,i j

Xi X j          (24) 

where ||.|| represents the Euclidean norm of a vector. 

Between two samples L1 and L2, the highest minimum 

distance is kept (if d L1( ) > d L2( )  then L1 is better than 

L2). 

 The second is the total number of times a minimum 

distance occurs is taken into account, denoted n(L), Between 

two samples L1 and L2 which have the same minimum 

distance, L1 is considered better if n L1( ) < n L2( ) . 

 The process to generate a random LH is as following. 

The first column of the L-matrix is chosen to 1, ..., N{ } . 

Then, to generate each of the remaining columns, the process 

is as follows: the new element is chosen randomly among 

1, ..., N{ } , same for next element, but this one is checked to 

be not the same as the previous elements in the same 
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column. If this one is different, it is used; otherwise a new 

number is taken among 1, ..., N{ }  and again compared with 

previous ones. To illustrate on a p=2 (2 dimensions) example 

with N=4 samples. The grid is set by dividing both axis in 

four equal probability zones. A sixteen cells grid is obtained. 

The L-matrix first column is completed as following: 

 

L =

1

2

3

4

…

…

…

…

          (25) 

 On the second column, the element to be randomly 

chosen can be 1, 2, 3 or 4, the next one is also randomly 

picked among 1, 2, 3 and 4, but will be kept only if different 

from the previous elements of the same column. In the end, 

the L matrix is completed, for example as below: 

L =

1

2

3

4

3

2

4

1

          (26) 

 Here is a random LH sampling. These coordinates are 

mapped using the real variables dimensions and the type of 

random distribution to obtain the real coordinates. For OLH, 

a step for distance comparisons is added before the mapping 

step. Figs. (1-3) compare the three distributions with hundred 

samples each. The first chart shows a Monte Carlo 

distribution, the middle one stands for a LH and the last for 

OLH. This last one is the best solution to obtain an optimal 

stochastic repartition for “rain on the roof” excitation 

modeling. 

 

Fig. (1). Monte Carlo stochastic distributions of a 100 points 
sample for 2 variables. 

 

Fig. (2). LH stochastic distributions of a 100 points sample for 2 
variables. 

 

Fig. (3). OLH stochastic distributions of a 100 points sample for 2 
variables. 

6. APPLICATION TO ACADEMIC CASES 

 Two types of academic cases have been considered in 

this paper: a two plate case and a three plates case. 

6.1. Two Plates Case 

 The first step of the feasibility study of purely numerical 

PIM approach is performed on a simple case, for which the 

coupling loss factors CLF can be estimated by closed 

formulations. The example consists of two aluminum plates 

with the same thickness and coupled by a line junction, as 

shown in Fig. (4). 

 The total energy of a subsystem is assumed to be equal to 

two times the kinetic energy. This hypothesis is reasonable at 

high frequencies, frequency range where the PIM method 

works. 
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 The coupling between subsystems flexural modes of 

these two coupled plates is here investigated. The validity of 

the purely numerical PIM is investigated by comparing the 

results provided by the numerical PIM to closed formulation 

established by R. H. Lyon and E. Eichler [6], for the flexural 

coupling loss factor between plates perpendicularly 

connected. In [6], the Coupling Loss Factor is obtained using 

a waves approach. It is obtained analytically by considering 

the subsystems as semi-infinite. The vibrational field is 

assumed to be diffuse in the subsystems, and it is represented 

by incoherent plane waves. The Coupling Loss Factor is then 

obtained by estimating the transmission coefficient between 

subsystems, which is averaged over all angles of incident 

plane wave [6, 7]. In the case of two coupled plates, the 

analytical CLF is expressed as follows: 

 

Fig. (4). Academic case: « Two Plates » Finite Element Model. 

ij =
kbLij ij

Ai

          (27) 

 For two coupled plates manufactured in an identical 

material and having the same thickness, an analytical 

approach can provide the mean transmission coefficient [6]
:
 

ij =
1

3
.           (28) 

 The hypothesis of diffuse field implies that the 

subsystems have a sufficient number of resonant incoherent 

modes in the frequency band of interest. The dimensions of 

the plates are chosen in order to have a relatively large modal 

density over all third octave frequency bands of interest. The 

junction is 0.5 m long and the lengths of the plates are 

respectively 0.75 m and 1 m for the two subsystems. This 

Finite Element Model has more than 5 modes per frequency 

band for the two subsystems over the whole frequency range 

of interest: from 200 Hz to 2500 Hz, which allows the use of 

energetic methods. L. D. Pope et al. has written that 7 modes 

per one third octave bands is required to ensure a sufficient 

modal overlap [19, 20]. 5 modes is consequently the lower 

limit. 

 The mesh of the two plates has been defined using a 

classical wave length criterion. The Finite Element Model is 

realized in order to estimate the forced response of the 

structure for a frequency range from 100 Hz to 3500 Hz. The 

wave number criterion used here takes the form of 

lmesh / 5 , which is a reasonable criterion in the case of 

steady state excitations. This criterion leads, for our case of 

interest, to a number of 8575 quadrilateral shell elements, 

(Fig. 4). Because of the difficulty to realize simply supported 

boundary conditions in an experimental study, free-free 

boundary conditions have been chosen in order to allow 

comparison with experimental data. 

 The forced response of the complete structure can be 

estimated by different approaches, the classical modal 

approach, widely used in the low frequency domain for 

industrial problems, the direct frequency domain resolution, 

which uses a direct inversion of the dynamic stiffness matrix 

in the frequency domain, the time domain resolution, using 

explicit analysis. The modal approach is faster, but leads to 

large errors on the structural natural frequencies in the mid 

and high frequency domains. 

 Explicit codes allow computations at higher frequencies 

than implicit codes with a reasonable computation time, we 

have chosen to perform calculations in the time domain 

using the RADIOSS software of Altair Development France. 

Calculations in the time domain using the RADIOSS 

software have already been carried out [14]. We have chosen 

here to use the numerical PIM validation by performing 

computations in the time domain, using an explicit solver 

(RADIOSS software). FEM computations provide, among 

all possible results, velocities at nodes. According to [15], 

the normalized total energies of subsystems are computed, 

and the Lalor formula described in Eq. (11) is used to obtain 

CLF values to be used in SEA analysis. 

 In the hybrid FEM/SEA approach, the usual high 

frequency SEA decomposition into subsystems is kept. The 

CLF are quantified, to be used in the SEA analysis. The 

expression of the power exchanged between subsystems is 

obtained in classical SEA under several hypotheses 

regarding the nature of the excitation, which have to be 

random and broadband. 

6.1.1. Influence of the Number of Loads and their 

Distribution 

 In this feasibility study, the excitations are ‘rain on the 

roof’ excitations, defined using the “Influence Circle” 

method and the OLH distribution. To illustrate the results 

improvements using these methods, two analyses have been 

made, the analysis of the influence of the increasing number 

of the excitation loads up to the optimal number provided by 

the “Influence Circle” method, and the influence of the loads 

random distribution, by comparing results provided by OLH 

and by Monte-Carlo methods. For the “two plates” model, 

the optimal number of loads per plate has been calculated 
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and is 19 on the first plate and 25 on the second plate for the 

computation of the highest frequency. 

 The computation cases will be noted as follows: Model # 

a (x, y), where a is an indice for the computation case, x 

denotes the number of point loads applied to plate 1, and y, 

the number of point loads applied to plate 2. Consequently, 

this computation case is denoted Model # 4 (19; 25). Five 

other couples of number of loads have been investigated, 

from (5; 7) loads up to (38; 50). For each of them, a 

distribution of random loads was obtained with the OLH 

algorithm. Fig. (5) displays the six Finite Element Models 

with the loads repartitions (arrows). Fig. (6) displays CLF 

values obtained by numerical PIM computation between two 

plates against third octave frequency bands; from 100 Hz to 

3200 Hz. Closed formulation values of CLF, obtained using 

Eq. (19), are plotted in bold red. Focusing on mid-high 

frequency results (Fig. 6), from third octave band of central 

frequency 250Hz, it becomes that, when models are 

sufficiently excited, i.e. from (19; 25) loads, a significant 

improvement of correlation occurs between numerical and 

closed formulation of CLF values. Fig. (7) shows the loads 

distribution over “Two Plates” model resulting from Monte-

Carlo and OLH computations (number of loads are the same 

for each model). Fig. (8) displays numerical PIM results of 

CLF values between two plates, depending on loads 

distribution over the surface of the plates, compared to CLF 

closed formulation values. Green curve is for CLF obtained 

with loads distribution using a Monte-Carlo scheme, brown 

curve obtained with OLH scheme, bold red line is for closed 

formulation values. These results show a better agreement 

with analytical values, when OLH scheme is used to define 

the point loads distribution. 

6.1.2. General Interpretations 

 Fig. (9) shows a satisfactory agreement between the 

numerical PIM and closed formulation in the high frequency 

domain (“model#4” is the computation case using optimal 

number and distribution of loads provided by the “Influence 

Circle” method and the OLH scheme). The error is less than 4 

dB from 200 Hz up to 3500 Hz. Below the third octave band 

of central frequency 250 Hz, significant discrepancies between 

the computed values and the analytical results are observed. In 

those frequency bands, each plate has a low number of modes 

and the modal overlap becomes too low to have a proper SEA 

model. Furthermore, the hypothesis of diffuse field for the 

application of CLF analytical formulation described at Eq. 

(27) is not valid. The comparison between the two approaches 

can not, consequently, lead to conclusions on the validity of 

the hybrid FEM/SEA approach. In the mid-frequency range 

(100 Hz to 200 Hz), PIM method, which is based on SEA, is 

not available, but SEA-Like approach provides accurate 

results. 
 

 

Fig. (5). Plates academic case. Computation cases with different point loads numbers. 
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Fig. (6). Plates academic case. Computed CLF values versus the point loads numbers. 

 

Fig. (7). Two plates academic case. Distribution of 30 point loads per subsystem using Monte Carlo and OLH distribution schemes. 

 

Fig. (8). Two plates academic case. CLF values depending on point loads distribution. 
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6.2. Three Plates Case 

 A three plates configuration has been investigated as a 

further step toward industrial cases. The reason why the 

three plates case is investigated is that this case allows the 

analysis of the indirect coupling. 

 This model (Fig. 10) is identical to the two plates model, 

but another (0.5 m x 1 m) plate has been added, 

symmetrically, to the 0.5 m x 0.75 m) plate. Excitations are 

applied to the plates, as explained before, by using the 

Influence Circle criterion and OLH process. 

 

Fig. (10). View of the « Three Plates » Finite Element Model. 

 The Finite Element Model computations provide, among 

all results, the velocities of each node of the model. Energy 

and input power are computed to raise Eij  matrix, 

which is inversed to obtain CLF matrix as in Eq. (8). Fig. 

(11) shows CLF values (between subsystems “1” and “2”) 

obtained in the case of “Two Plates” and “Three Plates” 

models versus analytical plates CLF formulation. The results 

are quite different between CLF values computed for the 

cases of “Two Plates” and “Three Plates” models, whereas 

analytical formulation, for same input data (two plates are 

coupled), provides, of course, the same results. 

 At high frequencies, these discrepancies are small and 

acceptable, but are more important in the mid-frequency 

range. Of course, due to the third plate presence, global 

modes indirect coupling effects occur. 

6.3. Validation of SEA-Like Method 

 To validate SEA-Like results in the mid frequency range, 

we know from Eq. (18) that EIC matrix must asymptotically 

converge to the inverse CLF matrix divided by the radian 

frequency according to Eq. (19). As a validation criterion, to 

point out this convergence, the CLF matrix is obtained using 

PIM method and Lalor Eq. (10). Diagonal terms of CLF 

matrix are then classically found with the following relation: 

ji = j + ji
i j

         (29) 

and: 

j =
1 1

Ejj

          (30) 

 Four representative curves are displayed on Figs. (12-15) 

comparing EIC and terms of right side of Eq. (19) obtained 

by the numerical PIM. The plotted curves have the same 

dependency with frequency, but do not tend to each other for 

high frequencies, remaining parallel. The computations have 

been performed not at frequencies high enough so that the 

convergence can be observed. 

 We can say however that the convergence criterion is 

satisfied. We may note as a result that indirect coupling is 

negligible in this model, therefore SEA-Like and numerical 

PIM provide very close results. 

7. APPLICATION TO AN INDUSTRIAL CASE 

7.1. Vehicle Equipment Bay (VEB) Finite Element Model 

 In order to perform a industrial feasibility study of SEA-

Like method, the SEA-Like approach has been applied to the 

Vehicle Equipment Bay (VEB) of the ARIANE 5 Launch 

Vehicle. The ARIANE 5 VEB is divided into five 

subsystems, as shown in Fig. (16). Excitation forces have  

 

 

Fig. (9). Two plates academic case. CLF values comparison between analytical formulation and numerical PIM results. 
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Fig. (11). Three Plates and Two Plates Academic Case. Comparison between CLF obtained from closed formulation and CLF using 
numerical PIM for « Two Plates » and « Three Plates » models. 

 

Fig. (12). Energy Influence Coefficients from SEA-Like versus Energy coefficients computed with numerical PIM according to the equation 
19: results of plate 1 when plate 1 is loaded. 

 

Fig. (13). Energy Influence Coefficients from SEA-Like versus Energy coefficients computed with numerical PIM according to the equation 
19: results of plate 2 when plate 1 is loaded. 
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been applied to 30 nodes per subsystem. In this approach, 

structural subsystems are structural parts between physical 

boundary conditions. Making this, all structural modes are 

taken into account in the computations. Dividing a structural 

part between physical boundary conditions into a greater 

number of subsystems would lead to a truncation of the 

modal basis: the global modes would be lost. 

 The loads are “rain on the roof” loads, spatially and 

temporally non-correlated. In order to obtain the locations, 

where the “rain on the roof” loads have to be applied to each 

 

Fig. (14). Energy Influence Coefficients from SEA-Like versus Energy coefficients computed with numerical PIM according to the equation 
19: results of plate 3 when plate 1 is loaded. 

 

Fig. (15). Energy Influence Coefficients from SEA-Like versus Energy coefficients computed with numerical PIM according to the equation 
19: results of plate 1 when plate 2 is loaded. 

 

Fig. (16). On the left: ARIANE 5 VEB (industrial case) original Finite Element Model. On the right: ARIANE 5 VEB model decomposition 
into subsystems (PARTS) 
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subsystem, as well as the computation duration, we have 

used an OLH distribution and applied the “Influence Circle” 

method, which ensure an optimized distribution of the 

excitation loads all over the subsystems surfaces, Fig. (17), 

and a sufficient number of point loads, respectively. Such 

load distribution is the key point to excite all flexural modes 

of the subsystems. The applied loads are Dirac excitations, 

as shown in Fig. (18). The computations are carried out in 

the time domain by using an explicit code. The duration of 

each computation is 51.2 ms and the output samples from the 

explicit code are stored every 0.1 ms. This allows a correct 

coverage of the bandwidth of industrial interest, up to 5000 

Hz. For each computation run, a different subsystem is 

loaded in order to compute EIC coefficients. For ARIANE 5 

VEB, 5 computation runs have then been performed. 

7.2. CLF and EIC Extraction Process 

 The computations are carried out according the following 

two steps: first a PIM estimate of the CLF between the 

structural subsystems is performed, and then a SEA-Like 

estimate of the EIC between the structural subsystems is 

conducted. After each computation run, a Fast Fourier 

Transform (FFT) of the velocities of all the nodes of each 

subsystem is carried out. The vibrational energies and 

injected powers of each subsystem are then calculated using 

respectively the following relation: 

E = M < v2
>           (31) 

where M is total mass of the subsystem and < v2
>  is the 

mean of the squared nodal velocities. The injected power is 

computed from nodal velocities of nodes and from the 

injected force expressed in the frequency domain, according 

to the following equation: 

Pinj = Re(FV )           (32) 

 For each run, once energies and injected powers are 

computed, they are spatially averaged over each part or 

subsystem of the structural model. They are then averaged 

per each one third octave band. After this, energies are 

normalized, dividing them by the injected power. Performing 

5 computations run (five subsystems for the ARIANE 5 

VEB case), a 5 by 5 matrix of total energies Eij  of Eq. 

(17) is consequently obtained. PIM analysis is used to extract 

the CLF using Eq. (8). In the SEA-Like analysis, the EIC 

matrix from Eq. (17) is directly obtained from normalized 

total energies matrix. To check the validity of this matrix, it 

is verified that the EIC converge to the energy coefficients 

from PIM, according Eq. (18) and Eq. (19). The CLF values 

are those obtained using PIM and Lalor Eq. (11). 

7.3. Industrial Case VEB 5 Subsystems Model 

 The CLF values between directly coupled subsystems are 

plotted on Fig. (19). Those values are compared to the values 

of the CLF obtained using the analytical formulation of Eq. 

(27) for perpendicular plates coupled subsystems, that have 

the same geometrical (surface) and material (mass, Young 

Modulus) properties than the Finite Element Model 

subsystems. So, the behavior of the model, composed of 

truncated cones is assumed to be close to the behavior of 

plates. It is a reasonable hypothesis at very high frequencies, 

beyond the ring frequencies. Consequently, at high 

 

Fig. (17). Industrial Case. Point Loads Distribution on subsystem #2 of the ARIANE 5 VEB Finite Element Model. 
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frequencies, computed CLF values should converge to 

closed formulation values. 

 Looking at Fig. (19), the expected convergence between 

closed formulation and numerical curves at high frequencies 

does not occur in the case of coupling between subsystems 1 

and 2. This is due to the fact that the coupling between a 

conical and a cylindrical shell is different from the coupling 

between two perpendicularly coupled plates. But, a tendency 

is observed. 

7.4. Industrial Case VEB 3 Subsystems Model 

 CLF values between each directly coupled subsystem are 

plotted on Figs. (20, 21). The convergence of the CLF values 

obtained by analytical formulation and by numerical PIM 

can be observed at high frequencies. At mid and lower 

frequencies, the CLF obtained using the numerical PIM can 

be considered as more realistic than the analytical CLF 

because the Finite Element Model can take into account the 

real geometry and junctions. The use of SEA-Like is, of 

course, especially recommended to obtain accurate results in 

those frequency regimes. 

8. CONCLUSIONS 

 This study has demonstrated the feasibility of an 

approach based on FE computations using explicit codes, 

combined with energy-based modeling, SEA-Like method 

and numerical method, to improve the estimate of structure-

borne transmissions in mid and high frequency range. It has 

been shown that the use of OLH method and influence circle 

 

Fig. (18). Definition of point loads in the time domain (on top) and in the frequency domain (on bottom). 

 

Fig. (19). Industrial Case: ARIANE 5 VEB. Comparison of CLF between subsystems 1 and 2 (directly connected) provided by numerical 
PIM and by closed formulation. 
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criterion allow the estimate of CLF and EIC with accuracy. 

This methodology has successfully been applied to an 

academic (two and three coupled plates) and to industrial 

cases (ARIANE 5 VEB). The complete process required for 

computing CLF and EIC has been industrialized. 

Computations times are reasonable (about five hours per 

computation of CLF and IEC). Further developments based 

on transient energy formulations [21-23] will be considered 

in order to address the mid-frequency range for further types 

of excitations in the mid-frequency range. 

Table 1. Rigidity of the Subsystems 

 

Subsystem Flexure Rigidity (GPa.mm
3
) 

1 – « DUMMY CU CASA » 424,94 

2 – « laminate CASA » 295,42 

3 – « EPS CONE skins » 12,00 

4 – « VEB skins » 23,41 

5 – « upper cylinder skin » 13,38 
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NOMENCLATURE 

Ai  = Area of subsystem i (m ) 

Aij  = Term of Energy Influence Coefficient (EIC)  

   matrix, raw i and column j (s) 

CLF = Coupling Loss Factor 

D  = Plate flexural rigidity (Nm ) 

DLF = Dissipation Loss Factor 

Ei = Total energy of subsystem i (J) 

EIC = Energetic Influence Coefficient EIC 

E
s
 = Averaged total energy space (J) 

Eij  = Term of space and frequency averaged  

   energy matrix, raw i and column j (J) 

EIC = Energy Influence Coefficients 

F  = Applied force (N) 

FEM = Finite Element Method 

kb  = Flexural wave number (m
-1

) 

LH = Latin Hypercube 

 

Fig. (20). Industrial Case: Reduced ARIANE 5 VEB (three subsystems). Comparison of CLF between subsystems 3 and 4 (directly 
connected) provided by numerical PIM and by closed formulation. 

 

Fig. (21). Industrial Case: Reduced ARIANE 5 VEB (three subsystems). Comparison of CLF between subsystems 4 and 5 (directly 
connected) provided by numerical PIM and by closed formulation. 
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Lij  = Length of coupling line between subsystems  

   i and j (m) 

lmesh  = Finite Element Model mesh average  

   distance between 2 nodes of one element (m) 

M  = Total mass of target subsystem (kg) 

km  = Mass associate d with node k (kg) 

N  = Number of nodes of target subsystem, or  

   number of samples 

ni  = Modal density of subsystem i (number of  

   modes in specified frequency band) 

nbloadsoptim  = Optimal number of loads 

OLH = Optimised Latin Hypercube 

Pi,inj  = Power input of subsystem i (W) 

p  = Number of sampling variables 

PIM = Power Injection Method 

Re = Real part of a complex number 

SEA = Statistical Energy Analysis 

Splate  = Surface of the plate (m ) 

ti  = Peak time of the i th impact (s) 

uk  = Velocity of node k  (m/s ) 

< v2
>  = Space averaged nodal velocity (m/s ) 

V  = Complex conjugate of averaged nodal  

   velocity (m/s ) 

 = Dirac function 

ii  = Dissipation Loss Factor (DLF) of subsystem i  

ij  = Coupling Loss Factor (CLF) between  

   subsystems i  and j , i j  

itot  = Total coupling loss factor of subsystem i  

 = Flexural wavelength (m) 

inf  = Influence circle radius (m) 

s  = Plate surfacic mass (kg) 

ij  = Averaged transmission coefficient between  

   subsystems i  and j  

 = Angular frequency (rad/s) 
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