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Abstract: This review summarizes current knowledge about the neurobiological components underlying the extinction of 

drug-associated memories and how they may contribute to the treatment of drug addiction. Evidence suggests that 

extinction learning is not the forgetting, or unlearning, of the associations between external stimuli and drug effects, but 

that new reinforcer expectancies are necessary for extinction of drug-seeking behavior to take place. Several theories 

suggest that addiction is a disorder of learning and memory, and recent evidence indicates that the brain circuits, 

neurotransmitters, and signal transduction mechanisms that underlie drug addiction are similar to those that mediate 

learning and memory processes. According to these theories, drug addiction results from repeated drug use and the 

formation of lasting associations between a drug’s effects, withdrawal symptoms, and the environmental cues and 

contexts within which they are experienced. Unfortunately, standard behavioral modification techniques, such as cue 

exposure therapy, have shown only moderate efficacy in reducing and/or extinguishing the salience of drug-associated 

cues and contexts. Therefore, a greater understanding of the neurobiological mechanisms involved in the extinction of 

drug-related memories could provide novel therapeutic interventions for the treatment of drug addiction. 
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INTRODUCTION 

 Drug addiction is a disorder of the nervous system 
marked by a transition from intermittent drug use to 
compulsive, uncontrolled drug intake and repeated attempts 
at abstinence and relapse. It is now apparent that the brain 
circuits, neurotransmitters, and signal transduction mecha-
nisms that underlie drug addiction have considerable overlap 
with those mediating normal learning and memory processes 
[1-4]. Therefore, drug addiction has been theorized to be a 
disorder of learning and memory [1-11]. Many of these 
theories suggest that drug addiction results from instrumental 
and associative overlearning whereby drugs and environ-
mental cues and contexts become hypersalient leading to 
drug craving and relapse [12-14]. As a result, long-term drug 
use leads to the formation of compulsive, habitual, and 
ritualistic drug-taking behaviors 

 Attempts to extinguish the salience of drug conditioning 
by behavioral modification techniques such as cue exposure 
therapy have only shown limited success [12, 15-19]. 
Additionally, most current behavioral and pharmacological 
treatments for addiction center on eliminating withdrawal 
symptoms or reducing drug intake with little focus on the 
process of extinction. A greater understanding of the 
neurobiological mechanisms involved in the extinction of 
drug-related memories and drug-seeking behaviors could 
provide novel therapeutic interventions for the treatment of 
drug addiction. 
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 The majority of studies examining the neural 
mechanisms of extinction have focused on either appetitive 
conditioning (e.g., extinction of consummatory behavior 
related to natural rewards such as food or sucrose) or 
aversive conditioning (e.g., extinction of fear-related 
behaviors following pairing of environmental stimuli with 
electric footshock). However, relatively few studies have 
attempted to identify the neural mechanisms that underlie the 
extinction of addiction-related behaviors such as compulsive 
drug-seeking and conditioned associations between drugs of 
abuse and environmental stimuli. 

WHAT IS EXTINCTION? 

 Extinction is defined as the gradual elimination of a 
learned response that occurs when the response is no longer 
reinforced or the unconditional stimulus (US) is no longer 
presented in conjunction with the conditioned stimulus (CS). 
Thus, after the repeated pairing of a discrete CS (e.g., light) 
with US (e.g., shock) the CS will elicit specific behaviors 
because the CS now predicts the availability of the US. With 
repeated presentations of the light without the shock, the 
conditioned response dissipates, or is extinguished, since the 
light no longer “predicts” that the shock is imminent. Within 
the context of drug addiction, a drug (US) is often 
administered in a particular context (CS). In the same 
manner that a light can be conditioned to elicit behaviors 
related to the presence of a shock, cues conditioned to drug 
availability can elicit behaviors that induce drug use (e.g., 
craving). The process of extinction differs from that of 
reconsolidation, which is the process of restabilizing a 
memory after it has been reactivated through stimulus re-
exposure [20, 21]. While yet to be shown experimentally, it 
is believed that reconsolidation would enhance a specific 
association between a drug and environmental stimulus. 
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Alternatively, disruption of this process causes amnesia [22, 
23]. This knowledge has led to a resurgence of interest in the 
extinction process as a potential treatment strategy for drug 
addiction. Extinction, in theory, would serve to create new 
associations that would replace the initial learning of the 
association between a drug’s subjective effects, environ-
mental cues, and persistent maladaptive memories [24]. 

EVIDENCE THAT EXTINCTION IS NEW LEARNING 

 For many years following landmark studies by Ivan 
Pavlov and B.F. Skinner in the fields of associative and 
operant learning and memory, it was assumed that the 
extinction of classically- and operantly-conditioned 
behaviors was a process of “forgetting” or “unlearning” of 
the relationships between external stimuli and behavioral 
responses. However, over the last two decades there has been 
a tremendous amount of evidence that the extinction process 
is a form of new and active learning that challenges the 
previously held belief that extinction is simply forgetting or 
weakening of learned associations. This is evidenced by the 
fact that: 

1. Drug-seeking behavior can be reinstated by several 
stimuli including a priming injection of the drug, 
presentation of drug-associated environmental 
stimuli, or exposure to an acute stressor without the 
need for additional behavioral training in a 
phenomenon known as reinstatement [25-40]. The 
fact that no added behavioral training is necessary 
suggests that a memory trace of the original 
association remains intact. Therefore, extinction is 
likely to incorporate the formation of new stimulus-
reward associations. 

2. Drug-seeking behavior can spontaneously resume 
following extensive extinction training [15, 41-44] in 
a process known as spontaneous recovery. This 
behavior suggests that the neural processes 
underlying drug self-administration remain intact. 

3. Extinction of conditioned behaviors is context 
specific [45-51]. Take, for example, the renewal 
effect or contextual reinstatement. This is the 
phenomenon by which animals are trained to self-
administer a drug in one environment and then that 
behavior is extinguished in a different environment. If 
the animal is placed back into the environment where 
the contingencies were originally established, drug-
seeking behavior will resume [52]. 

4. The re-training of animals to self-administer a drug 
following extinction takes significantly less time 
compared to the initial training process [53, 54]. This 
process is known as reacquisition and suggests that 
the original learning during training of the self-
administration procedure generally remains unaltered. 

5. Studies utilizing fear conditioning show that extinction 
training induces cellular neuroadaptations that underlie 
normal learning and memory, such as long-term 
potentiation (LTP) and de novo protein synthesis [55, 
56]. This evidence reveals that the neural mechanisms 
mediating learning and memory may also contribute to 
extinction training and that extinction is indeed a 
process of new and active learning. 

 These lines of evidence suggest that extinction learning is 
not the “forgetting” of previously learned contingencies 
between environmental stimuli and drug availability. Instead, 
it appears that the original associative and instrumental 
learning that takes place during the initial stages of addiction 
remain intact, and for extinction of drug-seeking behavior to 
take place, there must be a formation of new reinforcer 
expectancies [47]. 

RODENT MODELS OF DRUG ADDICTION AND 
EXTINCTION LEARNING 

 Several animal models, primarily using rodents, have 
been developed to study the various aspects of drug 
addiction [25, 26]. Those procedures that are most 
appropriate for the study of extinction learning include the 
intravenous drug self administration (IVSA), conditioned 
place preference (CPP), and cue- and context-induced 
reinstatement of drug-seeking behavior paradigms. 

Conditioned Place Preference (CPP) 

 In the CPP paradigm, the animal learns to associate the 
subjective and physiological effects of a passively 
administered drug with the environmental context in which it 
is received. A typical CPP apparatus consists of two separate 
compartments. Each compartment has unique tactile and 
visual characteristics and together, they are connected by a 
neutral “start” box. Both compartments are typically 
equipped with photobeams that detect the presence and 
measure the locomotor activity of the animal. During the 
initial phase of the experiment, the animal is allowed access 
to both compartments for a set amount of time in order to 
determine preference (measured by total time spent in each 
compartment) between the two environments. Next, the 
animal is injected with a neutral substance (e.g., saline) and 
is confined to the initial preferred environment. On the 
following day, the animal is injected with the conditioning 
drug and confined to the initial non-preferred environment. 
This process is repeated for a set number of days (typically 
4-6 times) and each animal receives equal pairings of the 
saline/context and drug/context. During the conditioning 
trials, the animal learns to associate the subjective effects of 
the drug with the unique physical characteristics of that 
compartment. In the final phase of the experiment, the 
animal is again allowed free access (in a drug-free state) to 
both compartments to determine the post-conditioning 
preference for each environment. If the animal now shows a 
significant increase in time spent in the drug-paired 
environment (the one that was initially non-preferred) then a 
CPP has been established and provides indirect evidence of 
the reinforcing effects of the drug. Multiple variations of the 
CPP procedure have been implemented (e.g., nonbiased 
design that results in no initial preference to either 
environment) and conditioned preferences have been 
established for nearly all drugs of abuse [57]. 

 Similar to the IVSA paradigm, the CPP paradigm can be 
used to assess extinction learning. To accomplish this, the 
drug-paired side can be either repeatedly paired with saline 
or the established CPP can be allowed to dissipate over a 
period of time by repeatedly testing the animal’s preference 
without further conditioning trials. Extinction of a CPP is 
typically measured in number of days required to reach 
extinction criteria and, as in the IVSA paradigm, a treatment 
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that reduces the number of sessions required to reach this 
criteria is thought to reflect either enhanced extinction 
learning or disruption of drug/context memory availability. 

Intravenous Drug Self-Administration (IVSA) 

 In the rodent IVSA paradigm, animals are trained to 
perform some type of operant task (usually a bar press or 
nose poke) in order to receive an intravenous infusion of, or 
access to, a drug. During the acquisition phase, animals are 
trained to perform the operant task with a non-drug 
reinforcer, such as food. Each reinforcer delivery is 
accompanied by the presentation of a visual and/or auditory 
stimulus (e.g. light or tone) that allows for the acquisition of 
a reinforcer/cue stimulus association. After the task has been 
successfully acquired, the non-drug reinforcer is replaced 
with an abused drug (such as cocaine, heroin, 
methamphetamine, nicotine, alcohol, etc.). During the 
maintenance phase, self-administration sessions are 
continued for a pre-defined number of sessions until 
responding for the drug becomes stable. 

 In the extinction phase, each previously drug-reinforced 
response results in either no programmed consequence or 
saline infusion. As extinction training continues, there is a 
gradual decrease in the number of responses that previously 
resulted in drug delivery; which is interpreted as the animal 
learning that the operant response no longer produces drug 
availability. An experimental treatment that decreases the 
number of tests required for predetermined extinction criteria 
is interpreted as either an enhancement of extinction learning 
or a disruption of drug/contextual stimulus memory 
availability. The previously reinforced operant response 
displayed during extinction training is referred to as drug-
seeking behavior because the response is not drug-
reinforced. 

Cue- and Context-Induced Reinstatement of Drug-
Seeking Behavior 

 The reinstatement model is a widely used animal model 
of relapse [25-27, 29, 32, 58, 59] in which animals are 
trained to perform an operant task in order to receive an 
infusion of a drug. Cue-induced reinstatement examines the 
strength of the reinforcer/cue stimulus association acquired 
during self-administration. Following the initial training and 
extinction training described in the IVSA paradigm above, 
the animal is returned to the experimental apparatus and, in a 
response-contingent or non-contingent manner, presented 
with the cue previously associated with each drug infusion. 
Here, the animal’s extinguished operant response is 
reinstated, although it does not actually result in the delivery 
of an infusion of the drug. This provides a tool for measuring 
the motivational salience of the cue, independent of the 
psychomotor effects of the drug. In a slightly different 
paradigm, context-induced or contextual reinstatement 
examines the associative strength of the physical 
environment in mediating drug-seeking behavior [52, 58, 60-
64]. Here, animals undergo extinction training in an 
experimental apparatus that is contextually unique from the 
apparatus where self-administration was acquired. This 
contextual change can involve modification of the floor, 
odor, and colors on the wall. Upon completion of extinction, 
the animal is returned to the original apparatus in which drug 
self-administration occurred. This reinstatement of context 

evokes an increased number of operant responses that 
previously resulted in the delivery of a drug as a result of the 
associative strength between the physical environment and 
drug. 

The Neurobiological Substrates of Extinction Learning 

 There is a significant overlap between the 
neuroanatomical circuits and neurochemical substrates that 
underlie learning and memory processes and those that 
mediate drug addiction. For instance, both learning and 
memory and drugs of abuse induce LTP and long-term 
depression (LTD) [4, 6, 65-68]. Unfortunately, most of what 
is known about the neural mechanisms of extinction learning 
was derived from studies that use aversive conditioning (e.g., 
footshock) or appetitive conditioning with natural rewards 
(e.g., food). The extinction of conditioned fear in both 
animals and humans [69-80] as well as a cocaine CPP [81-
83] can be facilitated by the cognitive enhancing drug D-4-
amino-3-isoxazolidone [D-cycloserine (DCS)], which is a 
partial agonist at the strychnine-insensitive glycine site of N-
methyl-D-aspartate (NMDA) receptors [84, 85]. Nic 
Dhonnchadha and colleagues recently found that DCS 
enhances the extinction learning process and inhibits 
reacquisition of drug self-administration in rats trained to 
self-administer cocaine [86]. However, while the neural 
mechanisms involved in the extinction of a drug memory 
may be similar, it would be naïve to assume that they are 
identical to those involved in conditioning to non-drug 
reinforcers. Therefore, this review summarizes what is 
currently known about the neurobiological components 
underlying the extinction of drug-associated memories and 
how they may contribute to the treatment of drug addiction. 

THE PREFRONTAL CORTEX 

Functional Role and Anatomical Connectivity 

 The prefrontal cortex (PFC) is a collection of regions in 
the dorsal forebrain made up of the medial prefrontal cortex 
(mPFC), orbitofrontal cortex (OFC), and anterior cingulate 
cortex [87]. The mPFC is comprised of multiple subregions 
including the dorsomedial PFC (dmPFC), [comprised mainly 
of the prelimbic cortex (PrLC)], and ventromedial PFC 
(vmPFC), [mainly made up of the infralimbic cortex (ILC)] 
while the OFC is divided into medial (mOFC) and lateral 
(lOFC) sections. The PFC is considered the executive center 
of the brain due to its involvement in a multiplicity of 
functions. These include goal-directed behaviors, impulsivity 
and response inhibition, reward expectancy, salience 
attribution, emotional learning, drive and motivation, 
decision making, selective attention [88-91], memory 
consolidation, which can be defined as the process of 
stabilizing, storing, and strengthening new memories [92], as 
well as memory recall, which can be defined as the 
reactivation and/or retrieval of a previously consolidated 
memory [93]. 

 The PFC is connected to a number of other brain regions 
including the brainstem, thalamus (which acts as an 
intermediary between the PFC and dorsal and ventral 
striatum), limbic system (including the amygdala and 
hippocampus), as well as other cortical regions [94-97]. The 
PFC interacts with other regions of the brain through a broad 
and diverse network of neurotransmitter systems [96] 
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including afferent dopaminergic projections from the ventral 
tegmental area (VTA) [98], glutamatergic projections from 
thalamus, hippocampus, and amygdala [91]; efferent 
transmission to VTA and nucleus accumbens (Acb) [96, 99], 
gamma-Aminobutyric acid (GABA) interneurons [100, 101]; 
serotonergic innervation from the median and dorsal raphe 
nuclei [102-104], noradranergic innervations from the locus 
coeruleus [105-107], and cholinergic innervation from 
nucleus basalis magnocellularis, diagonal band, and 
mesopontine laterodorsal nucleus [108-111]. Moreover, 
there are also various peptidergic systems present within the 
PFC including opioid peptides, cholecystokinin (CCK), 
neurotensin, neuropeptide Y (NPY), and corticotropin 
releasing factor (CRF) [112]. 

Role in Extinction Learning 

 There is extensive research implicating the PFC in the 
extinction of conditioned fear (see [113-115] for 
comprehensive reviews). Fear conditioning is a form of 
classical conditioning in which a particular neutral context 
(e.g., operant chamber) or neutral stimulus (e.g., light or 
tone) is paired with an aversive stimulus such as an electric 
footshock. After repeated pairings, presentation of the 
neutral stimulus elicits fear, which can be measured with 
galvanic skin response and/or freezing behavior (e.g., 
crouching time). 

 Evidence suggests that the PFC plays a critical role in the 
consolidation of extinction learning [116]. Lesions or 
temporary inactivation of the ILC and vmPFC inhibit 
extinction of conditioned fear [113, 115, 117-125], block 
retrieval of extinction learning [116], and result in behavioral 
perseveration in both rodents [120] and primates [88]. 
Inhibition of protein synthesis or mitogen-activated protein 
kinase (MAPK) activity [126-128], antagonism of NMDA 
receptors [129-130], as well as pharmacological inactivation 
of the ILC impairs extinction memory and the retrieval of a 
consolidated memory [122]. The vmPFC role in the 
consolidation of extinction learning might involve regulation 
of NMDA receptors that mediate molecular cascades 
necessary for normal learning and memory as recent animal 
research shows that inactivation of vmPFC NMDA receptors 
[via NMDA antagonist 3-(+-)2-carboxypiperazin-4yl propel-
1 phosphate (CPP)] inhibits extinction learning [129]. PFC 
stimulation enhances extinction of conditioned fear [131-
133] and neurons in the PFC have been shown to alter their 
transmission during extinction training [131]. Furthermore, 
human imaging studies show a positive correlation between 
activity levels in the vmPFC and extinction of conditioned 
behaviors [134, 135]. 

 Much less is known about the PFC’s role in 
extinguishing drug-related memories and drug-seeking 
behavior, but there appears to be considerable overlap 
between those mediating extinction of fear and drug 
conditioning (see [136] for a recent review). Peters and 
colleagues have shown that enhanced activity in the ILC 
inhibits drug-seeking and blocks reinstatement [137]. 
Pharmacological inactivation of the ILC facilitated the 
reinstatement of drug-seeking behavior whereas activation of 
the ILC with -amino-3-hydroxyl-5-methyl-4-isoxazole-
propionate (AMPA) blocked the reinstatement of cocaine-
seeking behavior. Furthermore, unilateral inactivation of the 

nucleus accumbens shell (AcbSh) had little effect on 
reinstatement of drug-seeking behavior whereas 
simultaneous inactivation of the AcbSh and ILC attenuated 
cocaine-seeking behavior. These results suggest a unique 
pathway between the ILC and AcbSh that regulates 
extinction of drug-seeking behavior [137]. 

 Available evidence suggests that long term drug exposure 
reduces functionality and activity in the PFC [138, 139] and 
that this reduction of activity and functionality inhibits 
impulse control and fosters the development and/or 
enhancement of incentive salience attributed to drug-related 
cues and memories [138, 140]. It’s worth noting that drug 
addicts exposed to drug-associated stimuli show increased 
activation within the OFC and ACC [141-149], possibly due 
to the inhibition of brain regions that are necessary for 
extinction learning [142]. One study in non-human primates 
supports the notion that the PFC regulates the transition from 
automatic to controlled behaviors [150], which could be 
helpful in understanding why a drug addict would struggle in 
attempting to self-regulate behaviors that are compulsive and 
uncontrolled. 

The Amygdala 

Functional Role and Anatomical Connectivity 

 The amygdaloid complex is a part of the limbic system 
located within the temporal lobe ventral to the caudate-
putamen (CPu) and globus pallidus (GP) and lateral to the 
piriform cortex (Pir). The amygdala is made up of four major 
subdivisions, including the basal subdivision [mainly 
comprised of the basolateral amygdala (BLA)], the medial 
subdivision (which includes the basomedial nucleus, 
intraamygdalar stria terminalis, intercalated nuclei of the 
amygdala, and medial amygdala), the lateral subdivision (or, 
lateral amygdala), and the central subdivision (central 
nucleus of the amygdala). The amygdala is involved with 
various learning and memory processes including the 
formation and consolidation of emotional memories [151, 
152]. More specifically, the BLA plays a crucial role in the 
synaptic plasticity associated with emotion-related behaviors 
and processing of emotionally significant stimuli [10, 134, 
152-157] as well as the formation of stimulus-reward 
associations [33, 158-164]. 

 Within the amygdala there is a broad and diverse network 
of neurotransmitter systems [165] including glutamatergic, 
cholinergic, GABAergic, dopaminergic, noradranergic, and 
serotonergic terminals and receptors. Neuropeptides such as 
enkephalins, CRF, NPY, and CCK and their receptors are 
also present in the amygdala. Afferent and efferent sources 
and targets include all sensory cortices, PFC, medial 
temporal lobe/hippocampus, hypothalamus, bed nucleus of 
the stria terminalis, brainstem, and striatum (involved only in 
efferent activity) [166]. The amygdala receives sensory input 
from all of the sensory cortices and contextual/episodic 
information from the hippocampus and these connections 
may mediate the formation of drug-related memories [167]. 
Efferent projections, possibly underlying activation of the 
neurocircuitry mediating reward/reinforcement, are sent 
from the amygdala to the VTA and Acb. Additional efferent 
signals are sent from the amygdala to the hippocampus, CPu, 
and frontal cortex possibly facilitating contextual learning 
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and memory, motor learning, and activation of the executive 
control center of the brain, respectively [158]. 

Role in Extinction Learning 

 The BLA plays an integral role in the formation of 
associations between drugs of abuse and environmental cues 
and contexts [168-172] as well as the relationship between 
negative affective states due to withdrawal and the 
environmental cues and contexts experienced in those 
aversive states [173]. Conditioned fear studies have provided 
evidence that inhibition of normal learning and memory 
components within the BLA such as NMDA receptor 
function [174, 175], MAPK [176], phosphatidylinositol 3-
kinase (PI-3K) [177], L-type calcium channels [178], 
calcineurin [177], and de novo protein synthesis [176, 178, 
179] attenuate the extinction of conditioned fear. Therefore, 
activity in the BLA appears to be necessary for drug-related 
cues and contexts to influence instrumental behavior [180, 
181] such as cue-induced reinstatement of cocaine-seeking 
behavior [182, 183]. Furthermore, both current and former 
drug addicts exposed to drug-related cues (e.g., pictures of 
needles or drugs) show increased activity in the amygdala 
[184, 185]. 

 Manipulation of various neurotransmitter systems in the 
BLA has been shown to affect the extinction of drug-seeking 
behavior. Facilitation of glutamatergic transmission 
enhances extinction of drug-seeking behavior [81, 83, 186-
188]. It is likely that additional neurotransmitter systems, 
including dopamine and acetylcholine, are also involved in 
the extinction of drug-cue/context associations [3, 189-191]. 
Several recent studies have shown that enhancement of 
cholinergic and glutamatergic transmission in the BLA 
facilitates the extinction of a drug-paired CPP [81, 190]. 
Schroeder and Packard have shown that the extinction of an 
amphetamine CPP involves cholinergic transmission in the 
BLA. In this study, direct infusions of the muscarinic 
acetylcholine receptor agonist oxotremorine facilitated the 
extinction of an amphetamine CPP [190]. In a previous 
study, these same investigators showed that local infusions 
of glucose also facilitated extinction of an amphetamine CPP 
[192]. Botreau and colleagues enhanced NMDA receptor 
function, which has been shown to mediate the consolidation 
of drug-related memories [184, 185, 193], with local 
infusions into the BLA of DCS to facilitate the extinction of 
a cocaine CPP [81]. In this study, control animals maintained 
a preference for the cocaine-paired chamber until their sixth 
extinction session whereas DCS treated animals extinguished 
a cocaine CPP after only three extinction sessions and 
maintained a neutral preference in extinction tests 3 and 14 
days later [81]. Taken together as a whole, these findings 
suggest that the amygdala is involved in the extinction of 
drug-cue associations [81, 189, 190, 192]. 

THE HIPPOCAMPUS 

Functional Role and Anatomical Connectivity 

 The hippocampus is a densely packed scrolled structure 
located within the medial temporal lobe that can be divided 
into several subregions including the dorsal hippocampus 
[which includes the dentate gyrus (DG) and cornu ammonis 
1 (CA1)], ventrolateral hippocampus (which includes the 
subiculum and cornu ammonis 3 (CA3) and 2 additional 

cornu ammonis regions (CA2 and CA4) [194]. There is a 
continuous pathway of information moving through the 
hippocampus that originates and terminates at the sensory 
cortices and also that begins in the hippocampus at a gap 
between the subiculum and DG known as the perforant 
pathway [151, 194, 195]. After information enters the 
hippocampus, the entorhinal cortex (EC) synapses on cells in 
the DG which projects to CA3, then onto CA1, and back to 
the subiculum. The subiculum then regulates the 
transmission of information to the hypothalamus and 
mammillary bodies (via the fornix) or the relay of 
information to the EC thereby propelling information back to 
the sensory cortex [194, 196]. Afferent projections are 
received from a number of subcortical inputs including the 
amygdala, medial septum and diagonal band of Broca, 
claustrum, substantia innonminata and basal nucleus of 
Meynert, thalamus, lateral preoptic and lateral hypothalamic 
areas, supramammillary and retromammillary regions, VTA, 
tegmental reticular fields, raphe nuclei, dorsal tegmental 
nucleus, and the locus coeruleus [194]. The hippocampus 
plays a role in memory for context [197-205], context 
specific encoding [206, 207] and retrieval [207-209], 
episodic memory consolidation and retrieval [156, 210, 211] 
as well as the storage of emotional memories through 
interactions with the amygdala [156]. 

Role in Extinction Learning 

 Previous research indicates that the hippocampus is an 
important neural substrate in extinction learning [206-209, 
212-217]. For example, the extinction of conditioned 
appetitive responses to natural rewards [217], and drug-
seeking behavior [218-221] involve various subregions of 
the hippocampus including the EC, subiculum and CA1. 
Hippocampal lesions impair the extinction of a conditioned 
response to stimuli previously paired with a natural 
appetitive reward (e.g., sucrose) [217]. Imaging studies 
suggest that a pathway between the vmPFC and left anterior 
hippocampus is necessary for the recall of a context-
dependent extinction memory [216] and an enhancement of 
entorhinal projections to the hippocampus facilitates 
extinction recall and memory [135, 216]. Furthermore, Fuchs 
and colleagues have displayed that the dorsal hippocampus is 
an integral neural substrate that mediates contextual 
reinstatement of extinguished cocaine-seeking behavior 
[222]. 

 Various molecular and biochemical processes within the 
hippocampus are associated with extinction learning. For 
example, activation of MAPKs [223], SRC tyrosine kinases 
[214], protein synthesis [56], NMDA receptors, and protein 
kinase A (PKA) [224] are necessary for the consolidation of 
extinction learning. Neuronal changes in activity have been 
observed in the CA1 and dentate gyrus regions of the 
hippocampus as a result of extinction training following 
cocaine self-administration [220]. Cocaine self-
administration also enhances hippocampal LTP [225-227], 
which has been shown to persist into extinction following 
cocaine self-administration [228]. Maintenance of LTP in the 
hippocampus 10 days post-extinction of cocaine self-
administration was nearly identical to LTP in the 
hippocampus of cocaine self-administering animals 
suggesting that neuronal changes in the brain due to cocaine 
use may facilitate long term changes in the hippocampus. 
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Diminishing or reversing these changes may be necessary for 
facilitating the extinction of drug-associated memories and 
behaviors [228]. 

THE DORSAL AND VENTRAL STRIATUM 

Functional Role and Anatomical Connectivity 

 The striatum is divided into a dorsal and ventral section. 
Both sections have observable anatomical subdivisions. The 
dorsal striatum is comprised of the caudate and putamen 
while the olfactory tubercle and Acb make up the ventral 
region. The Acb is located where the head of the caudate and 
anterior portion of the putamen meet. It is often divided into 
the AcbC and AcbSh. The striatum is the primary input zone 
of the basal ganglia. Afferent projections are received from a 
number of different brain regions including the PFC, 
amygdala, VTA, hippocampus, GP, and subthalamic nucleus 
[229-232]. Efferent signals are first mediated by the ventral 
pallidum and passed on to the dorsomedial thalamus and 
PFC [230]. 

 As part of the extrapyramidal motor system and the 
largest component of the basal ganglia, the striatum is well 
known for the pivotal role it plays in mediating different 
aspects of reward [161, 180, 233]. Striatal subregions are 
also involved in multiple facets of learning and memory, 
including appetitive conditioning and instrumental learning 
[65, 234-237]. Furthermore, the striatum is involved with 
motor control, action selection, habit learning, and various 
other cognitive processes involving executive function [238, 
239]. 

Role in Extinction Learning 

 Recent evidence suggests that the striatum may mediate 
extinction learning [137, 240]. Unfortunately, conflicting 
results from inactivation studies have provided different 
hypotheses regarding the striatum’s role in extinction [241-
243]. For instance, lesions to the Acb have been shown to 
facilitate [241] but also inhibit extinction [242, 243] of 
instrumental responding to natural rewards. 

 Clearly, striatal subregions are an important 
subcomponent in mediating reward-related stimuli [180, 244, 
245]. Following the presentation of unexpected rewards, 
reward-related stimuli [233, 245, 246], and aversive stimuli 
[247, 248], functional magnetic resonance imaging (fMRI) 
studies show that there is an increase in striatal activity. 
Dopaminergic neurons projecting from the midbrain to the 
striatum have been implicated in responses to novel stimuli 
[249, 250], unexpected rewards [244, 251] and aversive 
stimuli [252] and may underlie the prioritizing of salient 
stimuli through a reallocation of brain resources [238]. 
Specifically, dopaminergic innervation from the ventral 
midbrain to Acb has repeatedly been shown to be involved in 
the primary rewarding and reinforcing effects of various 
drugs of abuse (see [253, 254] for recent reviews). On the 
other hand, dorsal regions [219] appear to play a key role in 
the transition from casual to compulsive drug use [10, 210, 
255, 256]. Here, glutamatergic substrates are believed to be 
necessary for cue-controlled cocaine-seeking behavior [257]. 
Finally, it is worth noting that inactivation of dorsal regions 
blocks cue-induced reinstatement of cocaine-seeking 
behavior [258] while the inhibition of extracellular signal-
regulated kinase (ERK) in the AcbC region results in a 

lasting attenuation of drug-induced reinstatement of cocaine 
conditioned place preference as well as cocaine-induced 
phosphorylation of several signaling molecules including 
ERKs, cAMP response element binding, Elk-1 and fos [259]. 

 Extinction training involves a number of neurochemical 
and molecular processes in the striatum [240, 249, 260-262]. 
As such, there is evidence that extinction procedures 
following cocaine self-administration produce various 
hallmarks of neuronal plasticity in the Acb [258, 262]. For 
example, extinction training restores cocaine-induced 
deficits in tyrosine hydroxylase immunoreactivity in the 
AcbSh [262]. On the other hand, these investigators found 
that animals not undergoing extinction training showed a 
persistent reduction in levels of the enzyme following 
cocaine self-administration [262]. At the same time, other 
research has shown that cocaine-induced deficits in levels of 
the NR1 subunit of the NMDA receptor in the AcbC are 
normalized after extinction training [261]. Extinction 
training also induces an upregulation in the expression of the 
GluR1 and GluR2/3 subunits of the AMPA receptor in the 
Acb [240, 260], and virally-mediated upregulation of these 
AMPA subunits in this region facilitates extinction learning 
[240]. Consistent with this, GluR1 deletion in mice results in 
resistance to extinction following cocaine or food self-
administration [263]. These lines of evidence show a 
considerable amount of neuroplasticity in the Acb during 
extinction learning of drug-associated memories and thus 
may serve as a novel therapeutic site for the treatment of 
drug addiction. 

CONCLUSION 

 Learning and memory processes have been hypothesized 
to underlie drug addiction [1, 5]. Many common neural 
mechanisms exist between mnemonic systems and drug-
addiction making a greater understanding of the 
neurobiological mechanisms underlying extinction of drug-
related memories and behaviors an essential task for future 
research. While it is clear that drug-associated cues can elicit 
craving and therefore serve as an obstacle to treatment, they 
also provide a potential site for the development of novel 
therapeutics for addiction The majority of research 
examining the neurobiological mechanisms of extinction 
learning have centered on non-drug rewards or aversive 
conditioning, but recent studies have emerged indicating that 
the PFC, amygdala, hippocampus and striatum are important 
components that mediate the extinction of drug-associated 
memories and behavior [81, 190, 220, 228, 240, 258, 260, 
262]. 

 The extent to which pathways among these structures 
interact to mediate extinction learning is not fully understood 
but recent evidence provides multiple candidate regions (see 
[136] for a review) including, PrLC projections to the basal 
nucleus of the amygdala, LA, and CE mediating the 
expression of conditioned fear [264]. Conversely, projections 
from the ILC excite GABAergic neurons in the intercalated 
[265] cell masses inhibiting the CE thereby promoting the 
extinction of conditioned fear [266]. The expression of 
cocaine- and heroin- seeking behavior involves projections 
from the PrLC to the AcbC [267-272], whereas projections 
from the ILC to the AcbSh mediate the extinction of 
cocaine-seeking behavior [137]. 
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 Clearly, more research is needed for determining the 
complex interactions among these structures, including 
hippocampal and striatal connections possibly mediating the 
extinction of drug-associated memories. Elucidation of the 
neural mechanisms underlying extinction learning of drug-
related memories depends on sophisticated novel 
experimental methods in order to truly understand the 
neuroanatomical structures underlying the formation and 
extinction of memories related to drug addiction. Future 
research should also examine the influence of different 
neurotransmitter systems on extinction learning. For 
example, within the PFC, activation of the cannabinoid CB1 
receptors facilitates the extinction of conditioned fear 
whereas inhibition of the same receptor attenuates extinction 
of conditioned fear [266]. Determining the role and amount 
of impact that agonists acting at CB1, glutamate, or GABA 
receptor sites have on the extinction of drug-associated 
memories may help answer important questions regarding 
the neuroanatomical circuits underlying the extinction of 
drug-associated memories. 
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ABBREVIATIONS 

Acb = Nucleus accumbens 

AcbSh = Nucleus accumbens shell 

ACC = Anterior cingulate cortex 

AMPA = -Amino-3-hydroxyl-5-methyl-4-isoxazole- 
      propionate 

BLA = Basolateral amygdala 

CA1 = Cornu ammonis 1 

CA2 = Cornu ammonis 2 

CA 3 = Cornu ammonis 3 

CA4 = Cornu ammonis 4 

CCK = Cholecystokinin 

CPP = Conditioned place preference 

CPP = 3-(+-)2-Carboxypiperazin-4yl propel-1  
   phosphate 

CPu = Caudate-putamen 

CRF = Corticotropin releasing factor 

CS = Conditioned stimulus 

DCS = D-cycloserine (D-4-amino-3-isoxazolidone) 

DG = Dentate gyrus 

dmPFC = Dorsomedial prefrontal cortex 

EC = Entorhinal cortex 

fMRI = Functional magnetic resonance imaging 

GABA = Gamma-Aminobutyric acid 

GP = Globus pallidus 

ILC = Infralimbic cortex 

IVSA = Intravenous drug self-administration 

lOFC = Lateral orbitofrontal cortex 

LTD = Long-term depression 

LTP = Long-term potentiation 

MAPK = Mitogen-activated protein kinase 

mOFC = Medial orbitofrontal cortex 

mPFC = Medial prefrontal cortex 

NMDA = N-methyl-D-aspartate 

NPY = Neuropeptide Y 

OFC = Orbitofrontal cortex 

PFC = Prefrontal cortex 

PI-3K = Phosphatidylinositol 3-kinase 

PKA = Protein kinase A 

Pir = Piriform cortex 

PrLC = Prelimbic cortex 

US = Unconditioned stimulus 

vmPFC = Ventromedial prefrontal cortex 

VTA = Ventral tegmental area 
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