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Abstract: Arc-jet experiments in high enthalpy hypersonic (Mach 3) non equilibrium flow were carried out on a HfB2 

composite with addition of 15 vol% TaSi2, at temperatures exceeding 2000 K. The aerothermal behaviour was tested 

considering models having two different geometries, i.e. hemispheric and cone-shaped. The surface temperature and 

emissivity of the material were evaluated during the tests. Numerical computations of the nozzle flow were carried out in 

order to identify the flow conditions around the model and to analyze the details of thermal heating. The chemical-

physical modifications were analysed after exposures. The surface emissivity changed from 0.85 to 0.5 due to surface 

oxidation. The maximum temperatures reached on the tip were strongly dependent on the sample geometry, being around 

2300 K for the hemisphere and 2800 K for the cone. Post test SEM analyses confirmed an excellent stability for this 

HfB2-based material. 
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1. INTRODUCTION 

 Ultra-high temperature ceramics (UHTCs) are currently 

considered as emerging materials for aerospace applications 

[1-4]. The increasing attention on this class of materials is 

driven by the demand of developing re-usable hot structures 

as thermal protection systems (TPS) of re-entry vehicles 

characterized by sharp leading edges and therefore by large 

aerothermal heating. The sharp geometry allows to lower 

aerodynamic drag and to improve the flight performances 

and crew safety, due to the larger cross range and 

manoeuvrability along with more comfortable re-entry 

trajectories [5,6]. However, the sharp vehicles will have to 

withstand temperatures that may exceed 2000 K during re-

entry. As available materials can not survive such extreme 

temperatures, new ones are required for advanced thermal 

protection systems, such as the UHTCs [1,3,4,6,7]. The most 

useful ground technique for exploring the high temperature 

behaviour is arc-jet testing. This method provides the best 

ground based simulation of a re-entry environment, in 

different ways. On one hand, it allows to explore the 

oxidation behaviour under extreme conditions. On the other 

hand, the materials response to large heat fluxes is evaluated 

through the determination of important parameters, such as 

emissivity and catalycity. High values of emissivity and low 

values of surface catalycity are desired as they reduce 

temperature gradients and thermal stresses in the structure, 

thus enabling the vehicle to operate under relatively high 

enthalpy flow conditions. So far, the most appealing  
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materials from the point of view of the aerothermal 

behaviour are certainly ZrB2-SiC and HfB2-SiC ceramics. 

Recently, HfB2-MoSi2 composites have been tested in an arc 

jet facility at temperatures exceeding 2300 K showing 

excellent stability [8]. 

 In this paper, arc-jet testing at temperatures between 2300 K 

and 2800 K is carried out on a newly developed HfB2-based 

composite containing 15 %vol TaSi2. It has been found [9] that 

this composition has very interesting High Temperature (HT) 

properties, such as a 4pt flexural strength of 600 MPa at 1773K, 

which suggests a good high temperature stability. Furthermore, 

it has been reported that the addition of TaSi2 as secondary 

phase offers significant improvement for the oxidation 

resistance of ZrB2-based composites [10-13]. 

 In order to investigate the aerothermal behaviour, two 

different geometries are considered, hemispherical and 

conical, both important for the high speed aerodynamics. 

The experiments were conducted with an arc jet plasma wind 

tunnel which generates a high enthalpy flow (up to 20  

Mj/kg) at Mach 3 in low atmospheric pressure (300 Pa). The 

operative envelope of the plant permits to simulate the actual 

thermal re-entry conditions. Microstructural modifications 

induced by high thermal loading are investigated and 

discussed. In addition, fluid dynamic numerical simulations 

(CFD) are carried out in order to identify the flow conditions 

around the models, to analyze the details of thermal heating 

and to compare them with experimental values. 

2. EXPERIMENTAL 

2.1. Material Processing and Characterization 

 Two models hemisphere and cone of HfB2 -15 vol% 

TaSi2 were selected for the arc-jet tests. Drawings of the 
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models are shown in Fig. (1). Commercial powders were 

used to prepare the ceramic material: HfB2 -325 mesh (Cerac 

Incorporated, Milwaukee, USA), TaSi2 -45 m (ABCR, 

GmbH & Co, Karlsruhe, Germany). 

 The powder mixtures were ultrasonically treated and then 

milled for 24 h in absolute ethanol using zirconia milling 

media. The mixed powders were dried in a rotary evaporator 

first and in a furnace at 340 K after, and then sieved in to -

150 mesh screen size. A 3-cm diameter pellet was linearly 

pressed at 150 Kg/cm
2
 and subsequently hot pressed at 

2173K/15 min holding time in low vacuum with an applied 

pressure of 30 MPa. The sintered material was examined 

using X-ray diffraction (Siemens D500, Germany) to 

identify crystalline phases. Sections were polished with 

diamond paste to 0.25 μm and analyzed with scanning 

electron microscopy (SEM, Cambridge S360) and energy 

dispersive spectroscopy (EDS, INCA Energy 300, Oxford 

instruments, UK). After the arc jet tests, the ceramic models 

were further analysed by SEM-EDS on surface and polished 

cross-sections. A summary of the material features is 

reported in Table 1. 

Table 1. Starting Materials: Compositions, Densities and 

Mean Grain Size 

 

Composition 
Sintering  

Cycle 

Bulk  

Density 

Relative  

Density 
M.g.s. 

vol% K/min g/cm3 % μm 

HfB2+15 TaSi2 2173/17 10.9 99.7 1 

 

2.2. Arc-Jet Facility 

 Samples were exposed to high enthalpy flows using the 

Small Planetary Entry Simulator (SPES) arc-jet facility 

available at the Department of Aerospace Engineering of the 

University of Naples. SPES is equipped with a 80 kW 

plasma torch that operates in inert gas (He, N2, Ar and their 

mixtures) at mass flow rates up to 5 g/s. In order to simulate 

air composition, O2 can be added by means of a swirling jet 

in the mixing chamber after the torch. The nozzle has a 

throat diameter of 11 mm, an outer diameter of 22 mm and 

the nominal Mach number is M=3. The working pressure of 

the test chamber is between 100 and 500 Pa. During the 

experiments, infrared and optical windows in the test 

chamber allowed visual inspection and diagnostic analyses. 

An automatic control system monitored the main parameters 

of the apparatus (voltage and current of the arc heater, water 

cooling temperature, mass flow rate). In particular, the 

specific total enthalpy (H0) was evaluated through an energy 

balance between the energy supplied to the gas by the arc 

heater and the energy transferred to the cooling system 

(measured by the water temperature jump between inlet and 

outlet). The output data, processed via a dedicated software, 

allowed the evaluation of the surface temperature profile 

versus exposure time of the model. Due to the extremely 

high thermal loading upon the ceramic models, surface 

chemical reactions, like oxidation, can be responsible for 

changes in the material’s emissivity. To overcome this 

problem, the measurements were carried out with a radiation 

ratio pyrometer (Infratherm ISQ5, Impac Electronic Gmbh, 

Germany) which operates both in two colours and in the 

single colour function. In the two colours mode the 

instrument makes use of the ratio of two spectral radiances, 

measured at different wavelengths (0.9-1.05 μm), to evaluate 

the effective temperature. This overcomes the problem of the 

emissivity evaluation, since it is supposed to be the same at 

both wavelengths. Once the temperature had been measured 

with the ratio pyrometer, its value was input to evaluate the 

spectral emissivity using the single colour function ( = 0.9 

μm). In combination with the pyrometer, an infrared thermo-

camera (Thermocam SC 3000, FLIR Systems, USA) was 

used to measure the surface temperature distributions and the 

spectral emissivity in the long wave range of the 

thermograph ( =9 μm). It must be mentioned that in the 

present experiments the pyrometer was focused not on the 

models tip, but at an intermediate position, i.e. about 2.5 mm 

away from the hemisphere tip and 3 mm away from the cone 

tip. This implies that the actual tip temperature is much 

higher than that measured by pyrometer, as illustrated later 

in the paper. 

2.3. Numerical Simulation of the Plasma Flow and of the 
Shock Layer Around the Model 

 Numerical computations were carried out in order to 

understand the aerothermal conditions of the experiments in 

the plasma wind tunnel. The wall heat fluxes, temperatures, 

pressures, and the chemical composition of the exit nozzle 

flow were calculated. The computations were carried out 

solving the full Navier-Stokes equations for a turbulent 

multi-reacting gas mixture with five chemical species (O, O2, 

 

Fig. (1). Hemispherical and conical HfB2-TaSi2 models used for arc-jet testing. 
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NO, N, N2) in chemical non-equilibrium. Each species of the 

mixture was assumed to behave as a thermally perfect gas, 

where translational-rotational and vibrational-electronic 

degrees of freedom were characterised by different 

temperatures. The specific heat of gaseous species is 

constant because of the presence of vibrational-electronic 

energy [14-17]. 

 The thermal conductivity and the viscosity is calculated 

by the kinetic theory. Vibrational-translational energy 

exchanges were modelled according to the Landau-Teller 

model, while the vibrational relaxation time was derived 

from the Millikan-White formula, with Park correction for 

high temperatures. Chemical and vibrational non-equilibrium 

was implemented using the Park model [14,18]. To speed up 

the numerical solution, the integration domain was divided 

in three parts. First, the fluid-dynamic problem was solved in 

the plasma torch, in the nozzle and test chamber. In the 

second step the fluid-dynamic field around the body was 

solved. In the third step, the results of the CFD 

computations, and in particular the heat flux distributions 

over the surface of the specimen, were used for the thermal 

analysis in order to evaluate the thermal field in the solid 

body of the specimen and the surface temperature 

distribution for the selected arc-jet conditions. In the present 

work, all the CFD simulations were carried out by imposing 

a zero catalytic efficiency for the boundary condition at the 

wall of the specimen [2-4,7,8,19]. The material properties 

used for numerical analysis are reported in Table 2. 

3. RESULTS AND DISCUSSION 

3.1. Microstructural Features of the As-Sintered Sample 

 The XRD pattern (not shown) indicated that hexagonal 

HfB2, hexagonal TaSi2 and monoclinic HfO2 were the 

crystalline phases present after sintering [9]. At high 

diffraction angles, splitting of the main reflections of HfB2 

was observed. These additional reflections were identified as 

a solid solution formed by the incorporation of Ta into the 

HfB2 lattice with composition (Hf0.8Ta0.2)B2. A fine 

microstructure with little porosity (<1%) was observed in the 

polished surface (Fig. 2a). The mean HfB2 grain size was 

around 1 μm, which was similar to the starting particle size 

of the HfB2 powder, indicating that no significant grain 

coarsening occurred during sintering. The brightest phase 

was identified as HfO2 in agreement with the findings of the 

X-ray diffraction pattern. TaSi2 appeared darker than HfB2 

(Fig. 2b). Analyzing the microstructure in BSE imaging, 

many HfB2 grains exhibited a core-shell structure (Fig. 2b). 

By EDS analysis, the outer shell was estimated to be a solid 

solution with composition (Hf0.8Ta0.2)B2 in agreement with 

XRD analyses. 

Table 2. Material Properties in the Numerical Model 

 

Material Density Cp 
Thermal  

Conductivity 
Emissivity 

%vol g/cm3 j/(kgK) w/(mK)  

HfB2+15 TaSi2 10.9 400 78 0.8 

HfO2 10.9 400 2.5 0.6-0.5 

 

3.2. Arc-Jet Tests 

 The arc-jet mass flow rate was set to simulate air. 1 gr/s 

with a chemical composition of 80 wt% N2 and 20 wt% O2. 

The specimens were located at a distance of 1 cm from the 

exit nozzle (Fig. 3). The models were tested in a series of 

runs. Each run is constituted by a succession of steps 

 

Fig. (2). Polished surfaces of as sintered HfB2- TaSi2 composite showing in a) the homogeneous and dense microstructure. b) Detail of the 
microstructure evidencing a pocket of TaSi2 phase and the core-rim substructure of HfB2 grains with the corresponding EDS spectra. 



Arc-Jet Testing on HfB2 - TaSi2 Models The Open Aerospace Engineering Journal, 2010, Volume 3    13 

obtained by subsequent increase of the arc current. The 

initial average specific total enthalpy of about 8.7 MJ/kg was 

increased up to 12.9 MJ/kg. Table 3 shows the tests 

conditions and the stationary temperatures achieved. The 

stagnation point pressure in the present test conditions are 

between 7000 and 11000 Pa. Fig. (4) shows the thermal 

histories of the two models in the various runs and steps. The 

spectral emissivity measurements at 1 μm wavelength are 

plotted in Fig. (5). The emissivity plot shows that during the 

first run there is an abrupt decrease when the recorded 

temperature exceeds 1800K (from 0.85 at 1800 K to 0.45 at 

2050K). In contrast, during the following runs, the values of 

emissivity tend to remain between 0.5 and 0.6. This change 

is certainly related to the microstructural modification 

induced by oxidation, as described later. During the first 

exposition, the high surface temperature achieved, together 

with the chemical environment, caused a surface oxidation, 

which changed the emissivity and the thermo-physical 

properties of the external layers. It must be mentioned that 

the temperature reached at the sample surface depends 

mainly on the ability of the material to reject the heat by 

radiation, i.e. on its emissivity (  = 1 for an ideal black body, 

 < 1 for a real material surface). The higher the emissivity, 

the greater the emitted radiation, the lower is the heating. 

The temperature distribution on the sample also depends on 

its thermal conductivity, since a high thermal conductivity 

allows heat to be conducted from the leading edge to colder 

zones and to obtain a more uniform temperature distribution. 

 At the exit of the torch, the plasma flow containing 

nitrogen and atomic nitrogen expands through the mixing 

chamber (22 mm in diameter), comes into contact with the 

oxygen, so that oxygen dissociates and a reacting mixture 

composed of O2, N2, NO, O and N is formed. Fig. (6) shows 

composition of the flow at the exit nozzle that results from 

computations performed considering a torch power of 16 and 

29 KW, which corresponds to an average specific total 

enthalpy of 8.7 (condition (a) in Table 3) and 12.9 MJ/kg 

respectively (condition (e) in Table 3). According to the 

calculations, the average specific total enthalpy in proximity  

 

 

Fig. (3). An image of the experimental setup during the test. 

of the specimen remains constant with the same values as at 

the exit nozzle, at about 10 and 16 Mj/kg respectively. The 

mass fraction of dissociated oxygen is about 0.08 in the 

highest enthalpy condition, this dissociated oxygen is 

fundamental for the model oxidization, because of its 

reactivity. The far field pressure of the flow impacting the 

model has a value of around 1000 Pa. The stationary 

temperatures obtained by the numerical model are in a good 

agreement with the experimental ones, by assuming a non 

catalytic surface behaviour. The calculated wall heat flux 

distribution with cold wall (300 K) for the condition (e) is 

shown in Fig. (7). The average wall heat flux is larger for the 

conical geometry, but the integral of the wall heat flux is the 

 

Fig. (4). Temperature histories vs time during arc-jet testing of the (a) hemisphere and (b) conic models. The pyrometer is focused on a 3mm 
diameter spot set around to the middle of the lateral surface. 
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same because of the larger surface area of the hemisphere. 

Fig. (8) shows the calculated increase of the surface 

temperature as a function of the exposition time for 

hemispheric and conic samples in the condition of step  

(e). The temperature on the leading edge increases rapidly 

and achieves the stationary state in few seconds. This is 

especially true for the cone, where the nose tip zone remains 

at high temperatures for a longer time than the base. The 

thermal heating is faster for the cone than for the hemisphere 

due to the lower mass of the former. The maximum 

temperature measured on the surface of the hemispherical 

sample was 2044 K (Fig. 4), the total time of exposition was 

about 11 minutes. The corresponding stagnation point heat 

flux, computed by numerical simulation is in the range 3-6 

MW/m
2
. 

 

Fig. (5). Spectral emissivity at 1 μm vs temperature of the HfB2-

TaSi2 model. 

Table 3. Tests Conditions 

 

 Condition a b c d e 

 Arch Power, kW 16000 19000 22000 26000 29000 

 H0, Mj/kg (±10%) 8,71 8,96 9,77 11,69 12,90 

Tmax 1st run, K 1601 1705 1782 1867 2026 

Tmax 2nd run, K 1659 1747 1860 1958 2010 

Tmax 3rd run, K 1605 1701 1818 1931 2044 

H
e
m

is
p

h
e
r
e
 

Time exposition, s 142 129 111 116 186 

Tmax 1st run, K 1558 1676 1794 2025 2182 

Tmax 2nd run, K 1733 1874 2011 2144 2279 

C
o

n
e
 

Time exposition, s 84 86 87 95 95 

 

 During the test, the cone surface temperature measured 

by the two colour pyrometer reached 2279 K, the total time 

of exposition was about 8 minutes. The corresponding 

computed stagnation point wall heat flux is of the order of 6-

13 MW/m
2
. 

 The formation of the oxide layer with a low thermal 

conductivity can create a change in the temperature 

distribution. To assess if such oxidised layer can generate a 

significant change in the surface temperature, a numerical 

model of the cone and of the hemisphere with a mixed oxide 

layer HfO2 and SiO2 was implemented. From the post 

exposure analysis (see next paragraph), the oxide thickness 

is variable from 170 to 100 μm for the cone and from 130 to 

45 μm for the hemisphere. In first approximation, the oxide 

was considered to be constituted by a mixture of 50 vol%  

 

 

Fig. (6). a) Computed pressure and total enthalpy and b) computed mass fractions of the species along the exit nozzle for conditions (a) and 
(e) indicated in Table 3. 
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Fig. (7). Calculated wall heat flux on the models’ surfaces, for the 

worst thermal condition, i.e. for the step (e) in Table 3. 

 

Fig. (8). Numerical temperature histories of the models surfaces in 

the case of the wall heat flux corresponding to point (e) of Table 3. 
For oxidised surfaces, the emissivity was considered 0.5. 

HfO2+50 vol% SiO2, taking 1.6 W/(mK) and 3.3 W/(mK) as 

the thermal conductivities of silica [20] and HfO2 [21] 

respectively. Hence an average thermal conductivity value of 

2.5 W/(mK) was used. 

 The resulting surface temperature profiles are shown in 

Fig. (9) and compared to the surface temperatures of a non 

oxidised material. The points corresponding to the 

experimental temperatures are also superimposed to the 

curves, showing a good agreement with the simulations. The 

surface temperature distribution of the oxidised layer is  

 

radically different from that of unoxidised model, especially 

in the tip region (Fig. 9). Indeed for the cone, the increase of 

the maximum temperature reached on the tip due to 

oxidization is about 400 K respect to that of unoxidised 

model. Instead, for the hemisphere, the difference between 

the oxidised and unoxidised model is about 85 K. This can 

be explained with a thinner oxide layer for the hemisphere 

than for the cone. The change of temperature distribution 

caused by the oxide formation does not have a significant 

effect on the experimental temperature read by pyrometer. 

As a matter of fact, the increase of temperature due to 

oxidization is located only in the leading edge, while the 

pyrometer reads the average temperature in a spot at around 

in the middle height of the specimen body. On the contrary, 

the high temperature resulting by the numerical simulation 

on the leading edge of the oxidised cone must be taken into 

account, because it could be responsible for more 

pronounced damages on the top of the cone surface. 

3.3. Microstructural Modifications Induced by High 
Enthalpy Plasma 

 The hemisphere model was subjected to three thermal 

cycles from room temperature to the final temperature in 

about 300-400 s. For each run, the maximum temperature 

was held for about 180 s. According to the computed 

simulations, the tip of the model reached a temperature of 

about 2200 K. The altered morphology of the hemisphere 

after arc jet testing is shown in Fig. (10). The sample surface 

was covered by an amorphous silica-based scale, which 

embedded elongated crystals (Fig. 10a, b). XRD pattern (not 

shown) revealed that the crystalline phases present after 

thermal treatment are prevalently a mixed oxide with 

stoichiometry Ta2O5·6HfO2 and traces of HfO2. The 

composition of the outer glassy layer was also investigated 

by means of EDS analysis. The silica-based scale contained 

several impurities, including Ta and Hf (see EDS spectrum 

in Fig. 10c). The presence of boron is more difficult to track, 

due to the low sensitivity of energy-dispersive spectroscopy 

to light elements. Pores formation observed on the surface 

was due to evolution of gaseous products. The analysis of 

the cross section (Fig. 10c) revealed that the scale was a 

multilayered oxide having a variable thickness (130 μm in 

the near-tip region, 50 μm in the back). Despite the presence 

of few macro-cracks at the interface between oxide and 

unreacted bulk, the scale was quite well adherent to the bulk. 

According to EDS analysis, the outer layer is constituted by 

a mixed Hf, Ta -oxide dispersed in the above mentioned Ta-

containing silica amorphous layer (Fig. 10c). The EDS 

quantitative elemental analysis indicates that elongated 

grains are the Ta2O5·6HfO2 phase detected by XRD 

diffraction. Underneath this layer, the scale was mainly 

constituted by porous HfO2 in form of large rounded grains 

( 5 μm) containing a low amount of Ta (less than 3 at%). 

Finally, the inner layer was composed of fine HfO2 grains 

(<2 μm) and residual porosity. Few silica was observed in 

the intermediate and inner layers. Due to the severe 

conditions applied and the thermal cycling, micro-cracks 

were observed in both Hf, Ta-oxide and HfO2 phases. 
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 The cone model was subjected to 2 cycles from room 

temperature to the final temperature in about 150 s. For each 

run, the maximum temperature was held for about 90 s. 

According to numerical simulations, the maximum 

temperature on the tip was of order of 2800 K and rapidly 

decreased along the cone profile (Fig. 9b). The analysis of 

the sample surface revealed that the extent of damage was 

much more pronounced for this model, due to the higher 

temperature reached, especially in the near-tip regions 

(compare Fig. 10a to Fig. 11a). During cutting and polishing 

operations, detachment of a portion of the tip scale occurred, 

indicating that this part of the scale was poorly bonded to the 

material bulk. The surface morphology was heavily altered 

by the shear forces associated to the hot stream, which 

enhanced the bursting of bubbles (Fig. 11a-c). As for the 

previous case, the scale was a multilayered oxide having a 

variable thickness ( 170 μm near the tip, 100 μm in the 

bottom part). The outer layer is constituted by a mixed Hf, 

Ta-oxide with stoichiometry (Hf0.8Ta0.2)O2 dispersed in the 

above mentioned Ta-containing silica amorphous layer. 

Occasionally, a slight shoulder was observed on EDS 

patterns which could be attributed to presence of B. In this 

case, the thickness of the outer compact layer is much 

reduced compared to the overall scale thickness, less than 

1/5 (Fig. 11d). Underneath this oxide layer (Fig. 11e), the 

scale was mainly constituted by large rounded HfO2 grains 

(5 μm) containing a low amount of Ta (less than 3 at %) and 

large porosities. The presence of silica in this layer was 

dependent on the position. No silica was observed in the 

near-tip regions. Some silica was instead observed in the 

bottom regions (Fig. 11f). Macro-cracks were observed at 

the interface oxide/unreacted bulk. The hafnium oxide 

crystals also presented micro-cracks (Fig. 11f). 

 The observed morphologies evidence that the samples 

underwent complex oxidation phenomena. Hafnium diboride 

is known to oxidize according to: 

HfB2(s) + 5/2 O2 (g) = HfO2 (s) + B2O3(l)          (1) 

B2O3(l) = B2O3(g)            (2) 

 Hafnia is a very stable phase in oxidizing atmosphere 

above 2300 K. It has a melting point of 3173 K and 

relatively low vapour pressure [22]. HfO2 in the pure form 

crystallizes in the monoclinic phase at room temperature, but 

transforms into the tetragonal phase over a temperature range 

of 373-2023 K, becoming fully tetragonal above 2023 K. 

This transformation is reversible and, during cooling, the 

return to the tetragonal phase is associated to a large volume 

change (3-4%) which can cause structural degradation, 

especially under repetitive thermal cycling. Thus, if the 

oxide is not stabilized with higher valence cations, cracking 

due to volume expansion is predictable. On the other hand, 

boron oxide has a low melting point and high vapour 

pressure, therefore at T>1373K, it starts to evaporate. Hence, 

the overall oxidation process of hafnium diboride is the 

result of the combined processes of oxygen inward or metal 

ion outward diffusion and, at relatively lower temperatures, 

gaseous/liquid products outward diffusion through the oxide 

scale. 

 Besides, TaSi2 may oxidise according to: 

2 TaSi2 + 6.5 O2(g) = Ta2O5 + 4 SiO2          (3) 

 At T >1973 K, the Ta-Si-O phase diagram [23] indicates 

formation of liquid phase. Another paper [22] reports that 

Ta2O5 is liquid at temperature >2073K. Thus the formation 

of liquid phase at the temperatures involved in the present 

experiments is confirmed. 

 

Fig. (9). Computed surface temperature distribution for the condition at point (e), for the hemisphere (a) and cone (b). Emissivity of 0.5 and 

0.6 were considered for oxidised and non oxidised surface, respectively. Experimental value are superimposed. 
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 The morphology of the observed oxides suggests the 

following oxidation phenomena. As the temperature rises 

and overcomes 2073 K, a liquid Ta-Si-O phase is formed on 

the sample surface, whilst HfB2 oxidises to HfO2 and 

liquid/gaseous B2O3. The Ta-Si-O phase further reacts with 

newly formed HfO2 crystals, leading to formation of the 

Ta2O5·6HfO2 crystals with elongated and dendritic 

morphology and a Ta- containing borosilicate glass. The 

Ta2O5·6HfO2 phase, which is not thoroughly investigated, 

can only be formed on the sample surface where the 

temperature is 1873 K or higher and where the Ta-Si-O 

phase is present. Indeed, this phase is not found in the 

intermediate and inner layers, which are depleted from the 

amorphous silica-based phase. As a confirmation, in the 

bottom regions of the sample, where the maximum 

temperature decreases, the Ta2O5·6HfO2 phase is not 

observed. The melting point of the Ta2O5·6HfO2 phase is not 

known, i.e. it could be higher of lower than pure hafnium 

oxide. 

 The comparison between the oxide morphologies of the 

two models can give some more indications. In the cone, the 

external layer constituted by amorphous silica phase plus 

Ta2O5·6HfO2 phase in the near-tip region is less than 1/5 of 

the entire scale thickness. For the hemisphere, experiencing 

lower specific fluxes and temperatures (max temperature 

around 2300 K) the external layer is about 1/3 of the whole 

scale thickness. This indicates that at temperatures between 

2300 and 2800 K, extensive evaporation of Ta2O5·6HfO2 

occurs. This suggests that this new phase has a melting point 

which could be lower than that of pure HfO2, 3173 K. 

 Overall, the effect of TaSi2 addition can have positive 

and negative effects on the oxidation resistance of HfB2. On 

one hand, TaSi2 modifies the Si-based oxidation layer, 

forming a Ta-containing boro-silicate glass. Then, it induces 

 

Fig. (10). a) Surface morphology of the hemisphere, b) detail showing Ta2O5·6HfO2 crystals in Ta-borosilicate glass on the model surface. c) 

Polished cross section showing the three layered scale and the corresponding EDS spectra on the right: I - Ta2O5·6HfO2 crystals/ Ta-

borosilicate glass, II - large HfO2 crystals after grain growth, III - fine grained HfO2. 
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phase separation in the glass as evidenced by the 

crystallization of a Ta2O5·6HfO2 phase. Glass immiscibility 

has been reported to be one of the major cause for oxidation 

resistance improvement [24] for TaSi2 containing UHTCs, 

due to increased viscosity which limits oxygen diffusion. It 

has been reported that the addition of TaSi2 to ZrB2-SiC 

composites largely improved their oxidation resistance at 

T<1900 and this could be due to Ta incorporation in the 

ZrO2 lattice which can possibly give phase stabilization [12]. 

In the present case, the presence of micro-cracks in the HfO2 

crystals indicates that the Ta
5+

 cation could be not so 

effective in preventing the HfO2 polymorphic transfor-

mation. The formation of the mixed Ta2O5·6HfO2 seems to 

be advantageous for temperatures up to 2300 K, as compact 

and dense textures of glassy and crystalline areas form. 

However, increasing the temperature to 2800 K, the outer 

protective layer starts to evaporate significantly as its 

melting point is likely to be lower than that of pure HfO2. 

CONCLUSIONS 

 Two different shapes of ultra-high temperature ceramics, 

HfB2+15 vol% TaSi2 were produced by hot pressing. The 

models were exposed to ground simulated atmospheric re-

entry conditions using arc-jet testing, with an average 

specific total enthalpy of the flow around the body of the 

order of 9-13 MJ/kg. During the expositions, extensive 

oxidation of the constituent phases occurred, with formation 

of a compact surface layer constituted by Ta2O5·6HfO2 

elongated crystals dispersed in a Ta-containing borosilicate 

glass. This in turns modified the surface emissivity of the 

samples from 0.85 to 0.55. 

 The starting geometry heavily affected the aero-thermal 

response of the models. According to calculations, for the 

hemisphere the maximum achieved temperature was of the 

order of 2300 K, for the nose cone the tip temperature 

reached 2800 K. Post test SEM analyses confirmed that the 

addition of TaSi2 guarantees a good oxidation resistance for 

temperatures up to 2300 K, due to glass immiscibility and 

formation of a Ta-containing borosilicate glass. At T>2300 

K, extensive evaporation of Ta2O5·6HfO2 phase/Ta-Si-O 

phase and oxide spalling occur. 

 Numerical calculations, which simulated the chemical 

non-equilibrium flow around the hemispherical model, are in 

good agreement with the experimental results assuming a 

non catalytic surface behaviour.  
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