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Abstract: Solar sailing is an enabling technology for many mission applications. One potential application is the use of a 

sail as a communications relay for a base at the lunar south pole. A survey of the design space for a solar sail spacecraft 

that orbits in view of the lunar south pole at all times demonstrates that trajectory options are available for sails with 

characteristic acceleration values of 1.3 mm/s
2
 or higher. Although the current sail technology is presently not at this 

level, this survey reveals the minimum acceleration values that are required for sail technology to facilitate the lunar south 

pole application. This information is also useful for potential hybrid solar-sail-low-thrust designs. Other critical metrics 

for mission design and trajectory selection are also examined, such as body torques that are required to articulate the 

vehicle orientation, sail pitch angles throughout the orbit, and trajectory characteristics that would impact the design of the 

lunar base. This analysis and the techniques that support it supply an understanding of the design space for solar sails and 

their trajectories in the Earth-Moon system. 
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1. INTRODUCTION 

 In 2004, the Vision for Space Exploration directed 

NASA to establish an outpost at the lunar south pole (LSP) 

[1] by 2020. While this goal has since been revised, the 

announcement of such a potential outpost motivated studies 

for establishing a communications architecture to support 

mission personnel [2]. Because line-of-sight transmission to 

the Earth (or to a relay in LEO) is not guaranteed at the LSP, 

multiple spacecraft in Keplerian orbits about the Moon are 

necessary to serve as communications relays [3-5]. Exotic 

solutions that exploit halo orbits about the cis- and trans-

lunar Lagrange points have also been examined [6]. 

 A novel approach to this LSP-coverage problem is a 

single spacecraft in a trajectory that places the spacecraft in 

view of the LSP and the Earth at all times. This approach 

requires an additional force on the spacecraft. One concept 

for using a single vehicle to maintain coverage employs an  

an NSTAR low-thrust engine [7,8]. In this scenario, a 

spacecraft of 500 kg mass spirals out from LEO to a fuel-

optimal orbit below the trans-lunar Lagrange point. 

Alternatively, a solar sail spacecraft can also supply the 

requisite additional force for an orbit to remain in view of 

the LSP [9,10]. In ref. [9], a 235-255 kg spacecraft 

completes a conventional transfer from the Earth to a lunar 

orbit. Once in orbit, a solar sail with a characteristic 

acceleration of up to 1.338 mm/s
2
 (“a modest improvement 

in contemporary solar sail technology” [9]) is deployed and 

used to maintain the spacecraft below the trans-lunar 

Lagrange point. A carrier vehicle is jettisoned and the mass 

of the remaining vehicle is 195 kg. A third strategy combines  
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solar sails and low-thrust, solar-electric propulsion into a 

hybrid system to deliver the vehicle into an orbit that 

remains in view of the LSP at all times [11]. 

 The design space for these single-spacecraft solar sail 

missions is not well known. Advances in computing power have 

made extensive surveys of various design spaces for spacecraft 

trajectories possible in recent years [12-15]. The present 

investigation employs a survey technique to examine the design 

trade space for a solar sail in the Earth-Moon system. Similar to 

previous work by the authors [15], multiple grids of initial 

guesses are created and then used to initialize a numerical 

solution technique for boundary-value problems that generates 

feasible trajectory options. The initial guesses are distinguished 

by the size and shape of the guessed path as well as the nominal 

control history that is required to maintain the path. Both the 

path and control profile are modified by the boundary-value 

problem (BVP) solver. Solutions are examined for different 

spacecraft and mission performance metrics. A characteristic 

acceleration of 1.7 mm/s
2
 is employed to demonstrate the 

survey techniques when critical metrics other than characteristic 

acceleration are examined. These techniques may be applied to 

sails possessing other, more realistic, characteristic accelerations 

or spacecraft employing other propulsion devices (e.g., low-

thrust, electric sails, hybrid systems) in future investigations. 

 Beginning with a description of the LSP problem, a brief 

discussion of possible numerical techniques for solving 

BVPs ensues. Construction of the design space includes the 

initial guess combinations employed in the survey; the 

critical metrics for evaluation of the feasible LSP-coverage 

orbits from the survey are examined. 

2. SYSTEM MODELS AND CONSTRAINTS 

 The LSP-coverage problem requires that a spacecraft be 

in contact with a facility at the lunar south pole at all times. 
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The Earth and the Moon can be considered a binary system, 

and thus it is beneficial to model the motion of the solar sail 

spacecraft within the context of a circular restricted three-

body model. Path constraints are incorporated such that the 

sail remain in view of the LSP throughout one period of its 

orbit. Finally, the ability to control the trajectory of the 

spacecraft is coupled to the orientation of the sail. Spacecraft 

body rotations, along with system models and constraints are 

examined in the following subsections. 

2.1. Dynamical Model 

 The LSP-coverage problem is defined within the context 

of the circular restricted three-body (CR3B) system, that is, 

the problem is formulated in a frame, R , that is rotating with 

respect to an inertial system, I . A CR3B model that 

incorporates the gravity contributions of two primary bodies 

is geometrically advantageous for understanding the 

problem. Consistent with McInnes [16], the nondimensional 

vector equation of motion for a spacecraft at a location r 

relative to the barycenter (center of mass of the primaries) is 

R a + 2 I R Rv( ) + U(r) = as (t)           (1) 

where the first term is the acceleration relative to the rotating 

frame (more precisely expressed as 
R d 2r
dt 2 , where the left 

superscript R  indicates a derivative in the rotating frame) 

and the second term is the corresponding Coriolis 

acceleration, which requires the velocity relative to the 

rotating frame, 
R v  (more precisely 

R dr
dt

).
1
 The position and 

velocity vectors are 

r = x y z{ }
T

           (2) 

v = x y z{ }
T

           (3) 

where the superscript R  indicating a velocity relative to the 

rotating frame has been dropped for convenience. The 

angular-velocity vector, I R , relates the rate of change of 

the rotating frame with respect to the inertial frame. The 

applied acceleration, from a solar sail in this case, is 

indicated on the right side by as (t) . The pseudo-gravity 

gradient, U(r) , combines the centripetal and gravitational 

accelerations 

U(r) = I R I R r( )( ) +
(1 μ)

r1
3 r1 +

μ

r2
3 r2         (4) 

where μ  represents the mass fraction of the smaller body, or 

m2 / (m1 + m2 ) , and r1  and r2  are the distances from the 

larger and smaller bodies, respectively, that is, 

                                                
1Vectors are denoted with boldface. Derivatives of the position vector (R v  

and 
   
R

a)  are assumed to be relative to the rotating frame and, consequently, 

R  is dropped. 

r1 = (μ + x)2
+ y2

+ z2  

r2 = (μ + x 1)2
+ y2

+ z2  

 Solar gravity is neglected in this model. At a distance of 

1 AU, an appropriate assumption for a sailcraft in the Earth-

Moon system, the applied acceleration from a solar sail is 

modeled as 

 
as (t) = (ˆ(t) û)2 û            (5) 

where u  is the sail-face normal, 
 
ˆ(t)  is a unit vector in the 

Sun-to-spacecraft direction, and  is the sail's characteristic 

acceleration in nondimensional units. Note that sail 

acceleration is always assumed to be normal to the sail face. 

These vectors appear in Fig. (1). 

 

Fig. (1). Earth-Moon system model. 

Observed from the rotating frame, R , the Sun moves in a 

clockwise direction about the fixed primaries. The sail mass, 

m3 , is negligible compared to the masses of the Earth and 

Moon, which are m1  and m2 , respectively. The term 

(ˆ(t) û)  is also expressed as cos , where  is the sail 

pitch angle, or the angle between the solar incidence 

direction and the sail-face normal. 

 To generate the magnitude of the sail acceleration in 

dimensional units, a0 ,  is multiplied by the system 

characteristic acceleration, a*
, which is the relationship 

between the dimensional and nondimensional acceleration in 

Eq. (1). In fact, a*
 is the ratio of the characteristic length, 

L*
 (384,400 km for the Earth-Moon distance), to the square 

of the characteristic time, t*
 ( 2 t* = 27.321  days), that is, 

a* =
L*

(t* )2 = 2.7307 mm/s2
 

The sail modeled here is a perfectly reflecting, flat solar sail. 

Higher fidelity models include optical models [16], 

parametric models that incorporate billowing in addition to 

optical effects [16,17], and realistic models based on finite-

element analysis that incorporates optical properties and 

manufacturing flaws [18]. Optical effects represent a non-

perfectly reflecting solar sail; some energy is absorbed, and 

some is reflected diffusely as well as specularly. An ideal 

sail reflects only specularly. In all of these higher-fidelity 

models, the resulting acceleration from a solar sail is not 

perfectly parallel to the sail-face normal but, instead, is 
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increasingly offset from the sail-face normal as the sail is 

pitched further from the sunlight direction [16]. 

Nevertheless, this analysis employs an ideal sail to lend 

insight into the technology level required to solve the LSP-

coverage problem. 

2.2. Constraint Models 

 One physical constraint is imposed on the attitude of the 

spacecraft: the sail-face normal, û , which is coincident with 

the direction of the resultant force in an ideal model, is 

always directed away from the Sun. This constraint is written 

mathematically as 

ˆ(t) û cos max             (6) 

where max  is 90 . Recall that the sail modeled here is 

perfectly reflecting and flat. Billowing is not incorporated in 

this force model; however, max  can be less than  90 , as sail 

luffing (i.e., flapping) is assumed to occur at high pitch 

angles [19]. Fully incorporating realistic solar sail properties 

attenuates the sail characteristic acceleration by nearly 25% 

and places an upper limit on the pitch angle between  50  and 

 60  for sail effectiveness, depending on the properties of the 

sail [18]. 

 In this analysis, an elevation-angle constraint, Emin , 

maintains the visibility of the spacecraft from a location near 

the south pole of the Moon, and a spacecraft altitude 

constraint, Amax , is imposed such that solutions remain 

within the vicinity of the Moon and do not escape to a region 

about the combined Earth-Moon system. Altitude is defined 

as the distance from the lunar south pole, that is, 

A = (x 1+ μ)2
+ y2

+ (z + Rm )2           (7) 

where Rm  is the lunar radius (approximately 1737 km). A 

third path constraint requires that the sail-face normal, or 

control û , is always directed away from the Sun (the 

sunlight vector is  ̂ ), or max = 90  in Eq. (6). Of the 

inequality constraints, only this attitude requirement is 

mandated. In addition to the constraint in Eq. (6), the 

inequality path constraints are 

Emin E arcsin
z + Rm

A
          (8) 

Amax A             (9) 

For the given problem and model, adding a path constraint to 

avoid the penumbra and umbra of the Earth or the Moon 

shadow is unnecessary because of the elevation-angle 

constraint. A shadow constraint could be added for another 

application or shadowing effects could be directly 

incorporated into the dynamical model [20]. Additional 

inequality path constraints could include limits on the body 

turn rates and the accelerations governed by the attitude 

control system of the spacecraft. Note that these path 

constraints are identical to those appearing in refs. [15,21]. 

The two path constraints in Eqs. (8) and (9), as well as a 

periodicity constraint, are illustrated in Fig. (2). The attitude 

constraint from Eq. (6) appears in Fig. (1). The sailcraft in 

Fig. (2) orbits below the Moon. Feasible solutions also exist 

that do not cycle below the Moon, but rather below either the 

L1  or the L2  point. 

Fig. (2). Path constraints for an orbit below the Moon (Moon image 
from nasa.gov). 

 Periodic solutions exist for a sailcraft within the context 

of a two- or three-body regime. When more primaries are 

included in the dynamical model, especially if the dynamical 

model is based on positions of the primaries from a planetary 

ephemeris, a periodic solution may not be available and a 

quasi-periodic solution must suffice. In this event, a solution 

from the lower-fidelity two- or three-body system is used to 

initialize a numerical process that does not constrain 

periodicity [10]. 

2.3. Sail Orientation Model 

 A series of rotations is employed to transform a vector 

from a sailcraft body-fixed frame to the inertial frame [22]. 

These rotations aid in expressing the angular velocity vector 

of the body-fixed frame with respect to the inertial frame, 
I B . A variety of rotation sequences are enlisted to describe 

these rotations, however, it is useful to develop I B  based 

on existing orientation angles, such as , , and t  (pitch, 

clock, and sunlight angle, respectively). This analysis 

assumes that the Sun's rays are parallel at 1 AU and that the 

Sun moves in a circle about the Earth-Moon barycenter as 

well as in the Earth-Moon orbit plane. 

 The first step in transforming from the inertial frame to a 

body-fixed frame is an initial transformation from the inertial 

frame, I , to a solar frame, F, where x̂  is aligned with  ̂ , as 

evident in Fig. (3). Because the rotating frame R  is moving 

counterclockwise about a common ẑ  axis with respect to the 

inertial frame and the Sun is moving clockwise about the 

same ẑ  axis at a rate of , the first two rotations are 

consolidated into a single rotation about the ẑ  axis of 

x̂
ŷ

ẑ

= FT3
I (t t)

X̂

Ŷ

Ẑ

        (10) 
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Fig. (3). Rotations from the inertial frame, I , to the solar frame, F, 

via the Earth-Moon rotating frame, R . 

F T3
I t t( ) =

cos(t t) sin(t t) 0

sin(t t) cos(t t) 0

0 0 1

      (11) 

The sail-face normal in the Sun-fixed frame, F, is expressed 

in terms of  and  

û =
cos

sin sin
cos sin

         (12) 

where  is also known as the clock angle and is measured 

about the sunline,  ̂ , from the ẑ  axis in the R  frame, as 

illustrated in Fig. (4). 

 

Fig. (4). Pitch, , and clock, , angles for the sail-face normal 

with respect to the sunline. The axes are fixed in the rotating frame 

and the Sun moves about the Earth-Moon system at a rate of . 

 The sunlight direction is expressed relative to the rotating 

frame, R  (the same frame in which the vector equations of 

motion, Eq. (1), are formulated), and is a function of time, 

that is, 

 

ˆ(t) = cos( t)x̂ sin( t)ŷ + 0ẑ         (13) 

where  is the ratio of the synodic rate of the Sun as it 

moves along its path to the system rate, approximately 

0.9192. The sunlight direction in the Earth-Moon system 

appears in Figs. (1, 4). Expressing û  in the working frame, 

R , requires a rotation of û  by t  about the ẑ axis. 

 The next set of rotations transforms the axes from the 

solar frame, F, to a frame on, but not rotating with, the 

sailcraft, denoted the C  frame. The coordinate frame is 

rotated through the clock angle, , about the x̂  axis, then 

by the pitch angle, , about the ŷ  axis, as defined in Fig. 

(5). The associated transformation equations are 

x̂
ŷ

ẑ

= ST2
D ( )DT1

F ( )
x̂
ŷ

ẑ

       (14) 

S T2
D ( )

D
T1

F ( ) =
cos sin sin cos sin

0 cos sin
sin cos sin cos cos

  (15) 

The matrix in Eq. (15) can be combined with the maxtrix in 

Eq. (12). 

 A final rotation is required to transform from the C  

frame to a body-fixed frame, S, via  about the sail-face 

normal, û , as indicated in Fig. (6). Note that 
 

 is the 

relative rotation rate and not the spin rate [22]. If the spin 

rate is fixed, the relative rotation angle is a function of the 

spin rate and other angular terms. The associated 

transformation equations are 

x̂iv

ŷiv

ẑ iv

= ST1
C ( )

x̂
ŷ

ẑ

        (16) 

S T1
C ( ) =

1 0 0
0 cos sin
0 sin cos

        (17) 

A full rotation from the inertial frame to the body frame is 

S T I = ST1
C ( )C T2

D ( )DT1
F ( )F T3

R ( t)RT3
I (t)       (18) 

The above rotations are employed to formulate the angular 

velocity vector. The angular velocity vector, I S , is 

constructed from the angular velocities of each rotation, that 

is, 

I S = I F
+

F D
+

D C
+

C S
        (19) 

   = (1 )ẑ x̂ ŷ + x̂iv
         (20) 

When expressed in body-fixed coordinates, 
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I S =

cos + (1 )sin cos

cos + sin sin + (1 )(sin cos cos cos sin )

sin + cos sin + (1 )(cos cos cos + sin sin )

  (21) 

If the spacecraft possesses a fixed spin rate, whether it is 

three axis stabilized ( x0 = 0 ) or spinning ( x0 0 ), the 

relative rotation angle, , is integrated from 

= x0 + cos + (1 )sin cos        (22) 

Finally, because the angular velocity vector is expressed in 

terms of the body-fixed frame, a derivative of Eq. (21) is 

required to determine the angular acceleration vector, 
 
I S ; a 

central-difference approximation of I S  is sufficient. Both 

the angular velocity and the angular acceleration are required 

to calculate the specific transverse torque, described in 

Section 4.2.1, that is required to physically reorient the 

sailcraft. 

 

Fig. (6). Rotations from the C  frame to the body-fixed frame, S. 

3. NUMERICAL BVP SOLVERS 

 Adapting numerical processes to solve boundary-value 

problems (BVPs) is advantageous. A trajectory is a set of 

states that satisfies a set of equations of motion (EOMs). The 

EOMs are often formulated as ordinary differential equations 

(ODEs). If a state along a path is known at a specific time, 

then solving for the entire path can be cast as an initial-value 

problem and propagated using explicit- or implicit-

integration methods. If path constraints exist along a 

trajectory, numerical techniques for solving BVPs are 

employed. Because the attitude is dynamically tied to the 

trajectory for the solar sail problem, an algorithm for 

generating a nominal path must also return an associated 

control profile. 

 Some common numerical procedures for solving BVPs 

include single and multiple shooting, collocation, and finite-

difference methods [21,23-25]. For the present study, two 

augmented finite-difference methods, described in 

Wawrzyniak and Howell [21], are employed to survey the 

design space for solar sails in orbits offset below the lunar 

south pole. Both methods return a nominal trajectory and 

associated control profile. 

 Four sample orbits, generated from an augmented finite-

difference approach, appear in Fig. (7). The arrows directed 

away from points along the trajectory indicate the direction 

of the sail-face normal, û , and are separated in time by 

approximately one day. The Moon is plotted to scale. The 

path in each of these four solutions originates on the L2  side 

of the Moon, in a location indicated by an “x,” and move on 

a clockwise (retrograde) path. In this Earth-Moon frame, the 

Sun is initially aligned with the x  axis, but moves 

clockwise about the Earth-Moon system with a period of one 

sidereal month (29.5 days); not coincidentally, the sailcraft 

trajectories possess the same period. Note that each of these 

orbits meets the constraints established in Section 2.2. 

 The associated control profiles of the four sample orbits 

in Fig. (7) appear in Fig. (8). Of these four trajectories, the 

light-blue path under the Moon requires the smallest 

maximum pitch angle, , and the orange path under the 

Moon is associated with the highest maximum pitch angle. 

These maximum angles occur on the right side ( +x  side) of 

the light-blue orbit in Fig. (7), when the Sun is initially 

positioned along the x  axis (at day 0 in Fig. 8). The 

maximum pitch angle associated with the orange orbit occurs 

when the spacecraft is near the extremities in the ±y  

directions of that trajectory (at days 9 and 20 in Fig. 8). 

4. SURVEY OF THE DESIGN SPACE 

 The solution space, also known as the search space or 

feasible region, is one that meets all problem constraints and 

includes all candidate solutions. The feasible region contains 

one or more locally optimal solution and many other sub-

optimal solutions. For traditional spacecraft that rely on 

chemical or electric propulsion, the cost that must be 

    (a) S  frame to D  frame          (b) D  frame to C  frame 

   

Fig. (5). Rotation from the solar frame, S , to the sailcraft frame, C , via an intermediate frame, D . 
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optimized is almost always propellant (or spacecraft mass). 

However, optimal solutions are often adjusted to 

accommodate spacecraft- and mission-design considerations 

not addressed when posing the original optimization 

problem. Examples include “soft” considerations such as the 

relative merits of one scientific plan or one operational 

strategy versus another. 

 

Fig. (8). Associated control profiles corresponding to the orbits in 
Fig. (7). 

 Complex optimization problems with a plethora of 

locally optimal solutions require good initial guesses to seed 

their respective numerical-solution algorithms. If the 

solution space in general is known, an appropriate initial 

design is selected for further refinement. The solution space 

for the LSP coverage problem is not well understood for 

solar sails. Similar problems have been examined through 

analytical approaches [11,26] as well as numerical 

techniques [10,27]. However, the design space for the LSP 

coverage problem remains relatively unexplored. A 

numerical survey is a reasonable strategy to gain insight into 

this problem, whereby a large set of initial guesses for 

potential periodic solutions is used to initialize a numerical 

process [15]. The results are collected and searched for 

trajectories characterized by desirable features. A variety of 

initial guess combinations are investigated for the path, the 

nominal attitude profile, and the sail characteristic 

acceleration. 

4.1. Initial Guess Combinations 

 Not surprisingly, the initial guesses for the trajectory and 

the control history influence the resulting solution. Two 

types of initial guesses are explored for the path, as well as 

six different types for the initial guess corresponding to the 

control history. The various combinations are summarized in 

Table 1. The superscript “0” indicates an initial guess for the 

associated variable. 

4.1.1. Initial Guesses for the Trajectory 

 Circular orbits Due to the required periodicity of the 

converged solution, co-axial circles offset from the Moon in 

the z  direction are selected as one option for an orbit to 

develop the initial guess: the x  and y  coordinates are 

defined by simple sinusoidal functions moving in a 

retrograde fashion and the z  components are constant (cases 

labeled “Cr” in Table 1). For a retrograde orbit about the 

Moon, the spacecraft and the Sun are in opposition 

throughout the cycle. For a prograde orbit, the spacecraft is 

initially located between the Sun and the Moon, but moves 

counter-clockwise as the Sun moves clockwise about the 

Moon as viewed in the rotating frame (cases labeled “Cp” in 

Table 1). Associated initial guess velocities are defined as 

the time derivatives of these sinusoidal functions. In some 

cases, the converged trajectories appear similar to their 

respective offset luni-axial circles; in most trials, however, 

the converged solution does not resemble the initial circle. 

 Static point The other possible option for the 

development of an initial guess for the trajectory is simply a 

static point, located initially in the xz  plane as defined for 

the Earth-Moon CR3B system. This option is denoted as “P” 

in Table 1. Of course, only the two Lagrange points near the 

Moon preserve this initial guess as a converged result, and 

only for certain conditions: (1) if any constraint on elevation 

that might exist allows for it and (2) if the sail-face normal is 

orthogonal to the sunline, or “off,” at all times. Nevertheless, 

the augmented finite-difference methods, developed by 

Wawrzyniak and Howell [21], converge on many different 

periodic solutions using this “P” strategy. 

 Four initial guesses for the path are illustrated in Fig. (9). 

Two initial guesses are circles, axially offset from the center 

of the Moon, and the two others are static-point initial 

(a) Side view, xz     (b) 3D view 

   

Fig. (7). Four sample orbits generated from an augmented finite-difference method. 
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guesses below L1  and L2 . These circles and points are used 

as initial guesses for the sample orbits in Fig. (7). The xz  

plane below the Moon can be populated with initial guesses, 

potentially incorporated into a large simulation. In this 

analysis, for trials in which the initial trajectory guess is a 

point and in the xz  plane, a grid spanning 75000  to 

75000  km in the x  direction and 75000  to 0  km in the z  

direction, each in 1000 km increments are used to generate 

the initial values, x0
 and z0 , for all points along the path. 

When the initial guess for the path is a concentric circle 

below the Moon, a grid of radii and z -offset values span a 

region from 0 to 75000  km and 75000  to 0 km, 

respectively, in 1000 km increments.  

 Initial guess strategies where the circular orbit possesses 

a period of one half the synodic period or twice the synodic 

period are cursorily examined. Strategies to deliver circular 

orbits with periods half the synodic period of 2 /  do not 

result in solutions with periods of /  (i.e., two revolutions 

of the orbit per synodic cycle). When employing circular 

initial guesses with an initial period of 4 / , the time 

frame of the simulation is extended to [0,4 / ] , allowing 

the Sun to make two revolutions about the system while the 

spacecraft completes one revolution. 

 Three types of solutions are observed when the 

simulation time is extended to twice the synodic period. (1) 

The first is where an orbit possessing a period of 2 /  is 

simply repeated. The second and third type are actually two 

forms of a single-revolution solution. (2) In the second type,  

the path initially appears to be centered in a region below 

L1 , the Moon or L2 . After t = / , the path shifts to a 

different region, and then after t = 3 / , the path returns to 

the original region. A sample orbit illustrating this 

phenomenon appears in red in Fig. (10). Originating at the 

red “ ” below L2 , the spacecraft moves along the path in a 

clockwise direction. The center of the path shifts to a region 

under L1  when t = /  and the Sun is located along the 

+x  axis. The motion after t = 2 /  mirrors the motion 

before that time. (3) The third type of solution behaves 

similar to the second, except that the center of the path 

remains under the same location. The orange orbit in Fig. 

(10) exhibits this behavior. For both of these sample orbits, 

the initial spacecraft motion is in the y  direction (recall 

that the Sun initially moves in the +y  direction and 

completes one clockwise revolution about the system during 

the synodic period of 2 / ). 

 

Fig. (9). Four sample initial guesses for the path. The origin of the 
coordinate system is the center of the Moon. 

 These multiple-revolution solutions demonstrates both 

their existence and that the augmented finite-difference  

methods by Wawrzyniak and Howell [21] can generate 

trajectories with time spans longer than one synodic period. 

Because the sample space already exceeds 10 million 

combinations of initial guesses where the path is a circle 

with a period of 2 / , initial guesses where the path is 

initially a circle with a period of some multiple of 2 /  

are not included in this investigation. 

4.1.2. Initial Guesses for the Control History 

 The “control history” refers to the direction of the sail-

face normal, or applied thrust vector; the control directions 

are initially defined at discrete points along the entire orbit. 

Six concepts are explored as potential initial guesses for the 

control history (producing a total of twelve combined initial 

guess strategies). 

 An optimal attitude: “ * ” The first control strategy 

simply maximizes the out-of-plane force contributed by the 

sail (“ * ” in Table 1). Derived analytically by McInnes 

Table 1. Summary of Initial Guess Strategies for the Trajectory and Control History 

 

IG* Trajectory  IG Control   Description  

Cr    r0
 is a retrograde circle, offset from Moon in z  direction  

Cp   r0
 is a prograde circle, offset from Moon in . z . direction  

P   r0
 clustered at a point near the Moon in southern xz  half-plane  

 *   ûi
0  south from Sun-line by  35.26   

 Moon  ûi
0  away from Moon  

 EOM-NR  ui
0  satisfies EOM at each epoch, ui

0
 not necessarily equal to 1  

 RAA  ûi
0  is in direction of required applied acceleration at each epoch 

 U   ûi
0  points in the direction of U(r(ti ))   

  ̂   ûi
0  points along the sunline, ˆ(ti )   

*IG: Initial Guess. 
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[16], the sail-pitch angle that maximizes the out-of-plane 

thrust is 
 

* = 35.26 . The initial guess for the thrust vector 

is then 

ûi
0 = cos( ti ) cos *x̂ sin( ti ) cos *ŷ + sin *ẑ       (23) 

This initial guess for the control strategy, combined with a 

static-point-type initial guess for the trajectory, is very 

successfully applied by Ozimek et al. [10]. 

 Sail-face normal directed away from the Moon: 

“Moon” The next strategy that serves as an initial guess 

option for the control is a thrust vector directed away from 

the center of the Moon throughout the initial guess trajectory 

(“Moon” in Table 1). Thus, if a vector, ri
c

, is defined as the 

difference between the position of the Moon and the position 

of the spacecraft in the rotating frame at time ti , or 

ri
c = (xi 1+ μ)x̂ + yi ŷ + zi ẑ         (24) 

then the initial guess for the control strategy is 

ûi
0 =

ri
c

ri
c

          (25) 

By definition, ûi
0

 possesses unit magnitude. 

 Satisfying the equations of motion for a guessed 

trajectory: “EOM-NR” A third initial control strategy 

involves the definition of the control vector at each epoch, 

ui , by satisfying the equations of motion for either a circular 

or static-point-type initial guess for the path, that is, 

f (ui
0 ) = ai + 2 I R v i + U(ri ) (ˆ(ti ) ui

0 )2 ui
0 = 0   (26) 

where ai  and v i  indicate a central difference approximation 

for the acceleration and velocity, respectively, based on the 

initial guess for the path (a circle or a point). A Newton-

Raphson iteration scheme is used to solve this nonlinear 

equation, with each ui
0

 initially directed away from the 

Moon. The converged control history then serves as the input 

control history, u0
, to the numerical algorithms. Unlike the 

other strategies, the control vector is not initially a 

magnitude of one, and the numerical solution process (e.g., 

finite-difference method) is expected to render a viable 

trajectory and a control profile where each ûi  is unit length. 

This strategy is labeled “EOM-NR” in Table 1. 

 Required acceleration: “RAA” A fourth, simpler initial 

control strategy assumes that the initial guess trajectory is 

already a solution to the equations of motion, Eq. (1), with 

the caveat that the sail provides any additional, required 

applied acceleration without regard to feasibility or 

practicality (i.e., the sail is assumed capable of unlimited, 

variable thrust, independent of direction). Therefore, if the 

applied acceleration that is required to solve the equations of 

motion appears as 

 

araa,i = ai + 2 I R v i + U(ri )         (27) 

where 
 ai  and 

 v i  indicate a central difference approximation 

based on the initial guess for the path (a circle or a point) of 

the acceleration and velocity, respectively, then the initial 

guess for the control strategy is 

ûi
0 =

araa,i

araa,i

          (28) 

This strategy is labeled “RAA” for “required applied 

acceleration” in Table 1. 

 Parallel to the pseudo-gravity gradient: “ U ” The 

fifth option in delivering the initial guess for the control 

(a) Top view, xy    (b) Side view, xz 

  

Fig. (10). Sample double orbits. Note that the initial guesses for these orbits are circular paths that have periods twice that of the synodic 
period. 



34    The Open Aerospace Engineering Journal, 2011, Volume 4 Wawrzyniak and Howell 

history (labeled “ U ” in Table 1) is similar in concept to 

the RAA as presented in Eqs. (27) and (28), except that only 

the pseudo-gravity gradient, U(r) , is involved, that is, 

ûi
0 =

U(r)

U(r)
          (29) 

Of course, if the sailcraft moves relative to the rotating 

frame, for example, when the trajectory is a circle, the 

relative and the Coriolis acceleration terms are non-zero. 

Therefore, this initial guess may be more appropriate in 

combination with a static point initial guess for the path. The 

pseudo-gravity gradient for the control direction is a critical 

quantity to develop equilibrium surfaces in the problem and 

may yield some insight (e.g., McInnes [16]). 

 Along the sunline: “ ̂ ” The final initial guess concept 

for the control history is simple and completely independent 

of the initial guess associated with the trajectory. To seed the 

corrections process, the control strategy assumes that the 

sail-face normal is parallel to the sunlight direction (labeled 

“ ˆ ” in Table 1). 

 For all initial guess combinations, the directions of the 

sail-face normal at the nodes along the trajectory, as well as 

the path itself, align to solve the equations of motion via a 

numerical boundary value problem solver. For this analysis, 

the augmented finite differences presented by Wawrzyniak 

and Howell are employed [21]. Note that the number of 

nodes, n , also affects whether or not a solutions converges. 

Throughout this analysis, n = 101 . 

4.1.3. Characteristic Acceleration 

 For an ideal sail, the characteristic acceleration,  

(nondimensional) or a0  (mm/s
2
), is the parameter that 

encapsulates the sailcraft area, mass, and reflective 

properties. For a perfectly reflecting solar sail, the 

characteristic acceleration is 

a0 =
2P

s + mp / A
         (30) 

where P  is the nominal solar radiation pressure at 1 AU 

(4.56e-6 N/m
2

), mp  is the mass of the payload and 

spacecraft excluding the sail and associated support 

structure, and A  is the area of the sail. The 2P  in the 

numerator assumes a perfect specular reflection, and, thus, 

momentum transfer from the photons, on a flat sail. An 

efficiency factor, , represents absorption and non-perfect 

reflection and is typically 0.85-0.90 [16]. The sail-loading 

parameter,  (also known as areal density), is simply a 

mass to area ratio corresponding to the sail and associated 

structure and is the primary metric for hardware 

performance. 

 A recent sailcraft design for NASA's Space Technology 

competition (ST9) was built by L'Garde with overall 

characteristic acceleration, a0 , of 0.58 mm/s
2
, while the 

characteristic acceleration of the sail and its support structure 

alone is closer to 1.70 mm/s
2
 (0.212 to 0.623 in units of 

nondimensional acceleration, respectively) [28]. The study in 

ref. [9] assumes that the ST9 sailcraft can be scaled so that 

the overall characteristic acceleration is 1.2 mm/s
2
. The 

IKAROS spacecraft, the first mission to successfully 

demonstrate the deployment of a sail in space, has a 

characteristic acceleration of 0.364e-3 mm/s
2
 [29]. NASA 

recently launched and deployed the NanoSail-D2, which 

possesses a characteristic acceleration of 0.02 mm/s
2
 [30]. 

The Planetary Society's LightSail-1, which is comprised of 

three cubesats, is expected to deliver a characteristic 

acceleration of 0.057 mm/s
2
 [31]. These sails (and others) are 

designed to demonstrate the deployment of a sail in space 

and measure the effect of solar radiation pressure on a sail. 

Future solar sail flight projects may be designed to maximize 

the characteristic acceleration. This investigation surveys a 

range of characteristic accelerations to evaluate the level of 

technology to support a sailcraft mission that addresses the 

LSP coverage problem. 

4.2. Critical Metrics 

 A trajectory designer typically constructs an orbit while 

considering various trade-offs. Formulating the design 

strategy as a single-objective optimization problem is not 

generally appropriate, as many variables can constitute the 

“cost.” In extending the formulation to a multi-objective 

optimization problem, suitable solutions may be overlooked 

and poor knowledge of the solution space impedes progress. 

In essence, the design goals typically involve optimizing 

“operability” while meeting mission constraints. 

 In designing an orbit to satisfy the requirements for a 

specific mission scenario, path constraints such as minimum 

elevation angle and maximum altitude are incorporated, i.e., 

Eqs. (8) and (9), into the trajectory design. However, for a 

given spacecraft configuration, the elevation angle might be 

maximized for more margin in a visibility requirement, or, if 

the vehicle's motion is contained below one of the Lagrange 

points, to reduce the range of azimuth angles, perhaps 

allowing a fixed antenna at the south pole. Alternatively, a 

lower maximum altitude also can reduce the required 

antenna power. 

 Trajectory considerations must also be balanced with the 

design of the sailcraft itself. Orbits associated with lower 

characteristic accelerations are more feasible with near-

future technology; however, fewer trajectory options are 

available. Orbits for an ideal sail that are associated with 

high pitch angles ( ) along the trajectory may be infeasible 

when the forces on the sail are modeled with higher fidelity 

(e.g., optical force model), as previously noted. Finally, 

solutions that require smaller torques to orient the sailcraft to 

the required attitude may be easier to maintain. The objective 

in designing a solar sail spacecraft is to minimize mass while 

maximizing area. Incorporating an attitude control system 

adds mass, thus, this final metric of “turnability,” along with 

characteristic acceleration, is of great interest. 

4.2.1. Specific Transverse Torque, or “Turnability” 

 Some recently published results for solar sail attitude 

control are relevant. Sailcraft, like other space vehicles, can 

be spin stabilized, three axis stabilized, or stabilized by a 
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gravity gradient, among other methods. Of the sailcraft that 

are spin stabilized, the attitude can be modified by thrusters 

[32,33] or by translating and tilting the sail panels [32], or by 

reflectivity control devices that adjust the sail optical 

properties [34]. Three axis stabilized sailcraft may be re-

oriented via (1) reaction wheels [35,36], or control vanes 

[35], (2) purposefully offsetting the center of mass and the 

center of pressure that yields a torque via a movable boom 

[37] or translating mass [38,39], (3) small thrusters at the tips 

of the sail masts [38], (4) magnetic torquers, or (5) a 

combination of two or more of these devices [40]. Other sail 

concepts are stabilized via gravity gradients and magnetic 

torquers [41,42]. 

 If the sail is modeled as a rigid body, and the body axes 

are aligned with the principal moments of inertia, Euler's 

familiar equations of motion govern the relationship between 

the applied torques, the body rates, and the angular 

acceleration, that is, 

 
M = I I B

+
I B I I B

        (31) 

where I  is the central, principal inertia dyadic, I B  is the 

angular velocity of the body-fixed frame with respect to the 

inertial frame, and M  is the vector of external torques 

required to control the spacecraft attitude. The derivation of 
I B  as well as I B  as functions of Eulerian rotations 

appear in Section 2.3. Solar sails are generally designed to be 

symmetric about one principal axis of inertia, such that an 

axial moment of inertia, Ia , is approximately twice that of 

the transverse moment of inertia, It . If the x  axis in the 

body frame is the axis of symmetry and the spacecraft spins 

about that axis at a constant rate, x0 , then Eq. (31), reduces 

to the following scalar equations 

 
M x = 2It x0 0  

 
M y = It ( y z x0 )          (32) 

M z = It ( z + x0 y )  

where x0 , y , and z  are the components of I B  in a 

body-fixed frame. If the sailcraft is three axis stabilized (i.e., 

not spinning and x0 = 0 ), Eqs. (32) further reduce to 

M x = 0  

 
M y = It y           (33) 

 
M z = It z  

It is clear from both the spinning (Eq. (32)) and the three 

axis stabilized (Eq. (33)) types of motion that the ability to 

successfully complete attitude turns is limited by the 

available torques in the pitch and yaw directions ( ŷiv
 and 

ẑ iv
 axes, respectively). 

 Two recent studies lend insight into the relationship 

between the capabilities of a three axis stabilized sailcraft 

and the associated maximum angular accelerations. Citing 

key driving performance requirements from three previous 

NASA mission studies where the control mechanism is a 

movable boom and the spacecraft is three axis stabilized, 

Price et al. [37] establishes an upper limit for pitch and yaw 

accelerations of 2.3e-9 deg/s
2

. More recently, Wie [35] 

establishes maximum pitch and yaw accelerations of 28.1e-6 

deg/s
2

 and a maximum turn rate of 0.02 deg/s when the 

control mechanism for a three axis stabilized sailcraft is sail 

panel translation and rotation. The parameters for a 40-by-40 

meter sail design that Wie uses originate from a mix of ST6 

and ST7 designs [35]: the sail moments of inertia are 

Ix = 6000 kg m2
 and Iy , Iz = 3000 kg m2

 with an areal 

density of 0.111 kg/m
2

 and a characteristic acceleration of 

0.0737 mm/s
2
. The maximum roll-control torque for the 

ST6/7 sailcraft of ±1.34e-3 N m and the maximum pitch- and 

yaw-control torques are ±1.45e-3 N m; the corresponding 

maximum angular accelerations are ±13.0e-6 deg/s
2

 and 

±28.1e-6 deg/s
2

, respectively. 

 When the spacecraft is spin stabilized such that x  is 

constant, i.e., x = x0 , the cross terms in Eq. (32) must be 

considered. In a three axis stabilized case, Eq. (33), the 

available torque in a particular direction is employed to 

rotate the spacecraft about that direction. When a spacecraft 

is spin stabilized about the x  axis, the same turn requires 

additional torque about the y  and z  axes. A configuration 

similar to the three axis spacecraft is employed by Wie for 

the analysis of a sailcraft spinning at 5 rotations per hour 

[32]. The IKAROS sailcraft employs liquid crystal displays 

to change the reflective properties of the sail material for 

turning; however, its primary attitude control system is a set 

of thrusters on the central bus [29]. 

 If the required rotational rates and accelerations 

associated with a particular trajectory are known, a specific 

torque about each axis can be determined. Because the 

labeling of the transverse y  and z  axes is arbitrary, the 

concept of a specific transverse torque is convenient. This 

metric characterizes the vehicle's ability to turn and is 

calculated from the transverse torques in either Eq. (32) or 

Eq. (33), that is, 

 

Mt =
M y

It

2

+
M z

It

2

         (34) 

For a given trajectory and nominal control profile, different 

specific transverse torques are required that depend on the 

spin rate. The maximum specific transverse torques 

corresponding to a three axis stabilized sailcraft (non-

spinning), 
 
Mt ,3AS , and one spinning at 5 rotations per hour, 

 
Mt ,spin , are examined. 

4.2.2. Summary of Critical Metrics for “Operability” 

 This investigation is focused on six critical metrics for 

assessing different sailcraft trajectories and the associated 

control profiles. In summary, these metrics are 

• Sail characteristic acceleration, a0  
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• Maximum specific transverse torque at any time 

along the orbit, 
 
Mt  

• Largest pitch angle at any time along the orbit,  

• Lowest elevation angle at any time along the orbit, E  

• Highest altitude at any time along the orbit, A  

• Largest range of azimuth angles throughout the orbit 

 While the items in this list may be incorporated in a 

multi-variable optimization scheme as either parameters to 

optimize or as constraints, the goal of this investigation is an 

improved understanding of the solution space, motivating a 

survey. The insight gained from this survey is necessary to 

initialize a process that optimizes one or more of these 

critical metrics. Finally, additional critical metrics may be 

identified, or some current metrics may be disregarded at 

some future time. A new search would then be conducted 

using these same techniques. 

5. RESULTS 

 The primary purpose of using a simple, lower-fidelity, 

augmented finite difference method to propagate states and 

compute solutions is to quickly and easily examine the 

design space for a solar-sail spacecraft in orbit near the 

Moon. Using the MATLAB numerical computing 

environment, over 10 million combinations of initial guesses 

are used to generate trajectories for the survey. The 

computation employed up to eight cores on five platforms 

and took approximately one week. Different combinations of 

initial guess strategies lead to different solutions. This is 

especially true when comparing trajectories that arise from 

circular initial guesses for the path to those that arise from 

initial guesses that collapse the trajectory to a single point. A 

general survey of the solution space for all combinations of 

initial guesses is a first step in understanding the design 

space. A viable solution generated from any method 

possesses characteristics that can be employed to select any 

particular orbit for further study. 

5.1. Survey of Initial Guess Combinations 

 The survey is developed to incorporate two versions of a 

finite-difference approximation [21], three strategies to 

produce an initial guess for the path, six strategies to deliver 

an initial control profile, and the investigation also includes 

an examination of various elevation-angle constraints. The 

three path strategies include a retrograde circular orbit, a 

point hovering in the xz  plane, and a prograde circular orbit. 

The circular trajectories all possess periods equal to the solar 

synodic period. Of the initial control profiles, the *  and  ̂  

approaches are most successful in generating solutions for 

any type of initial path. The EOM-NR and Moon control 

approaches only result in converged solutions when the 

initial guess for the path is a circular retrograde orbit. The 

U  and the RAA approaches are successful when the initial 

guess for the path is a prograde or a retrograde circle, but not 

when the initial guess is a point. 

 Any one initial control strategy is not necessarily 

superior to any other, however, the *  and ˆ  strategies 

converged more often than the other types of initial guesses 

for the control profile. An appropriate plan for examining the 

design space is the selection of a range of characteristic 

accelerations and path constraints and, then, the generation 

of solutions based on multiple combinations of initial 

guesses for the path and control. 

5.2. Spacecraft-Driven Critical Metrics 

 Critical metrics generally emerge as one of two types: 

those that drive the spacecraft design and those that drive the 

ground station design. To fly a particular path, the vehicle 

must possess a specific characteristic acceleration, a0 , be 

able to change its orientation as necessary, and produce 

thrust at sufficiently high pitch angles. Highlighted below 

are solutions from the survey that require the smallest a0 , 

smallest specific transverse torques, and smallest maximum 

pitch angles in their respective categories. 

5.2.1. Minimum a0 to Achieve Various Elevation-Angle 

Constraints 

 This analysis is formulated in a CR3B model. In 

actuality, the obliquity of the lunar orbit with respect to the 

Earth is  6.688  and the Moon's orbit is a secularly 

precessing ellipse with respect to an inertial frame. 

Additional margin to accommodate lunar surface features 

and incorporate a more realistic ephemeris model is added to 

the obliquity to determine Emin . For the broader survey of 

the design space to support a lunar communications relay, an 

elevation-angle constraint of Emin = 15  and altitude 

constraint of Amax  = 384,400 km is assumed (see Fig. 2 for 

an illustration of Emin  and Amax ). For these constraints, the 

smallest sail characteristic acceleration examined in this 

survey that satisfies these constraints is a0 = 1.3 mm/s2
. 

Smaller values of a0  examined in this survey (i.e., 1.25 

mm/s
2
) are insufficient to push the vehicle sufficiently far 

below the Moon to satisfy the elevation-angle constraint. 

 In the present survey, when the elevation-angle constraint 

is relaxed, solutions emerge for sails with smaller 

characteristic accelerations. Moon-centered offset orbits 

conforming to the lower constraints might not be viewable at 

all times from an outpost near the lunar south pole. Orbits 

offset below L1  and L2  may be useful as relays for a base 

near lower lunar latitudes, but on the near or far side of the 

Moon, respectively, and may require lower elevation-angle 

constraints. The lowest overall characteristic accelerations 

for a spacecraft equipped with a solar sail considered in this 

survey that meet these elevation-angle constraints under the 

three locations are listed in Table 2. 

Since a discrete set of characteristic accelerations is 

considered, the actual minimum value of a0  that conforms 

may be slightly less than the values in this table. The data in 

the table indicate that sails with higher characteristic 

accelerations are required for orbits below the Earth-Moon 

L1  point or the Moon for a given elevation-angle constraint; 

relatively lower characteristic accelerations are viable for sail 
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trajectories below the L2  point. Certainly, a0  could be 

minimized using an optimization scheme, and this broad 

survey simply offers a sense of the solutions available. The 

results from this survey yield a starting point for an 

optimization scheme based solely on characteristic 

acceleration or in combination with other metrics of interest. 

Table 2. Smallest a0 (mm/s
2
) Required for Orbits Located 

Below the Moon and the Earth-Moon L1 and L2 

Points Based on Elevation Angle 

 

 Emin:   4°   6°   9°  12 °  15°   

L1   0.58   1.00   1.25   1.50   1.60  

Moon   0.55   0.75   1.00   1.50   1.60  

L2   0.40   0.55   1.00   1.25   1.30  

 

 A variety of solutions exist for sails with the lowest value 

of characteristic acceleration that is required for the three 

locations. One such orbit appears for each location in Fig. 

(11). As before, the Sun is defined to move clockwise about 

the Moon as viewed in Fig. (10), originating at a position 

along the x  axis. The maroon and turquoise paths originate 

opposite to the Sun, while the lime-green path originates on 

the Sun-side with respect to its center. Initial motion along 

all three paths proceeds in the y  direction as the Sun 

moves in the +y  direction. In fact, the Sun moves in a 

clockwise, retrograde, fashion one half-period out of phase 

with a spacecraft moving along the retrograde maroon and 

turquoise paths. Motion along the lime-green path, however, 

is prograde, as a spacecraft along that path moves in a 

counter-clockwise fashion. Because of the motion of the 

Sun, prograde orbits originate on the left side of the orbit and 

motion is counter-clockwise while retrograde orbits orbits 

originate on the right side and motion is clockwise as 

projected on the xy  plane. Recall that the duration of each 

orbit is one sidereal month (29.5 days). 

 For a given value of a0 , an abundance of solutions exist. 

From a set of solutions with the lowest a0 , the trajectories 

appearing in Fig. (11) are selected based on the smallest 

maximum specific transverse torque (
 
Mt ,spin ) along the orbit 

for a spinning sailcraft.
2
 Critical metrics, such as the 

maximum Mt ,3AS  if the sailcraft is three axis stabilized 

(3AS), the maximum pitch angle ( ), and the minimum 

elevation angle ( E ), along these three trajectories appear in 

Table 3. Pitch angles associated with the orbits in Fig. (11) 

are all less than  55 , indicating that the solutions may 

successfully transition to a higher-fidelity sailcraft SRP 

model. 

 As the value of the sailcraft characteristic acceleration is 

increased, more trajectory solutions are available. By fixing 

a0 = 1.70 mm/s2
, a comparison with other critical metrics is 

possible. A sail characteristic acceleration this large is not 

possible with current technology. However, based on the 

results in Table 2, a sail must possess a characteristic 

acceleration near this magnitude to satisfy mission 

constraints (e.g.,  E 15  under L1 , L2 , and the Moon), and 

a requirement for future sail hardware technology is now 

established. For the rest of this investigation, to compare the 

broadest set of metrics, a0 = 1.70 mm/s2
. Note that the 

techniques employed to conduct this survey are applicable to 

missions with different path constraints and sailcraft with 

different physical characteristics. 

                                                
2If the smallest maximum M

t ,3AS
 along the orbit for a three axis stabilized 

sailcraft is used as the selection criteria, similar solutions appear under the 

Lagrange points and the same solution appears below the Moon. 

   (a) Top view, xy       (b) Side view, xz  

   

Fig. (11). Orbits below L1 , the Moon, and L2  that conform to the  15  elevation-angle constraint and possess the smallest possible a0 . 
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5.2.2. Specific Transverse Torques 

 Sample orbits with the smallest maximum Mt ,spin  for a spin 

stabilized spacecraft corresponding to a sail characteristic 

acceleration of a0 = 1.70 mm/s2
 appear in Fig. (12). For the 

dark-blue path below the Moon in Fig. (12), the trajectory 

originates on the x  side of the Moon and the spacecraft 

moves in a counter-clockwise, prograde, fashion. Note that the 

arrows that represent the direction of the sail-face normal for the 

portions of the path near the x  axis appear to be directed 

“inward” as viewed from above the xy  plane (Fig. 12) for a 

prograde orbit and “outward” for a retrograde orbit; the sail-face 

normal is constrained to be directed away from the Sun, which 

moves clockwise about the system. Consequently, the sunlight 

direction is generally aligned with the projection of the sail-face 

normal vector when the normal vector is projected into the xy  

plane. Both paths corresponding to the smallest 
 
Mt ,spin  below 

the Lagrange points in Fig. 12 are considered prograde orbits as 

well. 

 Critical metrics for the orbits with the smallest maximum 

Mt ,spin  are listed in Table 4. Recall that Mt ,spin  and Mt ,3AS  

are independently determined after the orbit is generated and 

is based on the angles  and , as well as the spin rate of 

the vehicle. The equation for the body rates appears in the 

Section 2.3. The maximum 
 
Mt ,spin  for a spin-stabilized and 

the maximum value for a three axis stabilized spacecraft 

configuration do not necessarily occur at the same locations 

along the orbit, as is apparent in Fig. (13). Furthermore, the 

orbit with the smallest maximum 
 
Mt ,spin  is not necessarily 

the solution with the smallest maximum 
 
Mt ,3AS  from the 

survey. However, the set of solutions below L1 , the Moon, 

and L2  that correspond to the smallest maximum 
 
Mt ,3AS  

also resemble the orbits that correspond to the smallest 

maximum 
 
Mt ,spin  from the survey. Associated critical 

metrics when the selection criteria is based on the smallest 

maximum 
 
Mt ,3AS  are listed in Table 5. The results from the 

Table 3. Critical Metrics for Orbits Conforming to E 15° , Selected by a0 and Mt ,spin  

 

  a0   Max 
 
Mt ,spin    Max 

 
Mt ,3AS    Max    Min E  

 L1   1.60 mm/s2   1.21e-6 deg/s2  2.26e-9 deg/s2   43.99°  15.00°  

Moon   1.60 mm/s2   4.39e-6 deg/s2  11.91e-9 deg/s2   48.66°  15.00°  

L2  1.30 mm/s2   0.78e-6 deg/s2  1.33e-9 deg/s2   51.91°  15.00°  

          (a) Top view, xy              (b) Side view, xz  

  

Fig. (12). Orbits under L1 , the Moon, and L2  that possess the smallest possible Mt ,spin  for a0 = 1.70 mm/s2 . 

Table 4. Critical Metrics for Orbits Selected by Smallest Maximum 
 
Mt ,spin  

 

   a0    Max 
 
Mt ,spin    Max 

 
Mt ,3AS    Max    Min  E  

 L1   1.70 mm/s2  5.74e-7 deg/s2 5.46e-10 deg/s2   48.56°  15.01° 

Moon   1.70 mm/s2  2.35e-7 deg/s2 1.32e-10 deg/s2   49.42°  15.07° 

L2   1.70 mm/s2  4.86e-7 deg/s2 5.71e-10 deg/s2   54.71°  15.30° 
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survey indicate that the trajectories below L2  that are 

associated with the smallest specific transverse torques 

(
 
Mt ,spin  and 

 
Mt ,3AS ) correspond to a maximum pitch angle 

along the path with a value greater than  55 . The results 

listed in Tables 4 and 5, as well as the corresponding paths 

appearing in Fig. (12) and specific transverse torques in Fig. 

(13), correspond to the set of solutions where the maximum 

pitch angle is restricted to 55 . 

5.2.3. Pitch Angle 

 As discussed previously, depending on the realistic 

optical and shape properties of a solar sail, the assumption of 

a perfectly reflecting, flat, ideal sail diverges from a realistic 

solar sail model for pitch angles greater than 50  to 60 . 

Furthermore, sail effectiveness is severely attenuated at high 

pitch angles [16,18]. Therefore, it is desirable to examine 

trajectories below L1  and the Moon, as well as L2  that are  

associated with the lowest required pitch angles. The three 

solutions from the survey associated with the lowest required 

pitch angles for sails with a0 = 1.70 mm/s2
 appear in Fig. 

(14). The associated pitch angle histories for these three 

trajectories appear in Fig. (15). The corresponding critical 

metrics for these three paths are listed in Table 6. 

5.3. Ground-Based Critical Metrics 

 If the range of motion or field of view associated with a 

radio antenna located at the lunar south pole (LSP) is 

limited, sail trajectories exist that may accommodate this 

constraint. As mentioned, an elevation-angle constraint of 

15  is established in the survey. However, solutions for a 

sailcraft with a characteristic acceleration value of 

a0 = 1.70 mm/s2
 exist that do not activate this constraint. It 

is also useful to identify the range of altitudes necessary for 

the orbits associated with a particular sailcraft characteristic 

acceleration. Finally, the design of any facility at the LSP 

benefits from information on the field of view. These 

ground-based critical metrics are examined for a sailcraft 

with a0 = 1.70 mm/s2
. 

 

5.3.1. Elevation Angle 

 The first critical metric for ground-station design is the 

elevation angle. While a constraint of 15  is imposed in this 

survey, any solutions not activated by this constraint lend 

insight into other available options. The three sample orbits 

below L1 , the Moon, and L2  that appear in Fig. (16) possess 

the associated critical metrics as listed in Table 7. 

 Unfortunately, little extra margin is available for orbits 

under L1  and the Moon. However, solutions do exist below 

L2  that possess a minimum elevation angle along the path of 

nearly  18 .
3
 The relationship between a0  and E  is 

understandable within the context of a trade-off between a0  

and E , that is, a lower a0  is required for trajectories under 

L2 , as demonstrated in Section 5.2.1. Alternatively, a greater 

minimum elevation angle is available under L2  as compared 

to L1 , or even the Moon, for the same a0 . 

5.3.2. Altitude 

 The distance of a vehicle from a station on the ground 

drives the power requirements for the transmitting and 

receiving antennas both at the ground and on the spacecraft. 

Therefore, it is useful to assess the range of distances from 

the lunar south pole for a family of solutions when designing 

a mission and communications system. The altitude of the 

spacecraft in orbit below the Moon depends upon the 

dynamics of the system, which is based on the gravity of the 

primaries and the characteristic acceleration, a0 , of the sail. 

Sailcraft with larger values of a0  may orbit either closer to 

the Moon or at higher elevation angles. For a characteristic 

acceleration of 1.70 mm/s2
, the smallest maximum altitude 

along any trajectory from the survey is 55009 km, while the 

largest maximum altitude is 141310 km. These two paths, 

both below the Moon, are plotted in Fig. (17), and their 

                                                
3The path under L

2
 is selected in post-processing and originates from the 

set of solutions with [0,55 ] . Orbits with larger minimum elevation 

angles exist that require larger maximum pitch angles along the path. 

     (a) 
 
Mt ,spin      (b) 

 
Mt ,3AS  

   

Fig. (13). Specific transverse torque profiles corresponding to orbits in Fig. (12), selected by smallest maximum 
 
Mt ,spin . 



40    The Open Aerospace Engineering Journal, 2011, Volume 4 Wawrzyniak and Howell 

critical metrics are listed in Table 8. The red path originates 

below L2  and is a retrograde orbit, while the aqua path 

originates below L1  and is a prograde orbit. Note that the red 

path in Fig. (17) is selected from a set of solutions where the 

maximum pitch angle at any point along the trajectory is less 

than  55 . 

5.3.3. Azimuth Angle Ranges 

 For simplicity, assume that the antenna is fixed on the 

lunar surface and is always directed toward the sailcraft 

relay. If the sailcraft is located below L1 , the smallest swath 

width required of ground antenna is  64.4 . The smallest swath 

width associated with a sail below L2  is 70.2 . The two 

trajectories associated with these swath widths appear in Fig. 

(18), and their respective critical metrics are listed in Table 9. 

 

 

Fig. (15). Pitch angle histories for orbits in Fig. (14). 

 

Table 5. Critical Metrics for Orbits Selected by Smallest Maximum Mt ,3AS  

 

  a0   Max 
 
Mt ,spin    Max 

 
Mt ,3AS    Max    Min E  

 L1   1.70 mm/s2   6.25e-7 deg/s2 3.43e-10 deg/s2  46.44°  15.41° 

Moon   1.70 mm/s2  2.35e-7 deg/s2 1.29e-10 deg/s2  49.36°  15.07° 

L2   1.70 mm/s2  5.58e-7 deg/s2 3.77e-10 deg/s2  53.82°  15.78° 

 

    (a) Top view, xy       (b) Side view, xz  

   

Fig. (14). Sample orbits offset below L1 , the Moon, and L2  that conform to the  15  elevation-angle constraint and possess the smallest 

required pitch angles at any point along the trajectory. 

Table 6. Critical Metrics for Orbits Selected by Smallest Required Pitch Angle,  

 

   a0   Max 
 
Mt ,spin    Max 

 
Mt ,3AS    Max    Min E  

L1   1.70 mm/s2  2.09e-6 deg/s2   5.86e-9 deg/s2   41.95°  15.00° 

Moon   1.70 mm/s2  1.59e-6 deg/s2  1.28e-9 deg/s2  38.83°  15.00° 

L2  1.70 mm/s2  1.93e-6 deg/s2  1.53e-9 deg/s2   46.71°  15.00° 
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6. DISCUSSION 

 Some general observations are notable, based on the 

results from the survey in the Earth-Moon system. First,  

trajectory options for a spacecraft relay, to support a facility 

at the lunar south pole, exist for sailcraft with characteristic 

accelerations of 1.3 mm/s
2
 or greater. Although solar sailing 

has only recently been demonstrated in flight, the recent 

design of the sailcraft for the ST9 ground demonstration 

delivers an overall characteristic acceleration of 0.58 mm/s
2
 

(including payload and attitude control system) while the 

characteristic acceleration supplied solely by the sail and 

structure is 1.7 mm/s
2
 [28]. However, a solar sail alone is not 

the only option for a single-vehicle relay to deliver LSP 

coverage. Other researchers propose hybrid propulsion 

systems that are based on a combination of a solar sail and 

low-thrust technologies. While the survey techniques 

developed for this analysis are applied to solar sails, the 

formulations are also adaptable for hybrid or other systems 

where a continual thrust component is available. 

 Second, if the vehicle is either spin-stabilized or three 

axis stabilized, the trajectory options resulting from this 

survey require attitude control authority within the 

assumptions employed in other investigations of solar sail 

attitude dynamics and control. The maximum specific 

transverse torques for a sailcraft spinning at 5 rotations per 

hour are less than the 28.1e-6 deg/s
2

 assumption published 

by Wie for a three axis stabilized spacecraft [35]. To remain 

in an orbit offset below the Moon, a sailcraft must 

continually reorient itself. The control profiles for these 

sample orbits are essentially continuous, as returned by the 

numerical BVP solver employed to generate the trajectory. 

In reality, it may be advantageous to command the spacecraft 

in a “turn-and-hold” scheme, whereby the orientation is held 

in an inertially fixed attitude for some length of time (e.g., 2-

3 days), and then reoriented to a new attitude [43]. In this 

scenario, it is presumed that lower specific transverse 

torques from the continuous case translate to lower specific 

transverse torques in a turn-and-hold scheme. 

 Returning to the assumption of a vehicle that continually 

reorients, it is observed that larger specific torques from the 

three axis stabilized attitude scheme are apparently 

correlated with larger specific torques from the spin-

stabilized attitude scheme. Statistics from the millions of 

sample orbits generated in this survey suggest a power 

           (a) Top view, xy            (b) Elevation angle profile 

                 

          (c) Side view, xz    (d) Side view, yz  

  

Fig. (16). Orbits under L1 , the Moon, and L2  possessing the largest minimum elevation angle. 
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relationship between the maximum Mt ,spin  and Mt ,3AS , that 

is, 

Mt ,3AS = (Mt ,spin )P
         (35) 

       P = 1.50 ± 0.075  

when 
 
Mt ,spin  and 

 
Mt ,3AS  are measured in deg/s

2
 and the 

error bounds are three-standard deviations.
4
 

 

Fig. (17). Orbits possessing the largest and smallest altitudes from a 
base at the LSP. 

 Finally, some notable observations about the orbits are 

summarized. Generally, prograde lunar orbits are”flatter” 

and evolve at smaller distances relative to the lunar south 

pole when compared to retrograde lunar orbits. However, 

retrograde orbits with variable elevation angles may be 

attractive for some mission-specific considerations. 

Trajectories below L2  require smaller sail characteristic 

accelerations when compared to trajectories located under 

L1  and the Moon. As demonstrated in Section 4.1.1, 

trajectories exist that naturally transfer from a Moon-

centered path to a path located below a Lagrange point.  

 

 

                                                
4

  P = 1.39 ± 0.06  when M
t ,spin

 and M
t ,3AS

 are measured in rad/s2. 

Because sail optical properties degrade over time [44], a 

sailcraft orbiting below the Moon can be shifted to an orbit 

under L2  as a0  decreases. All of the orbits surveyed are 

unstable because of their dependencies on a solar sail. 

Furthermore, all trajectories require some form of flight-path 

control. Controllability of the flight path is not necessarily 

related to any particular critical metric employed in this 

analysis and is the subject for future investigation. 

7. CONCLUSIONS AND FUTURE WORK 

 Solar sail spacecraft supply a solution to the lunar south 

pole coverage problem that requires only one space vehicle. 

By employing survey techniques, an understanding of the 

design space emerges. For a minimum elevation-angle 

constraint of 15 , a characteristic acceleration of 1.6 mm/s
2
 

is required to maintain trajectories below L1  and the Moon, 

and a characteristic acceleration of 1.3 mm/s
2
 is required to 

orbit below L2 . Solutions exist that both (1) require turning 

torques that are assumed to be possible for future solar sail 

spacecraft and (2) do not require excessively large pitch 

angles with respect to the Sun. Furthermore, if a stationary 

antenna with a fixed field of view is employed at a facility at 

the lunar south pole, trajectory options that locate the 

sailcraft within a  70  swath width exist located below the 

Lagrange points. 

 Control profiles of the sailcraft attitude is incorporated 

into the present study. Future efforts to incorporate trajectory 

control as a critical metric for trajectory selection is 

warranted. Finally, higher-fidelity models such as ephemeris 

positions of the primary bodies and optical or parametric 

models of the sail force model should also be examined. 
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Table 7. Critical Metrics for Orbits Selected by Largest Minimum Elevation Angle, E 

 

  a0   Max 
 
Mt ,spin    Max 

 
Mt ,3AS    Max    Min E  

L1  1.70 mm/s2  0.82e-6 deg/s2  0.88e-9 deg/s2  46.55°  15.69° 

Moon  1.70 mm/s2  2.45e-6 deg/s2  2.94e-9 deg/s2  50.55°  15.57° 

L2  1.70 mm/s2  1.29e-6 deg/s2  0.71e-9 deg/s2  54.62°  17.98° 

 

Table 8. Critical Metrics for Orbits Selected by Altitude 

 

   a0   Max 
 
Mt ,spin    Max 

 
Mt ,3AS    Max    Min E   Max A  

 Farthest   1.70 mm/s2   4.19e-6 deg/s2   9.26e-9 deg/s2  54.97°  15.00°  141310 km  

Nearest   1.70 mm/s2  0.85e-6 deg/s2  0.75e-9 deg/s2  50.01°  15.00°  55009 km  
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