
 The Open Artificial Intelligence Journal, 2007, 1, 1-11 1

 1874-0618/07 2007 Bentham Science Publishers Ltd.

Graph Edit Distance for Active Graph Matching in Content Based
Retrieval Applications
Stefano Berretti*, Alberto Del Bimbo and Pietro Pala

Dipartimento di Sistemi e Informatica, Universita' degli Studi di Firenze, Italy

Abstract: Application of multimedia technologies to visual data, like still images and videos, is receiving an increasing
attention especially for the large number of potential innovative solutions which are expected to emerge in the next years.
In this context, techniques for retrieval by visual similarity are expected to boost the interest of users through the defini-
tion of novel paradigms to access digital repositories of visual data. In this paper, we define a novel model for active
graph matching and describe its application to content based retrieval of images. The proposed solution fits with the class
of edit distance based techniques and supports active node merging during the graph matching process. A theoretical
analysis of the computational complexity of the proposed solution is presented and a prototype system is experimented on
the images of two sample image collections.

Keywords: Content based image retrieval, active graph matching, edit operations.

INTRODUCTION

 In recent years, digital technologies have opened the way
to novel and promising solutions for supporting representa-
tion and access to visual data, like still images or videos. In
particular, the advent of multimedia technologies and the
ever increasing diffusion of wired and wireless telecommu-
nication opens the way to new paradigms to access digital
repositories of visual data.
 Thanks to the availability of devices, tools and formats
for acquisition and representation in digital form of visual
material, large repositories of digitalized photos, videos or
3D models are rapidly growing. However, in order to exploit
the valuable assets contained in these ever growing collec-
tions, some tool should be available to support users in the
process of finding information out of these data.
 So far, several modeling approaches have been defined to
support content based access to image repositories. In gen-
eral, these include several components: processing each da-
tabase image so as to extract a descriptor of its content; or-
ganizing image content descriptors into an efficient index
structure; defining a distance function for measuring the
(dis)similarity between user queries and image content de-
scriptors; and embodying an effective query metaphor into a
visual interface [1-3].
 In particular, description of visual patterns and computa-
tion of their similarity on a perceptually motivated basis is a
key issue for content based image retrieval applications.
Among all data structures that can be used to represent fea-
tures of visual patterns and their relationships, graphs are one
of the most versatile and powerful.
 Modeling visual data using graphs, typically requires
segmentation of visual data into parts and use of graph nodes
to represent features of parts and graph edges to represent

*Address correspondence to this author at the Dipartimento di Sistemi e
Informatica, Universita' degli Studi di Firenze, via S. Marta 3, 50139,
Firenze, Italy; Tel: +39 055 4796540/415; Fax: +39 055 4796363; E-mail:
berretti@dsi.unifi.it; s.berretti@gmail.com

their relationships. Nodes and edges are associated (labeled)
with additional information (descriptors) capturing salient
visual features of parts and of their relationships, respec-
tively. Descriptors can be either symbolic or numeric. In the
former case, descriptors are symbolic labels identifying one
or more predefined classes to which the part belongs to. In
the latter case, descriptors are in the form of feature vectors
capturing through numeric values, prominent features of
each part (such as, color, texture, shape).

 Determining the similarity between two graphs is usually
referred to as graph matching and ultimately corresponds to
the problem of identifying a correspondence between nodes
and edges of the two graphs. For a general review of meth-
ods and techniques related to graph matching, the interested
reader can refer to [4,5].

 Broadly speaking, graph matching techniques can be
grouped into three distinct classes: (i) graph isomorphism;
(ii) subgraph isomorphism; (iii) error tolerant subgraph iso-
morphism. Each technique can be further classified based on
the method adopted to find a solution to the isomorphism
problem. Under this perspective, two different approaches
can be distinguished: stochastic and deterministic. In the
former, matching is achieved by means of a stochastic re-
laxation process that guarantees identification of the optimal
solution only as the limit of an increasing number of itera-
tions. Generally, if the number of computation steps is poly-
nomially bounded, only a suboptimal solution is guaranteed.
In the latter, matching is accomplished through exploration
of the solution space, that is the space defined by all possible
combinations of graph node associations until the optimal
solution is found. This is a NP-complete problem, though
techniques for avoiding exhaustive exploration of the solu-
tion space have been proposed. For instance, the most com-
mon approach is based on tree search using the A* algorithm
[6].

 Early approaches to graph matching addressed the prob-
lem of comparison of two graphs by means of finding a

2 The Open Artificial Intelligence Journal, 2007, Volume 1 Berretti et al.

graph isomorphism, that is a bijective function that associ-
ates with every node/edge in the first graph one node/edge in
the second one. It is assumed that the two graphs have the
same number of nodes/edges, the same labels and the same
edge structure. However, this approach to graph matching
poses several constraints that are seldom satisfied in the
practice. This is mainly related to the fact that the process of
eliciting graphs from visual data is usually affected by noise
and errors of various types. This is particularly true in the
case visual data represents generic images where the as-
sumption of smoothness of color changes is rarely verified.
As a result, two graphs built on the same data set using two
different, though equivalent, processes may be different and
thus do not match through an exact graph isomorphism.

 As an example, the segmentation of an image can be con-
sidered. This is a process by which an image is partitioned
into disjoint regions according to some homogeneity criteria
(usually homogeneity of color and/or texture). Results of the
segmentation process find a natural representation through a
graph structure: nodes correspond to regions and are labeled
with a description of region features; edges encode informa-
tion about relationships between regions (e.g., region adja-
cency). A multitude of approaches to image segmentation
have been proposed (for example, region growing, split and
merge, clustering in the feature space) and even within the
same class of approaches, different settings of parameters
almost always result in different segmentations. These dif-
ferences exacerbate if the input images are different to begin
with. For instance, this can be the case of images represent-
ing the same scene from slightly different viewpoints or un-
der different illumination conditions. In all these situations,
graph matching by exact graph isomorphism has proved to
be inadequate.

 A first solution for matching graphs that are not identical
is to address subgraph rather than graph isomorphism: a
subgraph isomorphism between two graphs being an iso-
morphism between one of the two graphs and a subgraph of
the second one. In classical subgraph isomorphism methods
[7,8], the best match is found using the A* search method
[6,9], or its improvements aiming to anticipate the discarding
of unfeasible solutions through look-ahead estimations [10].
In [8], a system is presented that exploits subgraph matching
to support retrieval of graphic logos from a database of color
images taken from advertisements and magazines. The sys-
tem is invariant with respect to translation and scale of im-
ages and can accurately locate a query logo in a target image.
However, its ability to retrieve similar objects in addition to
identical ones is very limited.

 In order to cope effectively with comparison of similar,
but not identical objects, the concept of inexact matching has
been considered [7,11-14]. Only the adoption of inexact
graph matching techniques can enable accurate and effective
measure of similarity between objects that are visually simi-
lar but not identical. It should be considered that the measure
of similarity is not only intended to model differences be-
tween two objects in terms of translation and scale. Rather,
the ability of a system to capture the similarity between two
objects is useful for comparison of objects that are different

to begin with, or that become different due to noise, distor-
tions or image processing operations (e.g., segmentation).

 In [15], image content is represented through region ad-
jacency graphs (RAG) and the similarity between two im-
ages is evaluated using a recursive neural network. However,
the recursive neural network is not able to manage region
adjacency graphs directly. Rather, each RAG has to be con-
verted into a directed order acyclic graph in order to be proc-
essed by the network. This conversion is typically associated
with a loss of information that penalizes the effectiveness of
the similarity measure.

 In [16], Stochastic Petri Net graphs are used to represent
shape and color content of images. Graph matching is ac-
complished through a deterministic approach, by exploring
all possible node associations in the solution space.

 In [17], several graph-based techniques are experimented
for object recognition tasks. Exact as well as approximate
algorithms are used to compute the similarity between two
graph representations.

 In [18] and [19], color adjacency graphs are used to cap-
ture prominent chromatic features of imaged objects. A de-
terministic subgraph matching technique is used to locate a
template colored object within a generic image.

 Though embodying the concept of relational inexactness,
all these techniques feature a common trait, in that they ex-
ploit a static representation of the elements under match
(nodes and edges). Differently, the matching task should be
considered as an active process by which two objects are
allowed to change in order to find the best correspondence
between their constituting elements.

 A few approaches have been presented in the past to
model graph matching as an active process. In [20,21], a
model is proposed to consider raw data, that originated the
graphs, during the matching process. Raw data and its rela-
tional abstraction (the graphs) are never decoupled. Rather,
interpretation of raw data can change during the graph
matching process so as to accommodate for a better match-
ing of the two graphs. However, the applicability of this ap-
proach for content based retrieval of information from large
repositories is highly unpractical since it requires a continu-
ous interaction between raw data and their relational abstrac-
tions during the matching process.

 In [22], a method is presented to deal with subgraph
matching by operating at a structural level: a relational dis-
tance metric is defined to accommodate for the effects of
noise or segmentation errors by inserting dummy nodes into
the graphs. A similar approach develops on the notion of
graph edit distance [23]. This is defined with respect to a set
of edit operations, namely, delete, insert, substitute, that can
be applied to alter the first graph until a subgraph isomor-
phism to the second graph exists. Each edit operation is as-
sociated with a cost. In this way, the overall effect of all the
edit operations that are applied to one graph can be quanti-
fied through an overall cost that sums up the costs associated
with individual operations. The higher the cost of the opera-
tions that are applied the more dissimilar the two graphs.

Content Based Retrieval Applications The Artificial Intelligence Journal, 2007, Volume 1 3

 In this paper, a novel solution is proposed for error toler-
ant graph matching. The solution belongs to the class of edit
distance based techniques. In particular, the original edit
distance based framework is extended so as to account for a
new operator to support node merging during the matching
process. It should be considered that, in the context of edit
distance based techniques, node merging is not equivalent to
a sequence of node deletion and insertion. Indeed, the graph
that results from the application of a node merging operation
can also be obtained through the application of appropriate
deletion and insertion operations. However, the cost that is
associated to the two transformations is not the same: in the
general case, the cost of one operation (merging) is less that
the cost of two operations (deletion and insertion). Further-
more, the merging operation should be associated with a
much lower cost than deletion and insertion, as the former
condenses in one node the information scattered in two or
more nodes, while the latter two either remove or add new
information to the graph.

 Techniques for graph matching based on node splitting
and merging have been previously used for object tracking
[24], and for image content description [25-27]. However, in
the proposed solution, instead of applying edit operations
only to one of the two graphs, graph matching is achieved by
editing both graphs. In this way, the application of edit op-
erations is equivalent to a process by which the two graphs
evolve toward a common graph structure.

 The paper is organized as follows: in the next Section the
graph matching problem is formally stated with reference to
the new operator of node merging. The algorithmic imple-
mentation and an estimate of its computational complexity
are discussed in the implementation Section. Experimental
results are reported in the results Section. Finally, conclu-
sions and current and future research directions are drawn in
the last Section of the paper.

GRAPH MATCHING BY NODE MERGING

 In the following, a graph is represented, according to the
same formalism used in [25]. In particular, a graph g is a
tuple, g = (V, E, α, β), being V a set of nodes, E ⊆ V x V a
set of edges, α: V → LV a node labeling function, and β: E
→ LE an edge labeling function. LV and LE are the set of
nodes and edge labels. The term label refers here to a ge-
neric descriptor representing the information (either in sym-
bolic or numeric form) associated with the node/edge. In this
sense, a label may be a symbolic descriptor as well as a fea-
ture vector retaining prominent characteristics of the part of
an object associated with the node/edge.

 Given two graphs, g1 = (V1, E1, α1, β1), and g2 = (V2, E2,
α2, β2), a graph isomorphism is a bijective function f: V1 →
V2 that preserves all edges and labels, that is:

 Dv(α1(x), α2(f(x))) = 0

 De(β1(E(x,y)), β2(E(f(x),f(y))) = 0

being Dv and De two distance measures defined in LV and LE,
respectively.

 Given a generic graph g = (V, E, α, β), a subset W ⊆ V of
its nodes is connected if for every pair of nodes i, j ∈ W there
is a path in W leading from i to j.
 In traditional graph matching based on the edit distance,
a set of edit operations is defined to transform one graph into
another one. The set of edit operations is composed of dele-
tion, insertion and substitution, the effect of this latter opera-
tion being the change of the value of a node or edge label.

 More precisely, the node deletion operator removes one
graph node; the node insertion operator inserts a new node
into the graph; the node substitution operator changes the
label value associated with one graph node. Similarly, the
edge deletion operator removes one graph edge; the edge
insertion operator inserts a new edge between two graph
nodes; the edge substitution operator changes the label value
associated with one graph edge.

 Each edit operator δi is associated with an edit cost
EC(δi), so that the overall change due to the application of
the sequence of edit operators Δ = (δ1, δ2, ..., δκ) can be
quantified.

G1 G2

 α1

1 A

2 B

3 C

4 D

5 E

 β1

E(1,2) A

E(1,3) A

E(1,5) A

E(2,3) B

E(2,5) B

E(3,4) C

E(3,5) C

E(4,5) D

 α2

1 C

2 D

3 E

4 A

 β2

E(1,2) c

E(1,3) c

E(1,4) a

E(2,3) d

E(3,4) a

Edit sequence

δ1: delete node 2 in G1

δ2: delete edge E(1,2) in G1

δ3: delete edge E(2,3) in G1

δ4: delete edge E(2,5) in G1

f values

f(1) = 4

f(3) = 1

f(4) = 2

f(5) = 3

Fig. (1). Comparison of two similar graphs using basic editing op-
erators.

4
3

2

1

1
5

4

3

2

4 The Open Artificial Intelligence Journal, 2007, Volume 1 Berretti et al.

 As an example, in Fig. (1) two graphs are shown, to-
gether with the sequence of edit operations that can be ap-
plied to the first graph to match the second one. The dissimi-
larity between the two graphs is evaluated as the cumulative
cost of all the edit operations that are applied, that is, EC(Δ)
= ∑κ

i=1 EC(δι).

 In the proposed solution, this set of basic edit operators is
augmented by the node merging operator. This replaces a set
of connected nodes with one node. The label value that is
assigned to the new node is computed based on the values of
the labels of the original nodes. In this way, information
about the original nodes is not lost, rather it is recombined in
the new node.

 In Fig. (2), an example of graph matching by node merg-
ing is shown. The two graphs in Fig. (2), are derived by
graphs in Fig. (1), by replacing symbolic descriptors with
numeric descriptors (given by αi and βi values). In particular,
the two graphs in Fig. (2) represent the output of the segmen-
tation of two images, node and edge descriptors representing
intra-region (normalized region area and region mean color
in the RGB space) and inter-region (region adjacency) fea-
tures, respectively. In this example, the edge labels are all
equal to 1, in that they only capture the fact that two regions
in the image are adjecent each other (and the corresponding
nodes in the graph are also connected each other).

 The cost associated to each operator reflects the amount
of alteration it introduces on one graph. With reference to the
example shown in Fig. (2), we assume that region descrip-
tors (i.e., node labels) are in the form α(i) = (si, ri, gi, bi),
being si, ri, gi, bi, respectively, the area of the region normal-
ized to the area of the image, and the normalized color com-
ponents in the RGB color space of the average color of the
region. According to this, the edit costs EC(δi) of edit opera-
tors δi, can be evaluated as follows:

• node delete: distance dd
(n) between descriptors of the

deleted region and the null region, that is, EC(δ) =
dd

(n)((si,ri,gi,bi),(∅, ∅,∅,∅)) = si;
• node insert: distance di

(n) between descriptors of the
newly created region and the null region, that is,
EC(δ) = di

(n)((si,ri,gi,bi),(∅, ∅,∅,∅)) = si;
• node substitute: distance ds

(n) between descriptors of
the original region and the substituted region, that is,
EC(δ) = ds

(n) ((si,ri,gi,bi),(sj,rj,gj,bj)) = ((si-
sj)2+1/3((ri-rj)2+(gi-gj)2+(bi-bj)2))1/2.

 The contribution to the distance given by the difference
in the three color components is multiplied by the constant
1/3. This aims to balance the contribution to the distance
given by the difference in the area, and by the differences in
the color of the regions;
• node merge: distance dm

(n) between descriptors of the
two regions to be merged, that is, EC(δ) =
dm

(n)((si,ri,gi,bi),(sj,rj,gj,bj)) = (1/3((ri-rj)2+(gi-
gj)2+(bi-bj)2))1/2.

 The cost of merging two nodes does not depend on the
area of the two merging regions in that we assume there is no
cost to pay in merging regions of different area. The only

cost is related to the difference in the color of the regions.
The constant 1/3 guarantees that the cost of merging is nor-
malized in the [0,1] interval;

G1 G2

 α1

1 (0.2, 1.0, 0.8, 0.4)

2 (0.2, 0.9, 0.6, 0.3)

3 (0.3, 0.9, 0.5, 0.3)

4 (0.1, 0.6, 0.3, 0.2)

5 (0.2, 0.1, 0.0, 0.0)

 β1

E(1,2) 1

E(1,3) 1

E(1,5) 1

E(2,3) 1

E(2,5) 1

E(3,4) 1

E(3,5) 1

E(4,5) 1

 α2

1 (0.5, 0.9, 0.5, 0.3)

2 (0.1, 0.6, 0.3, 0.2)

3 (0.2, 0.1, 0.0, 0.0)

4 (0.2, 1.0, 0.8, 0.4)

 β2

E(1,2) 1

E(1,3) 1

E(1,4) 1

E(2,3) 1

E(3,4) 1

Edit sequence

δ1: Merge nodes 2 and 3 in G1

δ2: Merge edges E(1,2) and E(1,3) in G1

δ3: Merge edges E(2,5) and E(3,5) in G1

δ4: substitute description of node 3 in G1

f values

f(1) = 4

f(3) = 1

f(4) = 2

f(5) = 3

Fig. (2). Comparison of two similar graphs by using extended edit-
ing operators.

• edge delete: distance dd
(e) between descriptors of the

deleted edge and the null edge, that is, EC(δ) =
γ∗dd

(e)(β(i),∅) = γ*βi;
• edge insert: distance di

(e) between descriptors of the
newly created edge and the null edge, that is, EC(δ)
= γ∗di

(e)(β(i),∅) = γ*βi;
• edge substitute: distance ds

(e) between descriptors of
the original edge and the substituted edge, that is,
EC(δ) = γ∗ds

(e)(β(i),βj) = γ*||βi-βj||;

4
3

2

1

1
5

4

3

2

Content Based Retrieval Applications The Artificial Intelligence Journal, 2007, Volume 1 5

• edge merge: distance dm
(e) between descriptors of the

two edges to be merged, that is, EC(δ) =
γ∗dm

(e)(β(i),βj) = γ*||βi-βj||;

being γ a weight coefficient used to balance the relative rele-
vance of operators acting on nodes and edges.

 It should be noticed that values of distances dd
(n), di

(n),
ds

(n), dm
(n), are not necessarily the same. For instance, delet-

ing one node is associated with a cost that amounts to the
relevance of the region corresponding to that node. This
relevance is estimated with the area of the region normalized
to the area of the image. The same consideration holds for
inserting a new node. Differently, the cost of substituting one
node descriptor depends not only on its area, but also on its
average color. Finally, the cost of merging two nodes de-
pends only on how much different the average colors of the
two regions are, regardless of their size. If merging occurs
between two regions with very similar colors, there is almost
no penalty in terms of editing costs.

 Table 1 summarizes the cost of matching the two graphs
in Fig. (2) using the merging operator (see Table 1a), and not
using the merging operator (see Table 1b).
Table 1. Cost of Matching the Two Graphs in Fig. (2): (a)

Using the Merging Operator; (b) Not Using the
Merging Operator

(a)

Edit Operation Operation Cost Cumulative Cost

δ1: Merge node 2 and 3 in
G1 resulting in
(0.5,0.9,0.55,0.3)

0.058 0.058

δ2: Merge edges E(1,2) and
E(1,3) in G1

0.0 0.058

δ3: Merge edges E(2,5) and
E(3,5) in G1

0.0 0.058

δ4: Substitute description of
node 3 in G1 with
(0.5,0.9,0.55,0.3)

0.029 0.087

(b)

Edit Operation Operation Cost Cumulative Cost

δ1: Delete node 2 in G1 0.2 0.2

δ2: delete edge E(1,2) in G1 γ 0.2 + γ

δ3: delete edge E(2,3) in G1 γ 0.2 + 2γ

δ4: delete edge E(2,5) in G1 γ 0.2 + 3γ

δ5: substitute description of
node 3 in G1 with
(0.5,0.9,0.55,0.3)

0.2 0.4 + 3γ

IMAGE MATCHING

 In order to account for node merging, image matching is
organized as an iterative process that performs the following
actions at each iteration step:

• For each graph node, the set of compatible nodes is
computed. This set is defined as the set of nodes that
can be merged with the current node (for instance,
because they have very similar colors and/or tex-
tures);

• For each graph node, the set of virtual nodes is com-
puted. This is defined as the set of nodes originated
by merging the current node with one or more adja-
cent nodes;

• Nodes of the two graphs are compared so as to decide
which combinations of nodes should be actually
fused.

 Detailed description of each iteration step is provided in
the following Section.

COMPATIBLE NODES

 Each node is associated with a label that represents in-
formation about node features. We assume that a dissimilar-
ity metric is defined that enables comparison of node labels
so as to derive the dissimilarity between two nodes. In our
case, this dissimilarity metric is in the form of a weighted
Euclidean distance.

 Let g = (V, E, α, β) be a graph, i, j ∈ V two nodes and
α(i), α(j) ∈ LV ⊆ Rn their labels. The dissimilarity between
nodes i and j is measured as:

Dω(i,j) = [α(i)-α(j)]’diag (ω1, ω2, ..., ων) [α(i)-α(j)] (1)

being (ω1, ω2, ..., ων) a set of weights used to balance the
relative relevance of node features.

 It should be noticed that this definition of node dissimi-
larity is not restricted to nodes of the same graph. In fact, the
dissimilarity between nodes of two distinct graphs can be
computed provided that they adopt homogeneous labels (fea-
ture vectors).

 Given a generic graph g = (V, E, α, β), two nodes i, j ∈ V
are compatible nodes if both the following conditions hold: i
and j are adjacent nodes; Dω(i, j) < τc; being τc a fixed node
compatibility threshold (in the experimental results, this
threshold was set to τc=0.3).

 For a node i of a graph, the set of compatible nodes can
be defined. This set is indicated as C(i) and is composed of
the current graph node and all its compatible nodes. For node
i, the set of compatible nodes C(i) is used to derive the set of
virtual nodes. In general, a virtual node results from the
combination (merging) of one node with one or more com-
patible nodes. Given a node i, let N+1 be the cardinality of
the set C(i) (i.e., the number N of node compatible with the
node i, plus the node i itself).

6 The Open Artificial Intelligence Journal, 2007, Volume 1 Berretti et al.

 Let CN
k(i) be the set of all k-combinations of the elements

of C(i) that include node i. The set of virtual node combina-
tions VN(i), for node i is defined as:
VN(i) = { CN

k(i) }N
k=0

being CN
0(i) = i. Since the cardinality of CN

k(i) is the bino-
mial coefficient (N

k), the cardinality of VN(i) is the sum ∑N
k=0

(N
k)= 2N.

(a)

(b)

(c)

Fig. (3). (a) A sample image. (b) The segmented image obtained
applying a color based segmentation algorithm to the image in (a).
(c) The segmented image in (b) is represented through a graph,
where: nodes correspond to the segmented regions and are labeled
with the region area (in percentage with respect to the overall area
of the image), and the average color of the region (in the RGB color
space); edges account for the adjacency between regions in the
image plane.

 Indeed, each element of VN(i) is a node. In particular, it
can be the node i, or any node obtained by merging node i
with one or more compatible nodes. Given a virtual node ψ,
the node originating function Ω(ψ) returns the set of nodes
that were merged to originate it. When two or more nodes
are merged to create a new node, some criteria must be fol-
lowed in order to compute the label to assign to the new
node. New nodes should inherit information from the nodes
from which they originate. This is accomplished through the
definition of a feature propagation function Ffp: Rn x Rn →
Rn. Given a pair of nodes and their labels, this function out-
puts the label that should be associated with the node origi-
nating from the merge of the first two.

 The way in which the feature propagation function acts
on the pair of feature vectors associated with the nodes to be
merged depends on what is represented in the elements of
the feature vector. In general, the feature propagation func-
tion may entail ad-hoc knowledge about rules to be applied
for each element of the feature vector.

 A sample case is shown in Fig. (3). The feature vector of
one node combines information about area and color. In par-
ticular, the feature vector of node i is in the form fi = (f1i, f2

i,
f3

i, f4
i) ∈ R4, being f1

i the area of the region represented by
node i, and f2i, f3i, f4

i
 the three components of its color. In

order to combine the feature vectors of N nodes, the feature
propagation function applies a summation rule for the first
element of the feature vector, and a mean rule for the last
three elements. That is:

!!
"

#
$$
%

&
=!!

"

#
$$
%

&
''''
=====

N

j

j
N

j

j
N

j

j
N

j

j
N

j

jfp fNfNfNffF
1

4

1

3

1

2

1

1

1

/1,/1,/1,!

 In the above equation, normalized values of the area and
of the color components of the regions are used.

Fig. (4). Virtual nodes originated from the graph shown in Fig. (3c).
For the readability of the graph, feature vectors associated with the
original graph nodes, and with the virtual nodes obtained as combi-
nation of three nodes are not displayed. Each virtual node is evi-
denced through a dotted contour and is connected to its originating
nodes through dotted edges.

 Virtual nodes that are originated from nodes of the graph
in Fig. (3) are shown in Fig. (4). Each virtual node is evi-
denced through a dotted contour and is connected to its
originating nodes through dotted edges.

VIRTUAL NODES COMPARISON

 When two graphs have to be compared, for each graph
node the virtual node combination set is computed. Virtual

R7

R5

R4

R6

(0.125, 0.98, 0.78, 0.35)
R0

R1

R2

R3

(0.12, 0.97, 0.67, 0.325)

(0.13, 0.93, 0.56, 0.29)

(0.13, 0.85, 0.45, 0.24)

(0.13, 0.71, 0.34, 0.2)

(0.13, 0.47, 0.22, 0.16)

(0.11, 0.2, 0.09, 0.08)

Content Based Retrieval Applications The Artificial Intelligence Journal, 2007, Volume 1 7

node combination sets of the two graphs are compared so as
to determine the best node correspondences. In order to find
the best node correspondences both actual-to-actual, actual-
to-virtual and virtual-to-virtual node comparisons are ex-
plored.

 In this way, the purpose of selecting the best node corre-
spondences is twofold: on the one hand, it favorites aggrega-
tion of nodes that find a counterpart in both graphs; on the
other, it favorites aggregation of nodes that are surrounded
by similar nodes (aggregations of nodes).

 Nodes are not compared using the dissimilarity function
defined in Eq.(1). Rather, a context dissimilarity function
Dcd(.,.) is defined for this purpose. Given two nodes i and j,
the value of Dcd(i,j) accounts not only for the dissimilarity of
the feature vectors associated with nodes i and j, but also for
the dissimilarity of their adjacent nodes:

!"#

!"#

++

$
%

&
'
(

)
+++++

=
Adj

Adj
dAA

jiD

jicomp

colji

cd

max

#
1

),(

,

where: Ai and Aj are the area of the two regions; dcol=(((Ri-
Rj)2+(Gi- Gj)2+(Bi- Bj)2)/3)1/2 is the distance between the
average colors of regions i and j; max Adj = max (Adji, Adjj)
is the maximum between the number of adiacent regions for
regions i and j; and α, β, γ are weights of the individual dis-
tance components.

 According to this equation, the difference in area and
color between the regions is accounted as well as the number
of adjacent compatible regions.

 Comparison of two virtual node combination sets results
in the identification of two nodes (belonging to the first and
second graphs, respectively) that correspond to each other.
Each one of these two nodes can be either an actual node or a
virtual node. In the case the node is a virtual node, it be-
comes an actual node and replaces, in the original graph, all
the nodes that originated it.

ALGORITHM IMPLEMENTATION

 The proposed solution to graph matching, requires com-
parison not only of the nodes in two graphs, but also of the
virtual nodes that originate from possible merging occurring
between adjacent nodes in each graph involved in the com-
parison. Assuming the computational complexity of a tradi-
tional subgraph matching problem to be O(m1

m2) [28] (being
m1 and m2 the number of nodes of the two graphs), the com-
plexity of the proposed solution scales to O((m1*ξ)(m2*ξ))
being ξ the average number of virtual nodes originated from
each actual node.

 In order to be effectively used for graph comparison, the
complexity of the proposed solution needs to be reduced.
This is accomplished by adopting a greedy approach for
node comparison. According to this strategy, graph compari-
son is accomplished through an iterative matching process.
At each iteration step, the following actions are performed:
• One node i in the first graph is selected and the most

similar node j in the second one is found.

• VN(i) and VN(j), that is, the virtual nodes originated
by nodes i and j are computed.

• The elements of VN(i) and VN(j) are compared to find
the best match

• If the best match involves some virtual nodes (e.g.,
node ψ), replace all nodes Ω(ψ) with ψ. In the next
iteration steps, ψ is regarded as an actual node (not a
virtual one).

 Adoption of this greedy approach for node comparison
reduces the computational complexity of the matching proc-
ess. In fact, node correspondences are found through an it-
erative exploration of the best possible node mappings and
selection of the best mapping at each iteration. However, this
approach does not guarantee to find the optimal solution to
the matching problem.

 However, at the cost of an increased computational com-
plexity, the proposed approach could be also included in a
matching approach that attains exact match between the
graphs under comparison in the style of the A* algorithm.

COMPLEXITY ANALYSIS

 The computational complexity of the proposed graph
matching technique is evaluated as follows. Let us consider
two graphs, G1 and G2 with m1 and m2 nodes, respectively. In
addition, without loss of generality, we assume that m1 ≤ m2.
The matching algorithm is constructed around a main loop
which iteratively considers all the nodes in graph G1 in order
to subsequently assign them to nodes in G2.

 According to this, the worst computational complexity
can be estimated for the case in which, for each node i in G1
the following operations are performed:
(a) Find the node j in G2 that is the most similar to node

i.
(b) Build VN(i) and VN(j), that is the sets of virtual

nodes for nodes i and j.
(c) Compare VN(i) and VN(j) to find the best match

between their elements.

 Complexity of step (a) is O(m2). Assuming that each
node has an average number of N adjacent compatible nodes,
the average cardinality of the virtual combination sets is:

E[#VN(i)] = E[#VN(j)]= ∑N
k=0 (N

k) = 2N

 Therefore, the computational complexity of step (c) is
O(22N). Instead, the computational complexity of step (b) is
negligible with respect to O(22N).
 Steps (a), (b) and (c) have to be performed for each node
i in G1, so that the overall computational complexity is given
by O(m1*(m2+22N)).

 As a consequence, the management of node merging pe-
nalizes the overall complexity of the matching process only
in the case in which m2 << 22N. This condition is rarely veri-
fied in graphs originated from segmented images, in that
typically the number N of compatible node is small.

8 The Open Artificial Intelligence Journal, 2007, Volume 1 Berretti et al.

EXPERIMENTAL RESULTS

 The proposed approach for graph matching by node
merging has been experimented in the application context of
image retrieval by visual similarity. In particular, two test set
have been considered: the WebMuseum collection of paint-
ing images [29], and the ALOI object image database [30].

 The first image dataset comprises about 1000 images,
representing paintings by different authors, styles and artistic
period collected from the WebMuseum [29]. Images were
initially described by segmenting them into regions accord-
ing to chromatic content using the approach proposed in
[31]. Color regions identified during this phase are approxi-
mately homogeneous, but there are several cases in which
the segmentation process may produce over-segmented or
under-segmented images. This can hinder an effective re-
trieval due to the difficulty to map regions of similar, but not
identical images. For each image, a graph model is con-
structed, where each node represents a region and is labeled
with a feature vector capturing region area and color. Edges
between nodes are used to encode region adjacency.

 The example reported, aimed at testing the improvement
of retrieval effectiveness determined by the use of the merg-
ing strategy applied during graphs comparison. To this end,
we compared retrieval results obtained by running the
matching algorithm with two different settings of parameter
τc which thresholds the nodes compatibility: in the first case,
we used τc = 0.3, thus allowing the combination of adjacent
nodes (node merging enabled); in the second case we used τc

= 0, thus preventing all nodes to merge with adjacent nodes
(node merging disabled). This latter choice reduces the
matching problem to the assignment of best fitting nodes in
the two graphs.

 Retrival results are presented using the standard measures
of precision and recall. Precision is defined for each query
image as the number of correctly retrieved images with re-
spect to the overall number of images retrieved from the da-
tabase (fixed a maximum similarity threshold). Recall is the
number of correctly retrieved images with respect to the
overall number of images in the database which are relevant
to a given query image. The ideal result is to get precision
equal to one for every value of recall.

 In Fig. (5) a manually authored color sketch is used in
order to retrieve paintings representing faces. Actually, this
is the application scenario which least exploits the potential-
ity of the proposed approach, since the probability that nodes
merging takes place in the query is quite low. This is mainly
due to the fact that a user will probably draw a small number
of patches identified by very different colors. As a conse-
quence, it is highly probable that node merging will be per-
formed only in the database graphs. So, testing the method in
this case should provide a lower bound in the improvement
that can be expected in the application of this approach.

 The query and the first six retrieved images are shown in
Fig. (5) (from left to right and from top to bottom). It can be
noticed that the top three retrieved images represent portrait
paintings. The fourth image does not represent any face, but

is retrieved since its segmented regions have colors similar
to the colors used in the query sketch.

 Fig. (6a) shows the precision curves obtained by running
the matching algorithm with dynamic merging of graph
nodes enabled and disabled, respectively. The horizontal axis
represents the size of the retrieval set, while the vertical axis

Fig. (5). Retrieval example based on the matching algorithm. The
query image is on the upper-left, followed by the six top ranked
results (listed from left to right and from top to bottom).

is the precision of retrieval. Values of precision are reported
for different sizes of the retrieval set (from 1 to 30), showing
that node merging can significantly improve the effective-
ness of the retrieval process, expecially for the top ranked,
and most relevant, images.

(a)

(b)

Fig. (6). Precision curves obtained by running the matching algo-
rithm with dynamic node merging enabled and disabled for the
examples of Fig. (5 (plot a)) and Fig. (7 (plot b)), respectively.

Content Based Retrieval Applications The Artificial Intelligence Journal, 2007, Volume 1 9

 A different example is shown in Fig. (7). In this case, the
query is an image selected from the database. Such a query
could be useful, for example, to search images with the same
theme painted from the same author. Retrieval results are
shown for the seven best ranked images (including the
query), according to the proposed matching algorithm. It is
interesting to note that the query and some of the retrieved
images are from the same painter (Cezanne).

Fig. (7). Retrieval example based on the matching algorithm. The
query image is on the upper-left, followed by the six top ranked
results (listed from left to right and from top to bottom).

 In Fig. (6b), precision curves are shown for the cases in
which the matching algorithm runs with dynamic merging of
nodes enabled and disabled, respectively. Also in this case, it
can be observed the improving of the results obtained by the
matching strategy with node merging enabled.

 In the experiments on the WebMuseum, the ground truth
for the retrieval has been established by randomly selecting
50 images out of the 1000 images of the dataset to be used as
query. For these images, 10 users have been required to
score the 8 most similar images to the query. Based on these
user based evaluation the set of relevant images for each

query is defined. Using this experimental set up, Table 2
shows the average values of precision at different recall.

 Experiments on the Amsterdam Library of Object Images
(ALOI database) have been also performed. This database
has been used elsewhere to perform retrieval experiments for
content based retrieval applications [32]. This allows the
comparison of the results reported in this work with those
obtained using different retrieval approaches.
Table 2. Value of Precision at Different Recall for a Set of 50

Query Images Randomly Selected from the WebMu-
seum Dataset

Precision 0.82 0.75 0.69 0.6 0.47 0.35

Recall 0.5 0.6 0.7 0.8 0.9 1.0

 The ALOI database comprises 1000 objects recorded un-
der various imaging conditions [30]. In order to capture the
sensory variation in objects recordings, the viewing angle, the
illumination angle, and the illumination color of every object
are systematically varied. Additionally, wide-baseline stereo
images are captured. In thiw way, 12 images are captured for
each object, yielding a total of 12000 images for the overall
collection.

 As an example, Fig. (8e) shows the precision-recall
curves computed for four different query images which be-
long to four different objects categories of the ALOI data-
base (the four query images are reported in Fig. (8a-d).

 From Fig. (8), it can be observed that the proposed solu-
tion is capable to provide quite effective retrieval perform-

(a)

(b)

(c)

(d)

(e)

Fig. (8). (a-d) Images of four different objects from the ALOI database. These images are used as queries against the entire ALOI database.
(e) Precision-recall curves obtained using the four images in a-d as queries.

10 The Open Artificial Intelligence Journal, 2007, Volume 1 Berretti et al.

ance for objects belonging to different categories. In fact,
due to the active aggregation of image regions during the
match, the approach can overcome problems originated dur-
ing the feature extraction process. In particular, one common
difficulty occurring in image segmentation is the possible
fragmentation of image objects, that can result in the split of
individual objects into different parts. Differently from tradi-
tional approaches that only perform match between static
graph structures, the proposed active graph matching solu-
tion is capable to dynamically recombine image regions, thus
recovering erroneous segmentations during the match.

 Avrage values of precision at different recall are reported
in Table 3 for the ALOI database. These experiments have
been conducted by using, for every object of the ALOI
dataset, the image that has been acquired with illumination at
0°. These 1000 query images have been compared against the
entire ALOI dataset.
Table 3. Value of Precision at Different Recall for the ALOI

Dataset

Precision 0.91 0.83 0.77 0.72 0.61 0.43

Recall 0.5 0.6 0.7 0.8 0.9 1.0

 In these experiments, the ground truth is directly obtained
by considering the 12 images of each object as the correct
retrieval set for the object. This implies that, for every query, it
is expected that the 12 images acquired under different condi-
tions for the same object are ranked in the first 12 positions of
the retrieval set. In so doing, we did not consider any particu-
lar ordering between these images, assuming that all the 11
images (apart the query image that is obviously ranked in the
first position) are equivalent.

CONCLUSIONS

 In this paper a novel solution has been proposed for error
tolerant graph matching. The solution fits with the class of
edit distance based techniques. In particular, the traditional
set of edit operations is extended so as to allow node merg-
ing during the matching process.

 An analysis of the computational complexity of the pro-
posed approach has been presented to evidence that the
larger the size of the two graphs being compared, the smaller
is the increase of complexity associated with the manage-
ment of node merging. Results are reported to demonstrate
the potential and effectiveness of the proposed solution.

 Future work will address a more extensive experimenta-
tion and testing as well as a comparison with alternative
techniques using edit distance for graph matching, both in
terms of computational complexity and matching accuracy.

ACKNOWLEDGEMENTS

 This work is partially supported by the Information Soci-
ety Technologies (IST) Program of the European Commis-
sion as part of the DELOS Network of Excellence on Digital
Libraries (Contract G038-507618).

 A preliminary version of this work appeared in [33]. This
work advances [33] by providing insight in the theory and
implementation details of the proposed approach, and in the
experimental results.

REFERENCES
[1] A. Del Bimbo, Visual Information Retrieval. San Francisco:

Morgan Kaufmann Publishers, 1999.
[2] A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain “Con-

tent-Based Image Retrieval at the End of the Early Years”, IEEE
Trans Pattern Anal Mach Intell vol. 22, no. 12, pp. 1349-1380, De-
cember 2000.

[3] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain, “Content-Based Mul-
timedia Information Retrieval: State of the Art and Challenges”,
ACM Transactions on Multimedia Computing, Communications
and Applications, vol. 2, no. 1, pp. 1-19, February 2006.

[4] H. Bunke, “Recent Developments in Graph Matching”, in Proc.
15th International Conference on Pattern Recognition, Barcelona,
Spain, 2000, vol. 2, pp. 117-124.

[5] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years of
Graph Matching in Pattern Recognition”, Intern J Pattern Recognit
Artif Intell, vol. 18, no. 3, pp. 265-298, May 2004.

[6] J. Ullman, “An Algorithm for Subgraph Isomorphism”, Journal of
the ACM, vol. 23, no. 1, pp. 31-42, January 1976.

[7] W. H. Tsai, and K. S. Fu, “Error-Correcting Isomorphism of At-
tributed Relational Graphs for Pattern Analysis”, IEEE Trans Syst
Man Cybern, vol. 9, no. 12, pp. 757-768, December 1979.

[8] M. Das, E. M. Riseman, and B. A. Draper, “FOCUS: Searching for
multi-colored objects in a diverse image database”, in Proc. Inter-
national Conference on Computer Vision and Pattern Recognition,
1997, pp. 756-761.

[9] N. J. Nilsson, Principles of Artificial Intelligence. Berlin: Springer
Verlag, 1980.

[10] S. Berretti, A. Del Bimbo, and E. Vicario, “Efficient Matching and
Indexing of Graph Models in Content-Based Retrieval”, IEEE
Trans Pattern Anal Mach Intell, vol. 23, no. 10, pp. 1089-1105,
October 2001.

[11] H. Bunke, “Error-correcting Graph Isomorphism Using Decision
Tree”, Intern J Pattern Recognit Artif Intell, vol. 12, no. 6, pp. 721-
742, September 1998.

[12] A. Massaro, and M. Pelillo, “Matching graphs by pivoting”, Pat-
tern Recog Lett, vol. 24, no. 8, pp. 1099-1106, May 2003.

[13] A. Sanfeliu, and K. S. Fu, “A Distance Measure Between Attrib-
uted Relational Graphs for Pattern Recognition”, IEEE Trans Syst
Man Cybern, vol. 13, no. 3, pp. 353-362, May/June 1983.

[14] A. Hlaoui, and S. Wang, “A New Algorithm for Inexact Graph
Matching”, in Proc. 16th International Conference on Pattern Rec-
ognition, Quebec City, Canada 2002, vol. 2, pp. 465-468.

[15] C. De Mauro, M. Diligenti, M. Gori, and M. Maggini, “Similarity
learning for graph-based image representations”, Pattern Recognit
Lett, vol. 24, no. 8, pp. 1115-1122, May 2003.

[16] N. G. Bourbakis, “Emulating Human Visual Perception for Meas-
uring Difference in Images Using an SPN Graph Approach”, IEEE
Trans Syst Man Cybern, vol. 32, no. 2, pp. 191-201, April 2002.

[17] A. Sanfeliu, R. Alquezar, J. Andrade, J. Climent, F. Serratosa, and
J. Verges, “Graph-based Representation and techniques for image
processing and image analysis”, Pattern Recognit, vol. 35, no. 3,
pp. 639-650, March 2002.

[18] J. Matas, R. Marik, and J. Kittler, “On Representation and Match-
ing of Multi-Coloured Objects”, in Proc. of International Confer-
ence on Computer Vision, 1995, pp. 726-732.

[19] I. K. Park, I. D. Yun, and S. U. Lee, “Color Image Retrieval using
Hybrid Graph Representation”, Image and Vision Computing, vol.
17, no. 7, pp. 465-474, May 1999.

[20] R. C. Wilson, and E. R. Hancock, “Relational Matching with Dy-
namic Graph Structures”, in Proc. of the Fifth International Confer-
ence on Computer Vision, 1995, pp. 450-456.

[21] R. C. Wilson, and E. R. Hancock, “Structural matching by discrete
relaxation”, IEEE Trans Pattern Anal Mach Intell, vol. 19, no. 6,
pp. 634-648, June 1997.

[22] L. Shapiro, and R. M. Haralick, “A metric for Comparing Rela-
tional Descriptions”, IEEE Trans Pattern Anal Mach Intell, vol. 7,
no. 1, pp. 90-94, January 1985.

Content Based Retrieval Applications The Artificial Intelligence Journal, 2007, Volume 1 11
[23] B. T. Messmer, and H. Bunke, “A new algorithm for error-tolerant

subgraph isomorphism detection”, IEEE Trans Pattern Anal Mach
Intell, vol. 20, no. 5, pp. 493-504, May 1998.

[24] C. Gomila, and F. Meyer, “Tracking Objects by Graph Matching of
Image Partition Sequences”, in Proc. of International Workshop of
Graph based Representation for Pattern Recognition, 2001, pp. 1-
11.

[25] R. Ambauen, S. Fischer, and H. Bunke, “Graph Edit Distance with

Node Splitting and Merging and its Application to Diatom Identifi-
cation”, in Proc. of International Workshop on Graph based Repre-
sentations in Pattern Recognition, York, UK, 2003, pp. 95-106.

[26] R. Cesar, E. Bengoetxea, and I. Bloch, “Inexact Graph Matching
Using Stochastic Optimization Techniques for Facial Feature Rec-
ognition”, in Proc. 16th International Conference on Pattern Rec-
ognition, Quebec City, Canada, 2002, vol. 2, pp. 465-468.

[27] L. Gregory, and J. Kittler, “Using Graph Search Techniques for
Contextual Colour Retrieval,” in Proc. of Structural, Syntactic and
Statistical Pattern Recognition, 2002, vol. 186-194.

[28] M. R. Garey, and D. Johnson, Computer and Intractability: A
Guide to the Theory of NP-Completeness. San Francisco: Freeman,
1979.

[29] WebMuseum of Art: http://www.ibiblio.org/wm/, January 2007.
[30] J. Geusebroeck, G. Burghouts, and A. Smeulders, “The Amsterdam

library of object images,” International Journal of Computer Vi-
sion, vol. 66, no. 1, pp. 103-112, January 2006.

[31] A. Del Bimbo, M. Mugnaini, P. Pala, and F. Turco, “Visual Query-
ing by Color Perceptive Regions”, Pattern Recognit, vol. 31, no. 9,
pp. 1241-1253, September 1998.

[32] G. P. Nguyen, and M. Worring, “Optimization of interactive visual
similarity based search”, ACM Transactions on Multimedia Com-
puting, Communications, and Applications, vol. 4, no. 1, February
2008.

[33] S. Berretti, A. Del Bimbo, and P. Pala, “A Graph Edit Distance
Based on Node Merging,” in Proc. International Conference on Im-
age and Video Retrieval, Dublin, Ireland, Lecture Notes in Com-
puter Science, 2004, vol. 3115, pp. 464-472.

Received: August 1, 2007 Revised: October 9, 2007 Accepted: October 11, 2007

