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Abstract: Application of multimedia technologies to visual data, like still images and videos, is receiving an increasing 
attention especially for the large number of potential innovative solutions which are expected to emerge in the next years. 
In this context, techniques for retrieval by visual similarity are expected to boost the interest of users through the defini-
tion of novel paradigms to access digital repositories of visual data. In this paper, we define a novel model for active 
graph matching and describe its application to content based retrieval of images. The proposed solution fits with the class 
of edit distance based techniques and supports active node merging during the graph matching process. A theoretical 
analysis of the computational complexity of the proposed solution is presented and a prototype system is experimented on 
the images of two sample image collections. 
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INTRODUCTION 

 In recent years, digital technologies have opened the way 
to novel and promising solutions for supporting representa-
tion and access to visual data, like still images or videos. In 
particular, the advent of multimedia technologies and the 
ever increasing diffusion of wired and wireless telecommu-
nication opens the way to new paradigms to access digital 
repositories of visual data. 
 Thanks to the availability of devices, tools and formats 
for acquisition and representation in digital form of visual 
material, large repositories of digitalized photos, videos or 
3D models are rapidly growing. However, in order to exploit 
the valuable assets contained in these ever growing collec-
tions, some tool should be available to support users in the 
process of finding information out of these data. 
 So far, several modeling approaches have been defined to 
support content based access to image repositories. In gen-
eral, these include several components: processing each da-
tabase image so as to extract a descriptor of its content; or-
ganizing image content descriptors into an efficient index 
structure; defining a distance function for measuring the 
(dis)similarity between user queries and image content de-
scriptors; and embodying an effective query metaphor into a 
visual interface [1-3]. 
 In particular, description of visual patterns and computa-
tion of their similarity on a perceptually motivated basis is a 
key issue for content based image retrieval applications. 
Among all data structures that can be used to represent fea-
tures of visual patterns and their relationships, graphs are one 
of the most versatile and powerful. 
 Modeling visual data using graphs, typically requires 
segmentation of visual data into parts and use of graph nodes 
to represent features of parts and graph edges to represent  
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their relationships. Nodes and edges are associated (labeled) 
with additional information (descriptors) capturing salient 
visual features of parts and of their relationships, respec-
tively. Descriptors can be either symbolic or numeric. In the 
former case, descriptors are symbolic labels identifying one 
or more predefined classes to which the part belongs to. In 
the latter case, descriptors are in the form of feature vectors 
capturing through numeric values, prominent features of 
each part (such as, color, texture, shape). 

 Determining the similarity between two graphs is usually 
referred to as graph matching and ultimately corresponds to 
the problem of identifying a correspondence between nodes 
and edges of the two graphs. For a general review of meth-
ods and techniques related to graph matching, the interested 
reader can refer to [4,5]. 

 Broadly speaking, graph matching techniques can be 
grouped into three distinct classes: (i) graph isomorphism; 
(ii) subgraph isomorphism; (iii) error tolerant subgraph iso-
morphism. Each technique can be further classified based on 
the method adopted to find a solution to the isomorphism 
problem. Under this perspective, two different approaches 
can be distinguished: stochastic and deterministic. In the 
former, matching is achieved by means of a stochastic re-
laxation process that guarantees identification of the optimal 
solution only as the limit of an increasing number of itera-
tions. Generally, if the number of computation steps is poly-
nomially bounded, only a suboptimal solution is guaranteed. 
In the latter, matching is accomplished through exploration 
of the solution space, that is the space defined by all possible 
combinations of graph node associations until the optimal 
solution is found. This is a NP-complete problem, though 
techniques for avoiding exhaustive exploration of the solu-
tion space have been proposed. For instance, the most com-
mon approach is based on tree search using the A* algorithm 
[6]. 

 Early approaches to graph matching addressed the prob-
lem of comparison of two graphs by means of finding a 
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graph isomorphism, that is a bijective function that associ-
ates with every node/edge in the first graph one node/edge in 
the second one. It is assumed that the two graphs have the 
same number of nodes/edges, the same labels and the same 
edge structure. However, this approach to graph matching 
poses several constraints that are seldom satisfied in the 
practice. This is mainly related to the fact that the process of 
eliciting graphs from visual data is usually affected by noise 
and errors of various types. This is particularly true in the 
case visual data represents generic images where the as-
sumption of smoothness of color changes is rarely verified. 
As a result, two graphs built on the same data set using two 
different, though equivalent, processes may be different and 
thus do not match through an exact graph isomorphism. 

 As an example, the segmentation of an image can be con-
sidered. This is a process by which an image is partitioned 
into disjoint regions according to some homogeneity criteria 
(usually homogeneity of color and/or texture). Results of the 
segmentation process find a natural representation through a 
graph structure: nodes correspond to regions and are labeled 
with a description of region features; edges encode informa-
tion about relationships between regions (e.g., region adja-
cency). A multitude of approaches to image segmentation 
have been proposed (for example, region growing, split and 
merge, clustering in the feature space) and even within the 
same class of approaches, different settings of parameters 
almost always result in different segmentations. These dif-
ferences exacerbate if the input images are different to begin 
with. For instance, this can be the case of images represent-
ing the same scene from slightly different viewpoints or un-
der different illumination conditions. In all these situations, 
graph matching by exact graph isomorphism has proved to 
be inadequate. 

 A first solution for matching graphs that are not identical 
is to address subgraph rather than graph isomorphism: a 
subgraph isomorphism between two graphs being an iso-
morphism between one of the two graphs and a subgraph of 
the second one. In classical subgraph isomorphism methods 
[7,8], the best match is found using the A* search method 
[6,9], or its improvements aiming to anticipate the discarding 
of unfeasible solutions through look-ahead estimations [10]. 
In [8], a system is presented that exploits subgraph matching 
to support retrieval of graphic logos from a database of color 
images taken from advertisements and magazines. The sys-
tem is invariant with respect to translation and scale of im-
ages and can accurately locate a query logo in a target image. 
However, its ability to retrieve similar objects in addition to 
identical ones is very limited. 

 In order to cope effectively with comparison of similar, 
but not identical objects, the concept of inexact matching has 
been considered [7,11-14]. Only the adoption of inexact 
graph matching techniques can enable accurate and effective 
measure of similarity between objects that are visually simi-
lar but not identical. It should be considered that the measure 
of similarity is not only intended to model differences be-
tween two objects in terms of translation and scale. Rather, 
the ability of a system to capture the similarity between two 
objects is useful for comparison of objects that are different 

to begin with, or that become different due to noise, distor-
tions or image processing operations (e.g., segmentation). 

 In [15], image content is represented through region ad-
jacency graphs (RAG) and the similarity between two im-
ages is evaluated using a recursive neural network. However, 
the recursive neural network is not able to manage region 
adjacency graphs directly. Rather, each RAG has to be con-
verted into a directed order acyclic graph in order to be proc-
essed by the network. This conversion is typically associated 
with a loss of information that penalizes the effectiveness of 
the similarity measure. 

 In [16], Stochastic Petri Net graphs are used to represent 
shape and color content of images. Graph matching is ac-
complished through a deterministic approach, by exploring 
all possible node associations in the solution space. 

 In [17], several graph-based techniques are experimented 
for object recognition tasks. Exact as well as approximate 
algorithms are used to compute the similarity between two 
graph representations. 

 In [18] and [19], color adjacency graphs are used to cap-
ture prominent chromatic features of imaged objects. A de-
terministic subgraph matching technique is used to locate a 
template colored object within a generic image. 

 Though embodying the concept of relational inexactness, 
all these techniques feature a common trait, in that they ex-
ploit a static representation of the elements under match 
(nodes and edges). Differently, the matching task should be 
considered as an active process by which two objects are 
allowed to change in order to find the best correspondence 
between their constituting elements. 

 A few approaches have been presented in the past to 
model graph matching as an active process. In [20,21], a 
model is proposed to consider raw data, that originated the 
graphs, during the matching process. Raw data and its rela-
tional abstraction (the graphs) are never decoupled. Rather, 
interpretation of raw data can change during the graph 
matching process so as to accommodate for a better match-
ing of the two graphs. However, the applicability of this ap-
proach for content based retrieval of information from large 
repositories is highly unpractical since it requires a continu-
ous interaction between raw data and their relational abstrac-
tions during the matching process. 

 In [22], a method is presented to deal with subgraph 
matching by operating at a structural level: a relational dis-
tance metric is defined to accommodate for the effects of 
noise or segmentation errors by inserting dummy nodes into 
the graphs. A similar approach develops on the notion of 
graph edit distance [23]. This is defined with respect to a set 
of edit operations, namely, delete, insert, substitute, that can 
be applied to alter the first graph until a subgraph isomor-
phism to the second graph exists. Each edit operation is as-
sociated with a cost. In this way, the overall effect of all the 
edit operations that are applied to one graph can be quanti-
fied through an overall cost that sums up the costs associated 
with individual operations. The higher the cost of the opera-
tions that are applied the more dissimilar the two graphs. 
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 In this paper, a novel solution is proposed for error toler-
ant graph matching. The solution belongs to the class of edit 
distance based techniques. In particular, the original edit 
distance based framework is extended so as to account for a 
new operator to support node merging during the matching 
process. It should be considered that, in the context of edit 
distance based techniques, node merging is not equivalent to 
a sequence of node deletion and insertion. Indeed, the graph 
that results from the application of a node merging operation 
can also be obtained through the application of appropriate 
deletion and insertion operations. However, the cost that is 
associated to the two transformations is not the same: in the 
general case, the cost of one operation (merging) is less that 
the cost of two operations (deletion and insertion). Further-
more, the merging operation should be associated with a 
much lower cost than deletion and insertion, as the former 
condenses in one node the information scattered in two or 
more nodes, while the latter two either remove or add new 
information to the graph. 

 Techniques for graph matching based on node splitting 
and merging have been previously used for object tracking 
[24], and for image content description [25-27]. However, in 
the proposed solution, instead of applying edit operations 
only to one of the two graphs, graph matching is achieved by 
editing both graphs. In this way, the application of edit op-
erations is equivalent to a process by which the two graphs 
evolve toward a common graph structure. 

 The paper is organized as follows: in the next Section the 
graph matching problem is formally stated with reference to 
the new operator of node merging. The algorithmic imple-
mentation and an estimate of its computational complexity 
are discussed in the implementation Section. Experimental 
results are reported in the results Section. Finally, conclu-
sions and current and future research directions are drawn in 
the last Section of the paper. 

GRAPH MATCHING BY NODE MERGING 

 In the following, a graph is represented, according to the 
same formalism used in [25]. In particular, a graph g is a 
tuple, g = (V, E, α, β), being V a set of nodes, E ⊆ V x V a 
set of edges, α: V → LV a node labeling function, and β: E 
→ LE an edge labeling function. LV and LE are the set of 
nodes and edge labels. The term label refers here to a ge-
neric descriptor representing the information (either in sym-
bolic or numeric form) associated with the node/edge. In this 
sense, a label may be a symbolic descriptor as well as a fea-
ture vector retaining prominent characteristics of the part of 
an object associated with the node/edge. 

 Given two graphs, g1 = (V1, E1, α1, β1), and g2 = (V2, E2, 
α2, β2), a graph isomorphism is a bijective function f: V1 → 
V2 that preserves all edges and labels, that is: 

 Dv(α1(x), α2(f(x))) = 0 

 De(β1(E(x,y)), β2(E(f(x),f(y))) = 0 

being Dv and De two distance measures defined in LV and LE, 
respectively. 

 Given a generic graph g = (V, E, α, β), a subset W ⊆ V of 
its nodes is connected if for every pair of nodes i, j ∈ W there 
is a path in W leading from i to j. 
 In traditional graph matching based on the edit distance, 
a set of edit operations is defined to transform one graph into 
another one. The set of edit operations is composed of dele-
tion, insertion and substitution, the effect of this latter opera-
tion being the change of the value of a node or edge label. 

 More precisely, the node deletion operator removes one 
graph node; the node insertion operator inserts a new node 
into the graph; the node substitution operator changes the 
label value associated with one graph node. Similarly, the 
edge deletion operator removes one graph edge; the edge 
insertion operator inserts a new edge between two graph 
nodes; the edge substitution operator changes the label value 
associated with one graph edge. 

 Each edit operator δi is associated with an edit cost 
EC(δi), so that the overall change due to the application of 
the sequence of edit operators Δ = (δ1, δ2, ..., δκ) can be 
quantified. 

 
G1       G2 

 α1 

1 A 

2 B 

3 C 

4 D 

5 E 
 

 β1 

E(1,2) A 

E(1,3) A 

E(1,5) A 

E(2,3) B 

E(2,5) B 

E(3,4) C 

E(3,5) C 

E(4,5) D 
 

 α2 

1 C 

2 D 

3 E 

4 A 
 

 β2 

E(1,2) c 

E(1,3) c 

E(1,4) a 

E(2,3) d 

E(3,4) a 
 

 

Edit sequence 

δ1: delete node 2 in G1 

δ2: delete edge E(1,2) in G1 

δ3: delete edge E(2,3) in G1 

δ4: delete edge E(2,5) in G1 
 

f values 

f(1) = 4 

f(3) = 1 

f(4) = 2 

f(5) = 3 
 

Fig. (1). Comparison of two similar graphs using basic editing op-
erators. 
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 As an example, in Fig. (1) two graphs are shown, to-
gether with the sequence of edit operations that can be ap-
plied to the first graph to match the second one. The dissimi-
larity between the two graphs is evaluated as the cumulative 
cost of all the edit operations that are applied, that is, EC(Δ) 
= ∑κ

i=1 EC(δι). 

 In the proposed solution, this set of basic edit operators is 
augmented by the node merging operator. This replaces a set 
of connected nodes with one node. The label value that is 
assigned to the new node is computed based on the values of 
the labels of the original nodes. In this way, information 
about the original nodes is not lost, rather it is recombined in 
the new node. 

 In Fig. (2), an example of graph matching by node merg-
ing is shown. The two graphs in Fig. (2), are derived by 
graphs in Fig. (1), by replacing symbolic descriptors with 
numeric descriptors (given by αi and βi values). In particular, 
the two graphs in Fig. (2) represent the output of the segmen-
tation of two images, node and edge descriptors representing 
intra-region (normalized region area and region mean color 
in the RGB space) and inter-region (region adjacency) fea-
tures, respectively. In this example, the edge labels are all 
equal to 1, in that they only capture the fact that two regions 
in the image are adjecent each other (and the corresponding 
nodes in the graph are also connected each other). 

 The cost associated to each operator reflects the amount 
of alteration it introduces on one graph. With reference to the 
example shown in Fig. (2), we assume that region descrip-
tors (i.e., node labels) are in the form α(i) = (si, ri, gi, bi), 
being si, ri, gi, bi, respectively, the area of the region normal-
ized to the area of the image, and the normalized color com-
ponents in the RGB color space of the average color of the 
region. According to this, the edit costs EC(δi) of edit opera-
tors δi, can be evaluated as follows: 

• node delete: distance dd
(n) between descriptors of the 

deleted region and the null region, that is, EC(δ) = 
dd

(n)((si,ri,gi,bi),(∅, ∅,∅,∅)) = si; 
• node insert: distance di

(n) between descriptors of the 
newly created region and the null region, that is, 
EC(δ) = di

(n)((si,ri,gi,bi),(∅, ∅,∅,∅)) = si; 
• node substitute: distance ds

(n) between descriptors of 
the original region and the substituted region, that is, 
EC(δ) = ds

(n) ((si,ri,gi,bi),(sj,rj,gj,bj)) = ((si-
sj)2+1/3((ri-rj)2+(gi-gj)2+(bi-bj)2))1/2. 

 The contribution to the distance given by the difference 
in the three color components is multiplied by the constant 
1/3. This aims to balance the contribution to the distance 
given by the difference in the area, and by the differences in 
the color of the regions; 
• node merge: distance dm

(n) between descriptors of the 
two regions to be merged, that is, EC(δ) = 
dm

(n)((si,ri,gi,bi),(sj,rj,gj,bj)) = (1/3((ri-rj)2+(gi-
gj)2+(bi-bj)2))1/2. 

 The cost of merging two nodes does not depend on the 
area of the two merging regions in that we assume there is no 
cost to pay in merging regions of different area. The only 

cost is related to the difference in the color of the regions. 
The constant 1/3 guarantees that the cost of merging is nor-
malized in the [0,1] interval; 

 
G1       G2 

 α1 

1 (0.2, 1.0, 0.8, 0.4) 

2 (0.2, 0.9, 0.6, 0.3) 

3 (0.3, 0.9, 0.5, 0.3) 

4 (0.1, 0.6, 0.3, 0.2) 

5 (0.2, 0.1, 0.0, 0.0) 
 

 β1 

E(1,2) 1 

E(1,3) 1 

E(1,5) 1 

E(2,3) 1 

E(2,5) 1 

E(3,4) 1 

E(3,5) 1 

E(4,5) 1 
 

  

 α2 

1 (0.5, 0.9, 0.5, 0.3) 

2 (0.1, 0.6, 0.3, 0.2) 

3 (0.2, 0.1, 0.0, 0.0) 

4 (0.2, 1.0, 0.8, 0.4) 
 

 β2 

E(1,2) 1 

E(1,3) 1 

E(1,4) 1 

E(2,3) 1 

E(3,4) 1 
 

  

Edit sequence 

δ1: Merge nodes 2 and 3 in G1 

δ2: Merge edges E(1,2) and E(1,3) in G1 

δ3: Merge edges E(2,5) and E(3,5) in G1 

δ4: substitute description of node 3 in G1 
 

f values 

f(1) = 4 

f(3) = 1 

f(4) = 2 

f(5) = 3 
 

Fig. (2). Comparison of two similar graphs by using extended edit-
ing operators. 

• edge delete: distance dd
(e) between descriptors of the 

deleted edge and the null edge, that is, EC(δ) = 
γ∗dd

(e)(β(i),∅) = γ*βi; 
• edge insert: distance di

(e) between descriptors of the 
newly created edge and the null edge, that is, EC(δ) 
= γ∗di

(e)(β(i),∅) = γ*βi; 
• edge substitute: distance ds

(e) between descriptors of 
the original edge and the substituted edge, that is, 
EC(δ) = γ∗ds

(e)(β(i),βj) = γ*||βi-βj||; 
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• edge merge: distance dm
(e) between descriptors of the 

two edges to be merged, that is, EC(δ) = 
γ∗dm

(e)(β(i),βj) = γ*||βi-βj||; 

being γ a weight coefficient used to balance the relative rele-
vance of operators acting on nodes and edges. 

 It should be noticed that values of distances dd
(n), di

(n), 
ds

(n), dm
(n), are not necessarily the same. For instance, delet-

ing one node is associated with a cost that amounts to the 
relevance of the region corresponding to that node. This 
relevance is estimated with the area of the region normalized 
to the area of the image. The same consideration holds for 
inserting a new node. Differently, the cost of substituting one 
node descriptor depends not only on its area, but also on its 
average color. Finally, the cost of merging two nodes de-
pends only on how much different the average colors of the 
two regions are, regardless of their size. If merging occurs 
between two regions with very similar colors, there is almost 
no penalty in terms of editing costs. 

 Table 1 summarizes the cost of matching the two graphs 
in Fig. (2) using the merging operator (see Table 1a), and not 
using the merging operator (see Table 1b). 
Table 1. Cost of Matching the Two Graphs in Fig. (2): (a) 

Using the Merging Operator; (b) Not Using the 
Merging Operator 

 
(a) 

 

Edit Operation Operation Cost Cumulative Cost 

δ1: Merge node 2 and 3 in 
G1 resulting in 
(0.5,0.9,0.55,0.3) 

0.058 0.058 

δ2: Merge edges E(1,2) and 
E(1,3) in G1  

0.0 0.058 

δ3: Merge edges E(2,5) and 
E(3,5) in G1 

0.0 0.058 

δ4: Substitute description of 
node 3 in G1 with 
(0.5,0.9,0.55,0.3) 

0.029 0.087 

(b) 

Edit Operation Operation Cost Cumulative Cost 

δ1: Delete node 2 in G1 0.2 0.2 

δ2: delete edge E(1,2) in G1  γ 0.2 + γ 

δ3: delete edge E(2,3) in G1 γ 0.2 + 2γ 

δ4: delete edge E(2,5) in G1 γ 0.2 + 3γ 

δ5: substitute description of 
node 3 in G1 with 
(0.5,0.9,0.55,0.3) 

0.2 0.4 + 3γ 

 

 

IMAGE MATCHING 

 In order to account for node merging, image matching is 
organized as an iterative process that performs the following 
actions at each iteration step: 

• For each graph node, the set of compatible nodes is 
computed. This set is defined as the set of nodes that 
can be merged with the current node (for instance, 
because they have very similar colors and/or tex-
tures); 

• For each graph node, the set of virtual nodes is com-
puted. This is defined as the set of nodes originated 
by merging the current node with one or more adja-
cent nodes; 

• Nodes of the two graphs are compared so as to decide 
which combinations of nodes should be actually 
fused. 

 Detailed description of each iteration step is provided in 
the following Section. 

COMPATIBLE NODES 

 Each node is associated with a label that represents in-
formation about node features. We assume that a dissimilar-
ity metric is defined that enables comparison of node labels 
so as to derive the dissimilarity between two nodes. In our 
case, this dissimilarity metric is in the form of a weighted 
Euclidean distance. 

 Let g = (V, E, α, β) be a graph, i, j ∈ V two nodes and 
α(i), α(j) ∈ LV ⊆ Rn their labels. The dissimilarity between 
nodes i and j is measured as: 

Dω(i,j) = [α(i)-α(j)]’diag (ω1, ω2, ..., ων ) [α(i)-α(j)] (1) 

being (ω1, ω2, ..., ων) a set of weights used to balance the 
relative relevance of node features. 

 It should be noticed that this definition of node dissimi-
larity is not restricted to nodes of the same graph. In fact, the 
dissimilarity between nodes of two distinct graphs can be 
computed provided that they adopt homogeneous labels (fea-
ture vectors). 

 Given a generic graph g = (V, E, α, β), two nodes i, j ∈ V 
are compatible nodes if both the following conditions hold: i 
and j are adjacent nodes; Dω(i, j) < τc; being τc a fixed node 
compatibility threshold (in the experimental results, this 
threshold was set to τc=0.3). 

 For a node i of a graph, the set of compatible nodes can 
be defined. This set is indicated as C(i) and is composed of 
the current graph node and all its compatible nodes. For node 
i, the set of compatible nodes C(i) is used to derive the set of 
virtual nodes. In general, a virtual node results from the 
combination (merging) of one node with one or more com-
patible nodes. Given a node i, let N+1 be the cardinality of 
the set C(i) (i.e., the number N of node compatible with the 
node i, plus the node i itself). 
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 Let CN
k(i) be the set of all k-combinations of the elements 

of C(i) that include node i. The set of virtual node combina-
tions VN(i), for node i is defined as: 
VN(i) = { CN

k(i) }N
k=0 

being CN
0(i) = i. Since the cardinality of CN

k(i) is the bino-
mial coefficient (N

k), the cardinality of VN(i) is the sum ∑N
k=0 

(N
k)= 2N. 

(a) 

 
(b) 

 
(c) 

 
Fig. (3). (a) A sample image. (b) The segmented image obtained 
applying a color based segmentation algorithm to the image in (a). 
(c) The segmented image in (b) is represented through a graph, 
where: nodes correspond to the segmented regions and are labeled 
with the region area (in percentage with respect to the overall area 
of the image), and the average color of the region (in the RGB color 
space); edges account for the adjacency between regions in the 
image plane. 

 Indeed, each element of VN(i) is a node. In particular, it 
can be the node i, or any node obtained by merging node i 
with one or more compatible nodes. Given a virtual node ψ, 
the node originating function Ω(ψ) returns the set of nodes 
that were merged to originate it. When two or more nodes 
are merged to create a new node, some criteria must be fol-
lowed in order to compute the label to assign to the new 
node. New nodes should inherit information from the nodes 
from which they originate. This is accomplished through the 
definition of a feature propagation function Ffp: Rn x Rn → 
Rn. Given a pair of nodes and their labels, this function out-
puts the label that should be associated with the node origi-
nating from the merge of the first two. 

 The way in which the feature propagation function acts 
on the pair of feature vectors associated with the nodes to be 
merged depends on what is represented in the elements of 
the feature vector. In general, the feature propagation func-
tion may entail ad-hoc knowledge about rules to be applied 
for each element of the feature vector. 

 A sample case is shown in Fig. (3). The feature vector of 
one node combines information about area and color. In par-
ticular, the feature vector of node i is in the form fi = (f1i, f2

i, 
f3

i, f4
i) ∈ R4, being f1

i the area of the region represented by 
node i, and f2i, f3i, f4

i
 the three components of its color. In 

order to combine the feature vectors of N nodes, the feature 
propagation function applies a summation rule for the first 
element of the feature vector, and a mean rule for the last 
three elements. That is: 
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 In the above equation, normalized values of the area and 
of the color components of the regions are used. 

 
Fig. (4). Virtual nodes originated from the graph shown in Fig. (3c). 
For the readability of the graph, feature vectors associated with the 
original graph nodes, and with the virtual nodes obtained as combi-
nation of three nodes are not displayed. Each virtual node is evi-
denced through a dotted contour and is connected to its originating 
nodes through dotted edges. 

 Virtual nodes that are originated from nodes of the graph 
in Fig. (3) are shown in Fig. (4). Each virtual node is evi-
denced through a dotted contour and is connected to its 
originating nodes through dotted edges. 

VIRTUAL NODES COMPARISON 

 When two graphs have to be compared, for each graph 
node the virtual node combination set is computed. Virtual 
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node combination sets of the two graphs are compared so as 
to determine the best node correspondences. In order to find 
the best node correspondences both actual-to-actual, actual-
to-virtual and virtual-to-virtual node comparisons are ex-
plored. 

 In this way, the purpose of selecting the best node corre-
spondences is twofold: on the one hand, it favorites aggrega-
tion of nodes that find a counterpart in both graphs; on the 
other, it favorites aggregation of nodes that are surrounded 
by similar nodes (aggregations of nodes). 

 Nodes are not compared using the dissimilarity function 
defined in Eq.(1). Rather, a context dissimilarity function 
Dcd(.,.) is defined for this purpose. Given two nodes i and j, 
the value of Dcd(i,j) accounts not only for the dissimilarity of 
the feature vectors associated with nodes i and j, but also for 
the dissimilarity of their adjacent nodes: 
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where: Ai and Aj are the area of the two regions; dcol=(((Ri- 
Rj)2+(Gi- Gj)2+(Bi- Bj)2)/3)1/2 is the distance between the 
average colors of regions i and j; max Adj = max (Adji, Adjj) 
is the maximum between the number of adiacent regions for 
regions i and j; and α, β, γ are weights of the individual dis-
tance components. 

 According to this equation, the difference in area and 
color between the regions is accounted as well as the number 
of adjacent compatible regions. 

 Comparison of two virtual node combination sets results 
in the identification of two nodes (belonging to the first and 
second graphs, respectively) that correspond to each other. 
Each one of these two nodes can be either an actual node or a 
virtual node. In the case the node is a virtual node, it be-
comes an actual node and replaces, in the original graph, all 
the nodes that originated it. 

ALGORITHM IMPLEMENTATION 

 The proposed solution to graph matching, requires com-
parison not only of the nodes in two graphs, but also of the 
virtual nodes that originate from possible merging occurring 
between adjacent nodes in each graph involved in the com-
parison. Assuming the computational complexity of a tradi-
tional subgraph matching problem to be O(m1

m2) [28] (being 
m1 and m2 the number of nodes of the two graphs), the com-
plexity of the proposed solution scales to O((m1*ξ)(m2*ξ)) 
being ξ the average number of virtual nodes originated from 
each actual node. 

 In order to be effectively used for graph comparison, the 
complexity of the proposed solution needs to be reduced. 
This is accomplished by adopting a greedy approach for 
node comparison. According to this strategy, graph compari-
son is accomplished through an iterative matching process. 
At each iteration step, the following actions are performed: 
• One node i in the first graph is selected and the most 

similar node j in the second one is found. 

• VN(i) and VN(j), that is, the virtual nodes originated 
by nodes i and j are computed. 

• The elements of VN(i) and VN(j) are compared to find 
the best match 

• If the best match involves some virtual nodes (e.g., 
node ψ), replace all nodes Ω(ψ) with ψ. In the next 
iteration steps, ψ is regarded as an actual node (not a 
virtual one). 

 Adoption of this greedy approach for node comparison 
reduces the computational complexity of the matching proc-
ess. In fact, node correspondences are found through an it-
erative exploration of the best possible node mappings and 
selection of the best mapping at each iteration. However, this 
approach does not guarantee to find the optimal solution to 
the matching problem. 

 However, at the cost of an increased computational com-
plexity, the proposed approach could be also included in a 
matching approach that attains exact match between the 
graphs under comparison in the style of the A* algorithm. 

COMPLEXITY ANALYSIS 

 The computational complexity of the proposed graph 
matching technique is evaluated as follows. Let us consider 
two graphs, G1 and G2 with m1 and m2 nodes, respectively. In 
addition, without loss of generality, we assume that m1 ≤ m2. 
The matching algorithm is constructed around a main loop 
which iteratively considers all the nodes in graph G1 in order 
to subsequently assign them to nodes in G2. 

 According to this, the worst computational complexity 
can be estimated for the case in which, for each node i in G1 
the following operations are performed: 
(a) Find the node j in G2 that is the most similar to node 

i. 
(b) Build VN(i) and VN(j), that is the sets of virtual 

nodes for nodes i and j. 
(c) Compare VN(i) and VN(j) to find the best match 

between their elements. 

 Complexity of step (a) is O(m2). Assuming that each 
node has an average number of N adjacent compatible nodes, 
the average cardinality of the virtual combination sets is: 

E[#VN(i)] = E[#VN(j)]= ∑N
k=0 (N

k) = 2N 

 Therefore, the computational complexity of step (c) is 
O(22N). Instead, the computational complexity of step (b) is 
negligible with respect to O(22N). 
 Steps (a), (b) and (c) have to be performed for each node 
i in G1, so that the overall computational complexity is given 
by O(m1*(m2+22N)). 

 As a consequence, the management of node merging pe-
nalizes the overall complexity of the matching process only 
in the case in which m2 << 22N. This condition is rarely veri-
fied in graphs originated from segmented images, in that 
typically the number N of compatible node is small. 

 



8    The Open Artificial Intelligence Journal, 2007, Volume 1 Berretti et al. 

EXPERIMENTAL RESULTS 

 The proposed approach for graph matching by node 
merging has been experimented in the application context of 
image retrieval by visual similarity. In particular, two test set 
have been considered: the WebMuseum collection of paint-
ing images [29], and the ALOI object image database [30]. 

 The first image dataset comprises about 1000 images, 
representing paintings by different authors, styles and artistic 
period collected from the WebMuseum [29]. Images were 
initially described by segmenting them into regions accord-
ing to chromatic content using the approach proposed in 
[31]. Color regions identified during this phase are approxi-
mately homogeneous, but there are several cases in which 
the segmentation process may produce over-segmented or 
under-segmented images. This can hinder an effective re-
trieval due to the difficulty to map regions of similar, but not 
identical images. For each image, a graph model is con-
structed, where each node represents a region and is labeled 
with a feature vector capturing region area and color. Edges 
between nodes are used to encode region adjacency. 

 The example reported, aimed at testing the improvement 
of retrieval effectiveness determined by the use of the merg-
ing strategy applied during graphs comparison. To this end, 
we compared retrieval results obtained by running the 
matching algorithm with two different settings of parameter 
τc which thresholds the nodes compatibility: in the first case, 
we used τc = 0.3, thus allowing the combination of adjacent 
nodes (node merging enabled); in the second case we used τc 

= 0, thus preventing all nodes to merge with adjacent nodes 
(node merging disabled). This latter choice reduces the 
matching problem to the assignment of best fitting nodes in 
the two graphs. 

 Retrival results are presented using the standard measures 
of precision and recall. Precision is defined for each query 
image as the number of correctly retrieved images with re-
spect to the overall number of images retrieved from the da-
tabase (fixed a maximum similarity threshold). Recall is the 
number of correctly retrieved images with respect to the 
overall number of images in the database which are relevant 
to a given query image. The ideal result is to get precision 
equal to one for every value of recall. 

 In Fig. (5) a manually authored color sketch is used in 
order to retrieve paintings representing faces. Actually, this 
is the application scenario which least exploits the potential-
ity of the proposed approach, since the probability that nodes 
merging takes place in the query is quite low. This is mainly 
due to the fact that a user will probably draw a small number 
of patches identified by very different colors. As a conse-
quence, it is highly probable that node merging will be per-
formed only in the database graphs. So, testing the method in 
this case should provide a lower bound in the improvement 
that can be expected in the application of this approach. 

 The query and the first six retrieved images are shown in 
Fig. (5) (from left to right and from top to bottom). It can be 
noticed that the top three retrieved images represent portrait 
paintings. The fourth image does not represent any face, but 

is retrieved since its segmented regions have colors similar 
to the colors used in the query sketch. 

 Fig. (6a) shows the precision curves obtained by running 
the matching algorithm with dynamic merging of graph 
nodes enabled and disabled, respectively. The horizontal axis 
represents the size of the retrieval set, while the vertical axis  
 

    

 
  

Fig. (5). Retrieval example based on the matching algorithm. The 
query image is on the upper-left, followed by the six top ranked 
results (listed from left to right and from top to bottom). 

is the precision of retrieval. Values of precision are reported 
for different sizes of the retrieval set (from 1 to 30), showing 
that node merging can significantly improve the effective-
ness of the retrieval process, expecially for the top ranked, 
and most relevant, images. 

(a) 

 
(b) 

 
Fig. (6). Precision curves obtained by running the matching algo-
rithm with dynamic node merging enabled and disabled for the 
examples of Fig. (5 (plot a)) and Fig. (7 (plot b)), respectively. 
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 A different example is shown in Fig. (7). In this case, the 
query is an image selected from the database. Such a query 
could be useful, for example, to search images with the same 
theme painted from the same author. Retrieval results are 
shown for the seven best ranked images (including the 
query), according to the proposed matching algorithm. It is 
interesting to note that the query and some of the retrieved 
images are from the same painter (Cezanne). 

    

 

   
Fig. (7). Retrieval example based on the matching algorithm. The 
query image is on the upper-left, followed by the six top ranked 
results (listed from left to right and from top to bottom). 

 In Fig. (6b), precision curves are shown for the cases in 
which the matching algorithm runs with dynamic merging of 
nodes enabled and disabled, respectively. Also in this case, it 
can be observed the improving of the results obtained by the 
matching strategy with node merging enabled. 

 In the experiments on the WebMuseum, the ground truth 
for the retrieval has been established by randomly selecting 
50 images out of the 1000 images of the dataset to be used as 
query. For these images, 10 users have been required to 
score the 8 most similar images to the query. Based on these 
user based evaluation the set of relevant images for each 

query is defined. Using this experimental set up, Table 2 
shows the average values of precision at different recall. 

 Experiments on the Amsterdam Library of Object Images 
(ALOI database) have been also performed. This database 
has been used elsewhere to perform retrieval experiments for 
content based retrieval applications [32]. This allows the 
comparison of the results reported in this work with those 
obtained using different retrieval approaches. 
Table 2. Value of Precision at Different Recall for a Set of 50 

Query Images Randomly Selected from the WebMu-
seum Dataset 

 
Precision 0.82 0.75 0.69 0.6 0.47 0.35 

Recall 0.5 0.6 0.7 0.8 0.9 1.0 

 

 The ALOI database comprises 1000 objects recorded un-
der various imaging conditions [30]. In order to capture the 
sensory variation in objects recordings, the viewing angle, the 
illumination angle, and the illumination color of every object 
are systematically varied. Additionally, wide-baseline stereo 
images are captured. In thiw way, 12 images are captured for 
each object, yielding a total of 12000 images for the overall 
collection. 

 As an example, Fig. (8e) shows the precision-recall 
curves computed for four different query images which be-
long to four different objects categories of the ALOI data-
base (the four query images are reported in Fig. (8a-d). 

 From Fig. (8), it can be observed that the proposed solu-
tion is capable to provide quite effective retrieval perform-

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. (8). (a-d) Images of four different objects from the ALOI database. These images are used as queries against the entire ALOI database. 
(e) Precision-recall curves obtained using the four images in a-d as queries. 
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ance for objects belonging to different categories. In fact, 
due to the active aggregation of image regions during the 
match, the approach can overcome problems originated dur-
ing the feature extraction process. In particular, one common 
difficulty occurring in image segmentation is the possible 
fragmentation of image objects, that can result in the split of 
individual objects into different parts. Differently from tradi-
tional approaches that only perform match between static 
graph structures, the proposed active graph matching solu-
tion is capable to dynamically recombine image regions, thus 
recovering erroneous segmentations during the match.  

 Avrage values of precision at different recall are reported 
in Table 3 for the ALOI database. These experiments have 
been conducted by using, for every object of the ALOI 
dataset, the image that has been acquired with illumination at 
0°. These 1000 query images have been compared against the 
entire ALOI dataset. 
Table 3. Value of Precision at Different Recall for the ALOI 

Dataset 
 

Precision 0.91 0.83 0.77 0.72 0.61 0.43 

Recall 0.5 0.6 0.7 0.8 0.9 1.0 

 

 In these experiments, the ground truth is directly obtained 
by considering the 12 images of each object as the correct 
retrieval set for the object. This implies that, for every query, it 
is expected that the 12 images acquired under different condi-
tions for the same object are ranked in the first 12 positions of 
the retrieval set. In so doing, we did not consider any particu-
lar ordering between these images, assuming that all the 11 
images (apart the query image that is obviously ranked in the 
first position) are equivalent. 

CONCLUSIONS 

 In this paper a novel solution has been proposed for error 
tolerant graph matching. The solution fits with the class of 
edit distance based techniques. In particular, the traditional 
set of edit operations is extended so as to allow node merg-
ing during the matching process. 

 An analysis of the computational complexity of the pro-
posed approach has been presented to evidence that the 
larger the size of the two graphs being compared, the smaller 
is the increase of complexity associated with the manage-
ment of node merging. Results are reported to demonstrate 
the potential and effectiveness of the proposed solution. 

 Future work will address a more extensive experimenta-
tion and testing as well as a comparison with alternative 
techniques using edit distance for graph matching, both in 
terms of computational complexity and matching accuracy. 
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