
20

 The Open Artificial Intelligence Journal, 2010, 4, 20-29

 1874-0618/10 2010 Bentham Open

Open Access

An Efficient Distributed Genetic Algorithm Architecture for Vector
Quantizer Design

Wen-Jyi Hwang
1
, Chien-Min Ou*

,2
, Peng-Chieh Hung

1
, Cheng-Yen Yang

1
 and Tun-Hao Yu

1

1
Department of Computer Science and Information Engineering, National Taiwan Normal University, Taipei, Taiwan,

117, R.O.C:
2
Department of Electronic Engineering, Ching Yun University, Taoyuan, Taiwan, 320, R.O.C

Abstract: This paper presents a novel distributed genetic algorithm (GA) architecture for the design of vector quantizers.

The design is based on a multi-core architecture, where each island of the GA is associated with a hardware accelerator

and a softcore processor for independent genetic evolutions. An on-chip RAM with a mutex circuit is adopted for the mi-

gration of genetic strings among different islands. This allows a simple and flexible migration for the implementation of

hardware distributed GA. Experimental results shows that the proposed architecture has significantly lower computational

time as compared with its software counterparts running on multicore processors with multithreading for GA-based opti-

mization.

Keywords: Distributed GA, SOPC, Multi-core system, Vector quantizers.

1. INTRODUCTION

 Genetic algorithms (GAs) [1] are a class of gen-

eral-purpose search algorithms for solving optimization

problems by simulating natural evolution over populations of

candidate solutions. The algorithms have been found to be

effective for solving problems in engineering, science and

business. However, when they are applied to complex prob-

lems, the computational complexity may become very high.

 One way for reducing the computational time is to em-

ploy the distributed GA algorithm [2-4]. There are multiple

populations in a distributed GA. Each population evolves

independently most of the time. Different populations may

exchange genetic strings occasionally. With smaller popula-

tion size, the distributed GA may be able to converge at

faster rate while finding good solutions. To find near optimal

solutions, however, large population size may still be de-

sired. This will still result in long computation time.

 The objective of this paper is to present a VLSI architec-

ture for distributed GA. The architecture is able to accelerate

the GA even for large population size. The application con-

sidered in this paper is vector quantization (VQ) [5]. When

applied for VQ codeword training, the GA requires large

storage size and long training time. Therefore, the VQ design

is a good example for verifying the effectiveness of the pro-

posed GA architecture.

 In the proposed architecture, each island of the GA is

associated with a hardware accelerator and a processor for

independent genetic evolutions. An on-chip RAM with

a mutex circuit is adopted for the migration of genetic strings

*Address correspondence to this author at the Department of Electronic

Engineering, Ching Yun University, Chungli Taiwan, 320, R.O.C;

Tel: 886-3-458-1196-5121; Fax: 886-2-458-8924;

E-mail: cmou@cyu.edu.tw

among different islands. This allows a simple and flexible

migration for the implementation of hardware distributed

GA.

 Although some existing hardware architectures [6, 7] can

be used for the design of the hardware accelerator for genetic

evolution in each island, these architectures have the follow-

ing drawbacks. First of all, large storage size is required for

processing the genetic strings. Usually two set of population

memories are used for the regeneration process. One mem-

ory contains the parent strings; the other stores the child

strings after the regeneration. In addition, there is overhead

for switching one memory to another at the beginning of a

new generation. The second drawback is that the regenera-

tion process is based on the fitness function. The selection of

parents therefore may need large chip area for hardware im-

plementation. In addition, the mutation and crossover opera-

tions also result in high area cost when concurrent process-

ing over all the genetic strings is desired.

 The proposed hardware accelerator is able to eliminate

the drawbacks stated above. The steady-state GA [8, 9] is

used for the accelerator so that regeneration, mutation and

crossover operations can be simplified. The accelerator con-

sists of population memory unit, mutation and crossover

unit, fitness evaluation unit, and survival test and update

unit. It contains only one population memory for reducing

the area cost. Both the mutation and crossover operations are

performed concurrently for accelerating the GA. In addition,

a pipeline architecture with direct memory access (DMA)

operation is adopted for the fitness function evaluation. A

hardware sorting structure is adopted for survival test.

 The proposed architecture has been implemented on field

programmable gate array (FPGA) devices [10] so that the

processors in the architecture can be implemented by soft-

core CPUs [11]. Using the reconfigurable hardware, we are

An Efficient Distributed Genetic Algorithm Architecture The Open Artificial Intelligence Journal, 2010, Volume 4 21

then able to construct a system on programmable chip

(SOPC) system for the genetic VQ design. As compared

with its software counterparts running on multicore proces-

sors with multithreading, numerical results reveal that the

proposed FPGA-based GA architecture attains higher per-

formance with significantly lower training time for VQ de-

sign. These fact demonstrate the effectiveness of our design.

2. STEADY-STATE GA FOR VQ DESIGN

 Before presenting the architecture, we first briefly review

the steady-state GA [8] for VQ design. The goal of a VQ for

data clustering is to partition a large data

set },...,{ 1 t
xx= into N non-overlapping clusters

N
CC ,...,

1
, where N >> t. The partitioning process is based

on a set of codewords },...{ 1 Nyy , where the codewords

and the vectors in are of the same dimension w. Given a

vector x , the x will be assigned to the cluster
i

C

when

i=a(x)=arg min
1 j N

d(x,y j) , (1)

where),(vud denotes a distance measure between two

vectors u and v. In this paper, the squared distance is adopted

as the distance measure. When applied for data reduction

applications such as data compression, a vector x will be

represented by the codeword
i

y when)(xi = . One

cost function for the data reduction is the average distortion

for representing x by i
y , as shown below

D =
1

wt
d(xi , y (xi))

i=1

t
. (2)

 Given a data set , the objective of the VQ design is to

find a set of codewords },...{ 1 Nyy minimizing D in

eq.(2).

 In the steady-state GA for VQ design, there are P genetic

strings for the genetic operations. Each string r represents a

set of N codewords {y1, ...yN }r . Note that these strings are

strings of vectors, not strings of binary numbers.

 There is no concept of generation in steady-state GA. Let

population S be the set of P genetic strings, which are called

the parent strings. Initially, the P strings in S are randomly

generated. Two strings (denoted by
1
r and

2
r) in S will be

selected for mutation and crossover for creating a new child

string (denoted by c). The fitness value of the child string is

then evaluated and compared with the fitness value of all the

parent strings in S. If the new string is inferior to all the par-

ent strings in S, no parent string will be removed. Otherwise,

the parent string with lowest fitness value is replaced by the

child string.

 Note that because each string for the VQ design is actu-

ally a codebook, the memory access time for string retrieval

may be long. Consequently, the retrieval process for
1
r and

2
r may be time-consuming. To reduce the memory access

time, in the algorithm, the previous
1
r becomes the new

2
r

and then the new
1
r is chosen randomly from S. This selec-

tion scheme reduces the memory access time by half.

 As the process of selection, crossover, mutation, and sur-

vival/replacement continues, the overall fitness of population

will increase and the survival rate of new off-spring will di-

minish. At some point, the offspring survival rate will drop

to zero. At this point, evolution has probably ceased and the

algorithm may be terminated. The steady-state GA algorithm

is more effective for the hardware design. Only one popula-

tion memory is required. In addition, crossover and mutation

operations only operate on
1
r and

2
r instead of all strings

in the population memory.

 In the distributed steady-state GA, there are M islands.

Each island i is associated with a separated population
i

S .

Genetic strings in each
i

S are evolved independently using

steady-state GA until the offspring survival rate of
i

S drops

to zero. A migration process is then activated by importing K

genetic strings from island j, ij , and exporting K strings

to island k, where j and k are randomly selected. After the

migration, another new evolution based on steady-state GA

is re-started. An iteration of the distributed steady-state GA

consists of a migration process and a steady-state GA evolu-

tion. After each iteration, the best genetic string with highest

fitness value is recorded. The iterations of the distributed GA

is halted when identical best genetic string are found for L

consecutive iterations. The entire distributed steady-state GA

is completed when all the iterations of all the M islands are

halted.

3. THE PROPOSED ARCHITECTURE

3.1. Architecture for Steady-State GA

 We start with the architecture for steady-state GA, which

is depicted in Fig. (1). It contains population memory, cross-

over & mutation unit, fitness evaluation unit, survival test &

update unit, and Avalon bus interface. Both the population

memory and crossover & mutation unit contain random

number generators (RNGs). In this architecture, the

population memory unit is devoted for storing the genetic

strings. Moreover, the random selection of parent strings for

subsequent crossover and mutation operations is also in-

cluded here. This selection is based on the RNG inside the

population memory unit. All the crossover and mutation op-

erations are performed concurrently in the crossover & mu-

tation unit for producing a new child string c. The fitness

value of the resulting string is then evaluated by the fitness

evaluation unit.

 Based on the fitness value, the goal of the survival test &

update unit is to determine whether the child string c will

survive. If it is the case, the parent string in the population

memory unit with the worst fitness value will be replaced by

22 The Open Artificial Intelligence Journal, 2010, Volume 4 Hwang et al.

the child string. Each unit in Fig. (1) will be described in

detailed as shown below.

Population Memory Unit

 The population memory contains a 2-pot RAM and a

RNG unit. The 2-port RAM contains S, the set of P genetic

strings. In our design, the implementation of the RAM is

based on the embedded memory, which is provided by some

FPGA devices such as Altera Stratix II. The goal of RNG

unit in the population memory unit is to select randomly a

string
1
r for the subsequent crossover and mutation opera-

tions. In our design, the cellular automata (CA) is adopted

for the VLSI implementation of random number generator

[12] due to its simplicity and regularity of the design.

Mutation and Crossover Unit

 Fig. (2) shows the basic structure of the mutation and

crossover unit, which contains three shift registers for storing

the strings
1
r ,

2
r and c, respectively. A number of RNGs,

comparators, multiplexers and counters are then used for

crossover and mutation. The major advantage of this archi-

tecture is that the crossover and mutation can be performed

concurrently with low area cost.

 As shown in Fig. (2), SHIFT REGISTER 1 and SHIFT

REGISTER 2 contain strings
1
r and

2
r , respectively. Note

that the architecture does not randomly select new
1
r and

2
r from the population memory. In fact, only new

1
r is

chosen from population memory. The new
2

r is actually

the previous
1
r . The memory access time and routing over-

head can then be significantly reduced. Based on the algo-

rithm, in the architecture, The SHIFT REGISTER 1 obtains

1
r from the population memory unit. The SHIFT REGIS-

TER 2 obtains
2

r from SHIFT REGISTER 1.

 The crossover operations are accomplished by concur-

rently shifting the strings in SHIFT REGISTER 1 and

SHIFT REGISTER 2 to MUX 1. Each shift register will shift

one codeword at a time. As shown in Fig. (2), MUX 1 is a

switch selecting the codewords of either
1
r or

2
r , and

route them to SHIFT REGISTER 3, which contains the re-

sulting child string c. The control line of MUX 1 is con-

nected to a comparator, which compares the value of RNG 1

to that of a counter. The counter records the number of shifts

made by the shift registers. The value of RNG 1 serves as a

threshold here. When the counter value is less than the

threshold, codewords of SHIFT REGISTER 1 (i.e.,
1
r) goes

to SHIFT REGISTER 3. Otherwise, codewords of
2

r will

be selected. Consequently, the value of RNG 1 determines

the crossover point. The value will be randomly generated

prior to the shifting operations.

 We also observe from Fig. (2) that the output codeword

of MUX 1 will pass through the mutation unit before arriv-

ing the SHIFT REGISTER 3. Fig. (3) shows the architecture

Fig. (1). The proposed hardware architecture of steady-state GA.

An Efficient Distributed Genetic Algorithm Architecture The Open Artificial Intelligence Journal, 2010, Volume 4 23

of the mutation unit. As shown in the figure, all w compo-

nents of the output codeword mutate concurrently. The mu-

tation circuit for each component i consists of 2 RNGs

(termed RNG ia and RNG ib), one register (termed register

i), one comparator (termed comparator i), one multiplexer

(termed mux i).

 The probability for mutation
b

P is stored in a separate

register, and is broadcasted to all the mutation circuits. In the

mutation circuit for each component i, the value of RNG ia

is first compared with the Pb . The component i will be mu-

tated when the value of RNG ia is less than Pb . The mu-

tated value is then determined by RNG ib.

Fitness Evaluation Unit

 The goal of the fitness evaluation unit is to compute the

average distortion of the mutated child string stored in

SHIFT REGISTER 3 using eq.(2). Fig. (4) shows the archi-

tecture of the fitness evaluation unit, which is an N-stage

pipeline, where N is the number of codewords. The pipeline

fetch one training vector x per clock from the input.

 The i-th stage, i = 1, ..., N of the pipeline compute the

squared distance between the training vector at that stage and

the i-th codeword of the child string stored in the SHIFT

REGISTER 3 of the mutation and crossover unit shown in

Fig. (2). The squared distance is then compared with the cur-

rent minimum distance up to the i-th stage. If distance is

smaller than the current minimum, then the i-th codeword

becomes the new current optimal codeword, and the corre-

sponding distance becomes the new current minimum dis-

tance. After the computation at the N-th stage is completed,

the current optimal codeword and current minimum distance

are the actual optimal codeword and the actual minimum

distance, respectively.

Survival Test and Update Unit

 This unit contains a hardware sorting circuit [13], which

sorts the N parent strings in a descending order according to

their fitness values. After the fitness evaluation operation is

completed, the fitness value of the child string is used as the

input to the sorting circuit. When the distortion of the string

is larger than the parent string with lowest fitness value, the

child string is not survival, and no updating operation is

necessary. Otherwise, the parent string with highest distor-

Fig. (2). The architecture of crossover and mutation unit.

24 The Open Artificial Intelligence Journal, 2010, Volume 4 Hwang et al.

tion is replaced by the child string. The sorting circuit is then

activated to determine the new parent string with the highest

distortion.

3.2. Architecture of Each Island

 The architecture of each island of the proposed distrib-

uted GA architecture is depicted in Fig. (5). From the figure,

it can be observed that each island is associated with one

hardware accelerator, one direct memory access (DMA)

controller, and one softcore NIOS II processor. The

hardware accelerator is adopted for speeding up the steady

state GA computation associated with each island. The

architecture of the accelerator is shown in Fig. (1).

 Recall that training vectors are required for fitness

evaluation. The set of training vectors are stored in the main

memory. The DMA controller shown in Fig. (5) is used for

delivering the training vectors from the main memory to the

input of the fitness evaluation unit shown in Fig. (4).

 The softcore processor in Fig. (5) is used for coordinating

the distributed steady-state GA operations in each island.

The softcore processors in different islands will operate in-

dependently. Each processor triggers the hardware accelera-

tor and DMA controller for regeneration, crossover and mu-

tation, fitness evaluation and survival test and update opera-

tions of its own island. The processor then checks for the

offspring survival rate. When the survival rate drops to zero,

it will then record the best string in the population, and acti-

vates the migration process for genetic strings. The migra-

tion process consists of exchanging the K genetic strings

between the island and an on-chip RAM outside the island.

After the migration process, the accelerator and DMA con-

troller will then be activated again for another evolution. The

softcore processor will also determine when should the itera-

tions be terminated. A software flowchart for the softcore

processor associated with each island is shown in Fig. (6).

3.3. Architecture of the Distributed Steady-State GA

 Fig. (7) depicts the architecture of the distributed

steady-state GA. There are M islands, and each island has its

own circuit. Therefore, there are M modules for genetic evo-

lution in Fig. (7), where each module corresponds to one

Fig. (3). The architecture of mutation unit.

An Efficient Distributed Genetic Algorithm Architecture The Open Artificial Intelligence Journal, 2010, Volume 4 25

island. It has the architecture as shown in Fig. (5). Because

each module has a softcore processor, the architecture in Fig.

(7) can be viewed as an M-core circuit. It can also be ob-

served from Fig. (7) that all the modules share the same main

memory, which contains the set of training vectors for fitness

evaluation.

Fig. (5). The architecture of each island of the proposed distributed
GA architecture.

 One major difficulty for the hardware implementation of

distributed GA algorithm is the string migration. Each island

may randomly select a target island for string exchange.

When the number of islands is large, the circuit for migration

can be complicated. To simplify the string migration process,

in addition to the M modules, the distributed GA architecture

also contains a memory for the string migration. The mem-

ory, termed string migration cache, is shared by all the mod-

ules.

 Based on the string migration cache, it is not necessary to

design a circuit for selecting the target module for migration

for each module. To perform the migration, each module

competes for the exclusive access to the string migration

memory. The winner exchanges K genetic strings with the

cache. When the winner accomplishes its migration process,

it releases the memory. At this point, another module may

acquire the memory for the string migration.

 The migration process based on the string migration

memory does not actually perform the string exchange be-

tween two islands. In fact, an island winning the memory

obtains the new string from its previous winner. However,

the island does not donate its strings to its previous winner.

The island will give its strings to the next winner. Therefore,

in our architecture, there is no string exchange. Instead, the

strings migrate from one winner to the next. The first winner

will obtain new strings which are randomly generated in the

memory. This scheme may have comparable performance to

the string exchange scheme with significantly less hardware

implementation complexity.

 To protect the string migration memory from data cor-

ruption that can occur if more than one modules attempts to

use the memory at the same time, a hardware mutex core is

also used, as shown in the Fig. (7). The mutex allows coop-

erating modules to agree that one of them should be allowed

mutually exclusive access to the string migration memory.

 Note that, without the hardware mutex, the function for

data corruption protection normally requires two separate

"test" and "set" instructions between which, the processor in

another module could also test for availability and succeed.

This situation may leave two processors both thinking they

successfully acquired mutually exclusive access to the string

migration memory when clearly they did not. The atomic

operation provided by the hardware mutex is essential for

our string migration scheme.

4. EXPERIMENTAL RESULTS

 This section presents some physical performance meas-

urements of the proposed FPGA implementation. The target

FPGA device for the hardware design is Altera Stratix II

2S60 [14], which contains 288 DSP blocks and 24176 adap-

tive logic modules (ALMs) [15]. The Altera Quartus II with

Fig. (4). The architecture of the fitness evaluation unit.

26 The Open Artificial Intelligence Journal, 2010, Volume 4 Hwang et al.

SOPC builder is used as the platform for our design. The

vector dimension of codewords is 22=w . There are 32

codewords (i.e., N = 32) in the VQ. The mutation probability

is
b

P = 0.03125. The number of islands for the distributed

GA is 3 (i.e., M = 3).

 Table 1 shows the area cost of the architecture of

steady-state GA, the architecture of each island, and the ar-

chitecture of distributed GA. The population size is P = 16

for each island. As revealed in the table, the steady-state GA

architecture consumes only 3096 ALMs. The population

memory of the architecture is implemented by the embedded

memory of the FPGA. The consumption of the population

memory bits for the steady-state GA circuit is 16384 bits.

Moreover, the circuit also uses 128 digital signal processing

(DSP) 9-bit elements of the FPGA device for the implemen-

tation of squared distance computation in the fitness evalua-

tion unit.

Fig. (6). The flowchart for the softcore processor.

An Efficient Distributed Genetic Algorithm Architecture The Open Artificial Intelligence Journal, 2010, Volume 4 27

 The NIOS softcore CPU [11] and DMA controller also

consume hardware resources. Therefore, it can be found

from Table 1 that the area cost of the island architecture is

higher than that of the steady-state GA architecture. How-

ever, the island architecture uses 7162 ALMs, which is only

30% of the ALMs of the target FPGA device. The distrib-

uted GA system contains 3 island architectures, mutex cir-

cuit and SDRAM controller. Hence, the ALMs consumed by

the entire distributed GA system is slightly higher than triple

of that consumed by each island.

 Fig. (8) shows the distribution of average distortion of

the distributed GA with M = 3. The distribution is obtained

by 200 independent executions of the distributed GA. The

number of genetic strings of each island is P = 16. There are

three islands. Therefore, the total number of genetic strings

is 48. The training set contains 65536 vectors drawn from

the image “Lena.” The distribution of basic steady-state GA

(i.e., M = 1) is also included in the figure for comparison

purpose. The number of genetic strings is 48 for the

steady-state GA. The two GAs therefore are compared on the

basis of the same number of total genetic strings. From the

figure, we see that both GAs have similar distributions.

Therefore, the employment of the distributed GA does not

degrade the performance for the VQ design.

 The CPU time of various distributed GA implementa-

tions are compared in Table 2. The distributed GAs are im-

plemented with M = 3. We also set P = 16 for each island.

The software implementations are developed on the 2.6GHz

multicore workstation HP-ML570. As shown in Table 2,

both single threading and multi-threading schemes are

adopted for the software implementation. The evolution of

the 3 islands are executed sequentially by a single thread in

the single threading implementation. By contrast, for the

multi-threading implementation, the evolution of each island

is processed by an independent thread. Different threads are

executed by separate cores so that evolution of all the islands

are processed in parallel. The number of training vectors is

65536 from the image “Lena”.

 It can be observed the Table 2 that the CPU time of the

proposed architecture is significantly lower than that of its

distributed GA software counterparts. In fact, the speedup of

the proposed architecture over its single threading and

multi-threading software counterparts are 65 and 30, respec-

tively. The speedup is defined as the execution time

(2.6-GHZ Pentium IV CPU) of the software implementation

divided by the execution time (50-MHz NIOS softcore CPU)

of the SOPC system using the proposed GA architecture as

the custom user logic. Based on (Fig. 8 and Table 2), we

conclude that the proposed architecture is able to accelerate

the genetic optimization process without sacrificing its per-

formance.

 Table 3 shows the area costs, average distortion and

execution time of the proposed SOPC system for various

population size P for each island. The distortion and execu-

tion time are obtained by averaging those of 200 independent

Fig. (7). The architecture of the distributed steady-state GA.

Table 1. The Area Cost of the Architecture of Steady-State GA, the Architecture of Each Island, and the Architecture of Distrib-

uted GA

 Steady-State GA

Circuit

Architecture

of Each Island

Architecture

of Distributed GA

ALMs 3096(13%) 7162(30%) 24139(99%)

Block memory bits 16384(3%) 613120(24%) 643968(25%)

DSP block 9-bit elements 128(44%) 136(47%) 288(100%)

28 The Open Artificial Intelligence Journal, 2010, Volume 4 Hwang et al.

executions. It can be observed from Table 3 that the area cost

of the entire system becomes only slightly higher as P in-

creases. The average execution time grows linearly with P.

In addition, the average distortion can be effectively reduced

as P becomes larger.

 To further investigate the effectiveness of the proposed

architecture, Fig. (9) shows the speedup of the proposed

architecture over its multi-threading software counterpart for

various numbers of training vectors from the 4 training im-

ages “Baboo”, “Hill”, “Bridge” and “Girl”. The population

size is P = 16 for each island. It can be observed from Fig.

(9) that the speedup increases with the training set size. This

is because the training set is used for the fitness evaluation in

the GA. The training set is often stored in the main memory,

and therefore requires long memory access time. In addition,

the inverse of the average distortion D in eq.(2) is used as the

fitness function. The computational complexity therefore is

high. In our architecture, the DMA and pipeline techniques

are used for reducing the memory access time and the com-

putational time for fitness evaluation. Therefore, our design

has high speedup over the software implementation when the

training set size is large. In particular, when the training set

contains 65536 vectors, the execution time of our SOPC

system is 3952.6 ms; whereas, the execution time of soft-

ware system is 85017.5 ms. The speedup is 22. These facts

demonstrates the effectiveness of our design.

Fig. (8). The distribution of average distortion of the distributed GA.

Table 2. The CPU Time of Various Distributed GA Implementations

 Average Distortion Average Execution Time

Software distributed GA

(single-thread)
54.06 85208.7ms

Software distributed GA

(multi-thread)
54.24 38555.9ms

Hardware distributed GA 54.11 1293.8ms

Table 3. The area Costs, Average Distortion and Execution Time of the Proposed SOPC System for Various Population Size P for

Each Island

P

Entire System

Embedded Memory Bits

Entire System

ALMs

Average

Distortion

Average

Execution Time

4 619392(23%) 22145(92%) 58.24 869.5ms

8 627584(24%) 22829(94%) 57.41 991.2ms

12 635776(24%) 23493(97%) 55.53 1153.7ms

16 643968(25%) 24139(99%) 54.11 1293.8ms

An Efficient Distributed Genetic Algorithm Architecture The Open Artificial Intelligence Journal, 2010, Volume 4 29

CONCLUDING REMARKS

 The proposed architecture has been found to be effective

for the hardware implementation of distributed GA. The em-

ployment of steady-state GA for the evolution within each

island is able to simplify the complexity for the design of

hardware accelerator. By assigning each island an inde-

pendent core and hardware accelerator for genetic evolution,

the proposed architecture is able to accelerate the genetic

optimization process without sacrificing its performance.

The population size can be increased to lower the average

distortion without the consumption of large hardware re-

sources. The speedup of the architecture over its software

counterpart also increases with the training set size. The

proposed architecture is therefore an effective alternative for

genetic optimization applications requiring realtime compu-

tation without sacrificing its performance.

REFERENCES

[1] A. E. Eiben and J. D. Smith, Introduction to Evolutionary Comput-
ing, Springer, 2003.

[2] E. Cantu-Paz, “Efficient and Accurate Parallel Genetic Algo-
rithms", Norwell: Kluwer, 2000.

[3] A. Chipperfield and P. Fleming, “Parallel Genetic Algorithms”,
Parallel and Distributed Computing Handbook, A. Y. H. Zomaya,

Ed., McGraw-Hill, New York, 1996, pp. 1118-1143.
[4] D. Whitley and T. Starkweather, “GENITOR II: A distributed

genetic algorithm," Journal of Experimental & Theoretical Artifi-
cial Intelligence, vol. 2, pp. 189-214, 1990.

[5] A. Gersho and R.M. Gray, Vector Quantization and Signal Com-
pression, Norwood: Kluwer, 1992.

[6] N. Nedjah and L. Mourelle, “Hardware architecture for genetic
algorithms", Lecture Notes in Computer Science, vol. 3533, pp.

554-556, 2005.
[7] M. Tommiska and J. Vuori, “Implementation of genetic algorithms

with programmable logic devices," Proc. 2nd Nordic Workshop on
Genetic Algorithms and Their Applications, 1996, pp. 111-126.

[8] K. Rasheed and B.D. Davisson, “Effect of global parallelism on the
behave of a steady state genetic algorithm for design optimization,"

In Proceedings of the Congress on Evolutionary Computation,
Washington, DC, 1999.

[9] G. Syswerda, “A study of reproduction in generational and steady
state genetic algorithms", Foundations of Genetic Algorithms, G.

Rawlins, Ed. San Fransisco, Morgan Kaufmann, 1991, pp.94-101.
[10] S. Hauck and A. Dehon, Reconfigurable Computing: The Theory

and Practice of FPGA-Based Computing, Morgan Kaufmann, Pub-
lishers, CA, 2008.

[11] NIOS II Processor Reference Handbook, 2008, Altera Corporation.
http: //www.altera.com/ literature/ lit-nio2.jsp.

[12] P.D. Hortensius, R.D. McLeod, and H.C. Card, “Parallel random
number generation for VLSI systems using cellular automata",

IEEE Transaction on Computer, vol. 38, No. 10, pp. 1466-1473,
1989.

[13] W.J. Hwang, H.Y. Li, Y.J. Yeh, and K.F. Chan, “FPGA imple-
mentation of competitive learning with partial distance search in

the wavelet domain," Progress in Neurocomputing Research, G. B.
Kang, Ed., NOVA Science Publisher, 2008, pp. 203-221.

[14] Stratix II Device Handbook, 2008, Altera Corporation San Joe.
http:// www.altera.com/ literature/ lit-nio2.jsp.

[15] M. Hutton, J. Schleicher, D. Lewis, B. Pedersen, R. Yuan, S. Kap-
tanoglu, G. Baeckler, B. Ratchev, K. Padalia, M. Bourgeault, A.

Lee, H. Kim and R. Saini, “Improving FPGA performance and area
using an adaptive logic module", Lecture Notes in Computer Sci-

ence, vol. 3203, pp. 135-144, 2004.

Received: August 12, 2009 Revised: November 01, 2009 Accepted: November 03, 2009

© Hwang et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http: //creativecommons.org/licenses/by-nc/

3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

Fig. (9). The speedup of the proposed architecture over its multi-threading software counter-part for various numbers of training vectors from
four training images.

