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Abstract:

Abnormal gait, falls and its associated complications have high morbidity and mortality. Computer vision detects, predicts gait abnormalities,
assesses fall  risk,  and serves as a  clinical  decision support  tool  for  physicians.  This  paper performs a systematic review of computer  vision,
machine  learning  techniques  to  analyse  abnormal  gait.  This  literature  outlines  the  use  of  different  machine  learning  and  poses  estimation
algorithms in gait analysis that includes partial affinity fields, pictorial structures model, hierarchical models, sequential-prediction-framework-
based approaches, convolutional pose machines, gait energy image, 2-Directional 2-dimensional principles component analysis ((2D) 2PCA) and
2G (2D) 2PCA) Enhanced Gait Energy Image (EGEI), SVM, ANN, K-Star, Random Forest, KNN, to perform the image classification of the
features extracted inpatient gait abnormalities.
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1. INTRODUCTION

Abnormalities  with  patient  gait  fall  and  associated
complications have high morbidity and mortality [1]. Falls, its
high  costs  to  the  healthcare  system  is  largely  preventable.
Preventable  complications  include  hip  fractures,  medical
deconditioning, myocardial infarction, and pulmonary emboli.
These complications are devastating in the elderly population
[2].  Advances  in  algorithms  and  low-cost  sensors  in  the
healthcare  market  prevent  falls  and  complications  [3].

Computer  vision  assesses  fall  risk,  provides  physicians
with  an  opportunity  to  outline  an  early  treatment  plan,  thus
limiting any morbidity and mortality. Computer vision is also
used  to  assess  gait  in  disorders  like  dementia,  depression,
intellectual disability, musculoskeletal disorders, and stroke [4
- 7]. These conditions are managed in the fields of neurology,
physical medicine rehabilitation, rheumatology, and orthopae-
dics [8]. Computer vision assesses postural abnormalities; its
parameters’ provide strength and an endurance plan for patients
during their treatment course [9].

Clinicians'  provide  a  subjective  assessment  of  gait.  As  a
result, subjectivity impacts diagnosis and treatment decisions;
thus,  patient  outcomes  [10].  Computer  vision  strengthens
physicians' decisions, provides an  in-depth quantitative  analy-
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sis of one's stride and its potential for recovery [11]. Thus, gait
analysis is essential; numerous bodies of research explore this
topic at length [12].

This  article  performs  a  complete  systematic  review  of
computer  vision,  its  machine  learning  methods  in  gait
assessment.  This  article  focuses  on:

What  are  the  machine  learning  models  used  in
estimating gait?
How can computer vision assist with gait assessment?

1.1. Gait Analysis

Gait  analysis  uses  several  approaches,  including medical
imaging technique, acoustic tracking system, magnetic system,
goniometric  measurement  system,  electromyography,  foot
planter  presser  sensor,  force  shoes,  force  plate  mechanism,
inertial system, optical system and utilities portable devices.

1.2. Computer Vision

Human vision refers to gazing at the world to understand
it. Computer vision is similar as it uses a machine, a camera, to
obtain  information.  We  use  the  following  features  for
classifying  a  computer  vision’s  applications  [13]:

Gauging:  It  relates  to  tolerance  checking  and
dimensional characteristic measurement.
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Sorting: It recognizes and identifies parts.
Inspection: It detects, identifies, and classifies parts.

Within  the  past  decade,  they  have  conducted  extensive
research  on  video-based  human  motion  capture.  Various
techniques  in  machine  learning  and  computer  vision  are
proposed for pose estimation and 3D human motion tracking
[14].  A  video-based  technique  is  used  to  carry  out  joint
kinematics, while gait is ongoing, as developed by the work of
Corazza et al. [15].

1.3. Machine Learning
As  deep  learning  approaches  emerge,  DNN-based

techniques  are  the  standard  in  vision  tasks  such  as  human
motion  tracking,  pose  estimation  [16],  human  activity
recognition  [17],  and  face  recognition  [18].  Deep  CNN
architecture consists of layers between both input and output;
model complex non-linear relationships in data. DNN models
for 3D human pose estimation focus on a single view, with a
complex background setting [14, 19]. Machine learning models
using  Logistic  Regression  [20],  Artificial  Neural  Networks
(ANN)  [21],  K-Star  [22],  Random  Forest  [23],  K-nearest
neighbors  (KNN) [24]  and Support  Vector  Machines  (SVM)
[25]  can  identify  and  classify  patterns  of  gait,  thus  provide
valuable insight into medical conditions [16].

1.3.1. Post Estimation
An  individual’s  trunk,  joints,  and  other  body  parts  are

detected  using  the  human  pose  estimation  method  [26].  The
pose  estimation  technique  detects  body  parts  using  images
from a video or  an image detector;  it  describes the anatomic
details [27]. These images are processed into an algorithm. Key
skeletal  points  serve  as  coordinates,  generated  by  using  the
pose estimation method. Human pose estimation is important;
it  predicts  human  posture,  behaviour  by  gait  recognition,
character  tracking,  action,  and  behaviour  recognition  [28].
Similarly,  the  method:  Part  affinity  field  is  another  ground-
breaking computer vision technique, able to detect multiple 2D
people poses in the wild with high accuracy [29].

Pictorial  structures  mode  [30  -  32]  expresses  spatial
relationships  within  body  parts  labelled  as  kinematic-priors-
based,  tree-structured  graphic  models.  This  model  couples
connected  limbs,  thus  make  up  the  classic  articulated  pose
estimation  technique.  These  methods  make  mistakes  such  as
counting image data twice; this happens because connections
between variables of the tree-structured model did not capture
correctly. These errors occur on high-quality limb images used
in the pictorial structure model [33].

Hierarchical models [34, 35] signify how the parts relate at
various sizes and scales in a hierarchical tree structure. Based
on  assumptions,  the  image  structure  easily  detects,  discri-
minates  the  location  of  small  hard-to-locate  parts  within  the
entire limb system.

Interactions introduce loops and augment the tree structure
with edges; it captures: long-range, occlusion, symmetry, and
incorporates  into  non-tree  models  [36,  37].  The  inference  is
required  in  methods  for  learning  and  test  time.  As  a  result,
spatial  relationships’  provide  fast,  efficient  inference,  with  a
parametric form; but, a trade-off with other models occurs.

Sequential-prediction-framework-based  approaches  [38]
use complicated relationships between variables: it learns from
an  implicit  spatial  model,  trains  an  inference  procedure  to
achieve  a  performance  output  [39,  40].

Recently, the articulated pose estimation method [41, 42]
combined with a convolutional architecture gained popularity
in  the  computer  vision  community.  This  method  [43]  uses
convolutional  architecture  to  carry  out  a  regression  of  the
Cartesian  coordinates  [44].  It  regresses  an  image  to  a
confidence map and opts in for graphical models using spatial
probability  priors'  heuristic  initialization  or  energy  functions
designed  by  hand.  This  removes  outliers  on  the  regressed
confidence maps; it also uses a dedicated network model for a
precise  refinement  [45,  46].  This  input  to  the  regressed
confidence maps combined with convolutional networks does
not require hand-designed priors, has great receptive domains
for learning, and attains a high level of performance within the
entire precision region. Furthermore, it should not be carefully
initialized  and  needs  a  dedicated  precision  refinement.  A
network module with a large receptive field is used in the work
for  capturing  implicit  spatial  models  [47],  considered  joint
training’s  advantages;  the  model  we  reviewed  is  trained
globally because of convolutions differentiable attributes [42].

A deep network with the features of being able to use error
feedback  for training is seen in the work of [48]. It also uses
Cartesian  representation,  as  seen  in  that  it  is  incapable  of
preserving  spatial  improbability,  and  that  reduces  the  high
precision  regime’s  accuracy  [49].

The  task  of  articulated  pose  estimation  using  Convolu-
tional  Pose  Machines  (CPMs)  has  been  carried  out.  CPM
inherit  pose  machine  architecture’s  benefits  [38],  integrating
learning  and  inference  tightly,  the  learning  of  long-range
dependencies  between  multi-part  cues  and  image  implicitly,
and  a  modular  sequential  design.  It  combines  these  with  the
benefits  convolutional  architecture  provides.  CPMs  also
include  advantages  such  as  the  capability  of  handling  large
training  datasets  efficiently,  a  differentiable  architecture  that
makes  joint  training  with  backpropagation  possible,  and  the
ability  to  learn  spatial  and  image  context's  feature  repre-
sentations directly from data. Series of convolutional networks,
2D maps for each part's location make up CPMs.

CPMs  [50]  are  robust  and  have  high  accuracy  in  the
detection  of  human  pose  estimations’  data-sets,  such  as  the
Leeds Sports  Pose (LSP) data-set  [51],  Human Pose data-set
[52],  and Max-Planck-Institute  Informatics  (MPII).  The time
required to train CPMs are extensive, and its detection speed is
low. This makes it difficult to apply real-time tasks. Based on
human pose estimation's standard datasets, excellent detection
outputs  are  found in  the  Stacked Hourglass  [53]  of  a  similar
duration.  The  new  modes  using  the  enhanced  Stacked
Hourglass include the 2017 models such as Learning Feature
[54],  Self-Adversarial  Training  [55],  and  multi-context  [56],
and  the  2018  excellent  models’  further  improved  accuracy.
Certain  metrics  contained  in  these  models,  increase  the  time
required for training, thereby limiting model use. To date, the
model does not have a satisfactory accuracy.

The  ability  to  extract  the  low-level  feature  is  enhanced,
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using  the  more  convoluted  network  structures,  and  deeper
network  layers  of  the  enhanced  CPM  model  [57];  and
afterward, apply a system to fine-tune it. The enhanced CPM is
proven to include an excellent image detection effect and high
image  classification  accuracy,  and  a  good  human  pose
estimation  model  for  designing  a  new  network  and  apply  a
system of fine-tuning to increase the human pose estimation’s
efficiency.

1.3.2. Gender Recognition
Gait Energy Image (GEI) is a combination of gait with a

new  spatiotemporal  method  for  force  representation  to  mark
human walking behaviour for individual recognition [58]. The
findings  show  the  efficiency  of  combining  gait  and  GEI
approach for individual recognition, and the competitiveness of
its  performance  [58,  59].  The  GEI  approach  is  used  for
studying individual recognition. The researchers used various
tech-niques,  methods  to  present  the  GEI  approach  as  biased
attributed in their survey. It is clear from the findings of their
research that the system’s performance in real-time improved;
hence,  its  application in real-word is  possible [60].  It  further
used automated approaches to combine psychological methods
for  improving  accuracy  quality  to  classify  human  gait-based
genders. According to their research, compared to other parts
of  the body,  the major  body parts  for  the gender  recognition
process include the chest,  back,  hair,  and head.  Even though
the application process contains several impediments because
of the differences in how humans appear, they include change
of  shoes  and  clothes,  or  when  they  lift  objects,  the  gait
classification  is  possible  in  a  controlled  environment.

The classification of human behaviour using 2-Directional
2-dimensional principles component analysis ((2D) 2PCA) and
2G  (2D)  2PCA)  Enhanced  Gait  Energy  Image  (EGEI)  is
proposed  in  the  work  [61].  The  outcomes  of  the  experiment
revealed  the  simplicity  of  the  algorithm  and  its  capacity  for
realizing a higher classification accuracy within a short period.
The  system  uses  gait  classification  based  on  the  silhouette,
recommends books to visitors according to their age or gender,
and in real-time [62]. The Support Vector Machine (SVM) has
77.5%  accuracy  in  classification  [63];  it  combines  the
Denoised  Energy  Image  (DEI)  and  GEI  approach  in  pre-
processing  to  present  gender  recognition’s  initial  design,
outcomes,  the  training,  and  extraction  of  feature  from  the
walking  movements  experiment.  This  method  may  provide
high real-time accuracy.

The method of integrating information from the multi-view
gait at the feature level is proposed [64], and it increases the
effectiveness of the performance for the gender classification
based  on  multi-view  gait.  Gait  for  human  recognition  was
conducted  [65].  Gait  image’s  features  that  are  founded  on
information  theory  sets  are  referred  to  as  image  feature
information gait. Gait information features are information set
theory-based  gait  image  features  that  are  described  by  this
research team. The concept of the information set was applied
on the frames in a gait cycle, and two elements referred to as
Gait  Information  Image  with  Sigmoid  Feature  (GIISF)
extracted  and  Gait  Information  Image  with  Energy  Feature
(GII-EF) to derive the proposed Gait Information Image (GII).
The  identification  of  the  gait  was  made  using  Nearest

Neighbour (NN) for the classification. The robust feature-level
fusion  of  directional  vectors  such  as  forward  and  backward
diagonal,  vertical,  and  horizontal  vectors  are  used  by  this
research  team  [66]  to  study  gender  recognition.  First,  they
construct  for  each  image  sequence:  1)  Gait  Energy  Image
(GEI),  followed  by  2)  Gradient  Gait  Energy  Image  (GGEI),
which is achieved using neighbourhood gradient computation
[67].  After  that,  differences  in  all  the  four  directions  were
utilized as discriminative gait features. Afterward, SVM used
in  the  classification  process,  while  the  largest  multi-view
CASIA-B (Chinese Academy of Sciences) datasets were used
to  test  the  model.  The  investigators  report  that  their  study
outcomes were beneficial.

According  to  the  literature  review,  the  current  most
universal gait-based approaches to gender classification include
GEI and GII approaches. As a result, this research focuses on
contrasting GII approaches with GEI approaches to present a
gait-based gender classification in real-time [68]. The one with
the highest accuracy is beneficial for future ongoing research
studies.

2. METHODS

2.1. Search Criteria
The  systematic  review  aimed  at  reviewing  published

papers, as well as academic journals, in a step-by-step manner.
It  also  intends  to  perform  a  systematic  peer-review  on
academic-based journals. It will use online search engines such
as  IEEExplore1,  PubMed2,  Google  Scholar3,  Cochrane4,
CINAHL, Medline5, Web of Science6, DBLP7, and Embase8 to
search for literature. The primary keywords used for the search
are Computer vision, Artificial Intelligence, Machine learning,
deep  learning,  CNN,  Abnormal  gait  analysis,  gait  analysis,
Stroke, Parkinson's disease, and Movement disorders.

2.2. Justification of the Selection
The  preliminary  research  produced  one  hundred  articles.

We considered only 10 of them in this literature review. Out of
the  10  articles,  only  5  of  them  were  selected  related  to  this
report’s  topic.  This  literature  review  set  an  interval  duration
from 2009 and 2019 to analyze; this ensures up-to-date works
of  literature  used  for  the  review.  However,  at  times,  some
earlier journals were selected.

3. RESULTS AND DISCUSSION

3.1. Findings and Analysis
The key findings from the journals are provided in Table 1.

1 https://ieeexplore.ieee.org/Xplore/home.jsp

2 https://www.ncbi.nlm.nih.gov/pubmed/

3 https://scholar.google.com/

4 https://www.cochranelibrary.com/

5 https://www.ebsco.com/products/research-databases/medline

6 https://clarivate.com/webofsciencegroup/solutions/web-of-science/

7 https://dblp.uni-trier.de/

8 https://www.embase.com/login

https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.ncbi.nlm.nih.gov/pubmed/
https://scholar.google.com/
https://www.cochranelibrary.com/
https://www.ebsco.com/products/research-databases/medline
https://clarivate.com/webofsciencegroup/solutions/web-of-science/
https://dblp.uni-trier.de/
https://www.embase.com/login
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Table 1. Key findings.

System Suggested Year Computer Vision
technology

Machine Learning
Technique

The Abnormality Identified
Using the Gait Analysis

Reference

Automatic Health Problem Detection 2018 Videos captured
using digital cameras

DNN Parkinson’s disease
Pose Stroke

orthopedic problems

[2]

A vision-based proposal for classification of
normal and abnormal gait

2016 RGB Camera KNN and SVM Dementia
frailty

[3]

Computer Vision-Based Gait Analysis 2018 Smart Phone KNN Senility
Frailty

[3]

Extracting Body Landmarks from Videos 2019 Videos Suggested future work for
classification or regression

algorithms

Parkinson disease [4]

System to support the Discrimination of
Neuro-degenerative Diseases

2009 Videos SVM, Random Forest, and
KStar

Amyotrophic lateral sclerosis,
Parkinson's disease, and

Huntington's disease

[5]

Several measures were identified in the gait analysis to study the abnormality of the patients, some of which are in Table 2.

Table 2. The measures identified in the gait analysis to study the abnormality of the patients [69, 70].

Patient Abnormality Gait Measures
Slow walking Gait speed

Frequency of steps
Muscle weakness Muscle force

Crouch Gait Ankle joint angle
Unstable gait Gait stability measure

Double support time
High stepped gait Step height

Pelvis drop Hip flexion

CONCLUSION

According to this brief literature review, several machine
learning  algorithms  are  used  in  the  classification,  which
includes SVM, K-Star, Random Forest, KNN, and DNN. The
images and videos are widely used in the literature to capture
the human walk while performing the gait analysis. Therefore,
the  use  of  high  technologies  of  computer  vision,  such  as
smartphone  cameras,  surveillance  cameras,  among  others,  is
rapidly emerging. Limitations to this brief review include its
deficiency to perform in-depth research on the gait analysis, its
functions, and at length comparison of studies.

Future research databases with real-time data, as opposed
to  single  gait  data  and  less  geographic  and  demographic
restrictions,  are needed [6].  Improvement in accuracy in gait
patterns  recognition  affected  by  variations  in  clothing  needs
further  research  [6].  Multiview  covariate  data  sequences  are
needed, giving multiple view angles resulting in less error rate
[6].  Segmentation  of  gait  in  unconstrained,  background
conditions  that  lead  to  adaptive  background  modelling  also
needs  refined  research  to  correct  these  issues  [6].  Lastly,
optimization of feature selection and reduction of feature space
is also needed for future research [6].
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