
 The Open Applied Informatics Journal, 2007, 1, 11-19 11 

 

 1874-1363/07 2007 Bentham Science Publishers Ltd. 

An Iterative Nonlinear Regression Method for Microarray Data Normalization 

Jianhua Xuan
*,1

, Yue Wang
1
, Robert Clarke

2
 and Eric Hoffman

3
 

1
Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA 

2
Department of Oncology, Georgetown University School of Medicine, Washington, DC, USA 

3
Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA 

Abstract: Normalization is a prerequisite for almost all follow-up steps in microarray data analysis. Accurate normaliza-

tion across different experiments and phenotypes assures a common base for comparative yet quantitative studies using 

gene expression data. In this paper, we report a novel normalization approach, namely iterative nonlinear regression (INR) 

method, which exploits concurrent identification of invariantly expressed genes (IEGs) and implementation of nonlinear 

regression normalization. The INR scheme features an iterative process that performs the following two steps alterna-

tively: (1) selection of IEGs and (2) estimation of nonlinear regression function for normalization. We demonstrate the 

principle and performance of the INR approach on two real microarray data sets. As compared to major peer methods 

(e.g., linear regression method, Loess method and iterative ranking method), INR method shows an improved perform-

ance in achieving low expression variance across replicates and excellent fold-change preservation for differently ex-

pressed genes. 

INTRODUCTION 

 DNA microarray technology has enabled high-
throughput measurements of tens of thousands of mRNA 
levels, providing us a powerful tool to investigate biochemi-
cal pathways and gene regulatory networks, to identify phe-
notype-specific biomarkers, to assess cellular response to 
drug compounds, and to classify disease states at molecular 
level. For example, recent studies in cancer research demon-
strate that gene expression profiling can reveal distinct tumor 
subtypes not evident by traditional histopathological meth-
ods [1, 2]. Although it is optimistic to assume that gene ex-
pression data alone will be sufficient for the reconstruction 
of complete regulatory pathways, several recent studies suc-
cessfully demonstrate the potential for inferring regulatory 
networks from gene expression data [3]. 

 While high-throughput measurements of gene expression 
levels are likely to provide important information about cel-
lular processes (e.g., revealing previously unrecognized pat-
terns of gene regulation) and generate new hypotheses war-
ranting further study, widespread use of microarray profiling 
methods is limited by the need for further technology devel-
opments, particularly computational bioinformatics tools not 
previously included by the instruments. Recently, much ef-
fort has been devoted to the development of high-level data 
analysis tools such as clustering [4-6], classification [2, 7, 8] 
and Bayesian network methods [3]. As more and more com-
putational tools are made available to researchers, it has be-
come increasingly clear that the key issue in microarray data 
analysis is how to extract quality information about the bio-
logical system being studied. 

 As a first step in accurately exacting biological informa-
tion, it is necessary to filter out experimental noise and cor-
rect for systematic errors confounding the raw data obtained  
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by this complex technology. Potential sources of systematic 
errors include array surface chemistry, microarray printing, 
labeling methods, hybridization parameters, image analysis, 
and RNA isolation [9-11]. The process to correct for system-
atic error, generally termed normalization, is introduced to 
correct the differences across different arrays in probe label-
ing, probe concentration, hybridization efficiency, and po-
tentially other factors. 

 Normalizing multiple arrays to allow quantitative follow-
up analyses presents one of the great challenges in microar-
ray data analysis. Many normalization methods have been 
proposed in literature, the popular ones include global nor-
malization or linear regression (LR) [12], Loess normaliza-
tion [13], rank invariant method [14], and quantile normali-
zation [15]. Regardless of their large technical differences, 
two basic steps in these methods involve: (1) selection of 
reference genes for normalization and (2) choice of a linear 
or nonlinear regression function for normalization [9]. 

 For instances, Affymetrix’s global normalization method 
uses all the genes for normalization with a linear regression 
function; Loess normalization method also uses all the genes 
for normalization but with a nonlinear regression function 
derived from M-A plots [16]. In contrast, rank invariant 
method uses a subset of genes (i.e., rank invariant genes) for 
deriving a nonlinear regression function for normalization, 
while quantile normalization uses all the genes but the trans-
formation function is derived in such a way that makes the 
distribution for each array in a set of arrays the same [15]. In 
addition, housekeeping genes were used in the past for nor-
malization under the assumption that they are constantly 
expressed genes [17], while in fact the expression levels of 
housekeeping genes can vary significantly [18]. Exogenous 
control genes can also be used for normalization, and many 
reports have supported that it is an excellent and universally 
applicable normalization strategy [19]. 

 In this paper, we report a novel approach for microarray 
data normalization using an iterative nonlinear regression 
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(INR) strategy. The basic idea of INR method is to couple 
the two key steps in the normalization procedure, i.e., (1) 
selection of invariantly expressed genes (IEGs) and (2) de-
riving a regression function for normalization, into an itera-
tive search that effectively updates the selection of IEGs for 
normalization. We tested the INR method on two real and 
representative microarray data sets and evaluated INR per-
formance in terms of variance reduction and fold-change 
preservation. 

METHOD 

 In this section, we describe INR normalization method in 
details. Fig. (1) illustrates the block diagram of INR method 
consisting of two basic steps: (1) iterative IEG selection and 
(2) nonlinear regression normalization. As we can see, IEG 
selection is based on an iterative procedure that alternatively 
selects control genes (IEGs) and estimates nonlinear regres-
sion function for normalization. The final set of IEGs will be 
obtained when the iterative IEG selection procedure con-
verges and subsequently, a nonlinear regression function will 
be estimated based on these IEGs. Next, we will describe the 
iterative IEG selection procedure and the outline of INR al-
gorithm. 

Iterative IEG selection

Normalization

Final selected IEGs

Normalization by  nonlinear 

regression based on 

selected IEGs

Sector-shaped IEG selection

Normalization by  nonlinear 

regression based on 

final selected IEGs
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Normalization

Final selected IEGs

Normalization by  nonlinear 

regression based on 
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Normalization by  nonlinear 

regression based on 

final selected IEGs

 

Fig. (1). Block diagram of the normalization method by iterative 

nonlinear regression. 

ITERATIVE IEG SELECTION 

 Different from most existing methods, INR normalization 
method relies on IEGs that can be selected iteratively by 
sector-shaped nonlinear regression [20]. Specifically, we 
have developed an INR algorithm that alternatively selects 
IEGs and estimates normalization regression function. In an 
ideal case, i.e., without systematic errors, IEGs are the genes 
whose expression ratios are close to 1 between two microar-

ray experiments, defined by the following equation mathe-
matically: 
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where 
reference
s  and floatings  represent the expression levels 

of the reference (baseline) array and the floating array (i.e., 
the array to be normalized), respectively;  is a pre-defined 
small threshold, and i is the gene index. Fig. (2) shows an 
example of IEGs (as defined by Eq. (1)) in a scatter plot of 
two arrays, which reveals a sector-shaped distribution of 
IEGs. 

 

Fig. (2). IEGs distributed within a sector-shaped region shown in 

scatter plot. 

 Microarray data normalization aims to find a mapping 
function between the gene expression levels obtained from 
two samples or experiments. Mathematically, the gene ex-
pression levels in a floating array ( floatings ) can be modeled 
as a nonlinear regression function of the raw expression lev-
els ( floatings ) embedded with some systematic errors: floatings  

= f(sfloating) [14]. When the true IEGs are known or can be 
identified, we can estimate the nonlinear regression function 
by minimizing the mean squared error (MSE) between the 
expression levels in floating and reference arrays: 

  

=

f 1(s
floating

(i))

s
reference

(i)
1

i=1

N
IEG

2

,    (2) 

where NIEG is the number of IEGs and reference ( )s i  is the 
expression level of a particular IEG in a reference array. The 
popular forms of the nonlinear regression function include 
polynomials and smoothing splines. In particular, we have 
used the following three forms in the implementation - quad-
ratic polynomials, cubic polynomials and smoothing splines 
with generalized cross-validation (GCVSS) [21]. It seems 
that cubic polynomials possess some advantage over quad-
ratic polynomials and GCVSS, due to the accuracy in model 
fitting and low computational complexity in model parame-
ter estimation. 
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 Now we turn to the key question on how to find the true 
IEGs. In this paper, we devise an iterative procedure to find 
IEGs for nonlinear normalization as follows [20]. The pro-
cedure repeats the following two steps until it converges: (1) 
selecting IEGs from a sector-shaped region in scatter plot of 
the floating and reference arrays; and (2) normalizing the 
floating array using the estimated nonlinear regression func-
tion based on selected IEGs (see Fig. (1)). Initially, we use a 
relatively large sector for selecting potential IEGs. For in-
stance, we can start with using all the genes as IEGs (i.e., 
using a 90-degree sector angle), and perform an initial nor-
malization accordingly. We then gradually decrease the an-
gle of the sector-shaped region and select a new set of IEGs 
for normalization. The iterative procedure continues until 
there is no significant change in the content of IEGs and the 
estimated regression function converges to a 45-degree 
straight line (i.e., f(s) = s). Fig. (3) illustrates the iterative 
process of IEG selection as the size of the sector decreases. 
The rationale of this approach lies in that after each normali-
zation iteration the true IEGs shall move closer to a narrow 
sector around the 45-degree line as shown in Fig. (2). Our 
numerical experiments have provided compelling evidence 
in support of such an iterative IEG selection scheme. 

 

Fig. (3). Iterative sector-shaped IEG selection by reducing the sec-

tor angle gradually. 

INR Algorithm 

 In this section, we will outline the INR algorithm that 
consists of three basic steps: (1) initialization, (2) iterative 
IEG selection, and (3) normalization by nonlinear regression. 
The outline of the algorithm is given below: 

INR Algorithm Outline 

1. Initialization: 

a. Perform an initial nonlinear normalization us-
ing all the genes (i.e., with a 90-degree sector 
angle). 

2. Iterative IEG selection: 

a. Select IEGs within the defined sector-shaped 
region in the scatter plot; 

b. Estimate the nonlinear regression function 
(e.g., a cubic polynomial function) using the 
selected IEGs (by minimizing the MSEs of Eq. 
(2)); 

c. Normalize the floating array using estimated 
nonlinear regression function; 

d. Decrease the size of sector-shaped IEG selec-
tion region (e.g., using a sector angle that is 
90% of the previous sector angle); 

e. Go to 2-a, if either the selected IEGs different 
from previously selected IEGs or the regres-
sion function not approaching to a 45-degree 
line in scatter plot. 

3. Normalization by nonlinear regression: 

a. Estimate the nonlinear regression function us-
ing the selected IEGs; 

b. Normalize the floating array by the estimated 
nonlinear regression function. 

 As for any nonlinear regression problem, it is generally 
not guaranteed to result in a unique solution; the algorithm 
may not converge to the solution or being stuck in a local 
minimum. However, the problem is alleviated in this special 
application as reasoned and justified below. (1) The degree 
of nonlinearity in microarray data normalization is relatively 
moderate; in our experiments, cubic polynomials are good 
enough to model the nonlinearity introduced by the system-
atic errors. (2) The proposed algorithm is an iterative ap-
proach that performs the following two steps alternatively: 
(a) selection of invariantly expressed genes (IEGs) and (b) 
estimation of nonlinear regression function. As the iteration 
goes on, the IEGs are moved closer and closer to a narrow 
sector around the 45-degree line (see Fig. (3)). Therefore, the 
fitting function prone to become a linear function gradually 
(at last, it becomes a 45-degree line ideally). In our imple-
mentation, we also check the change in number of IEGs to 
make sure that the algorithm will stop. We have tested the 
algorithm on a large number of microarrays for normaliza-
tion. From our experience, it seems that (1) the algorithm 
does give us reasonable good solutions to the problems (even 
though the solutions may not be optimal); (2) the algorithm 
does converge to a solution after certain iterations. 

RESULTS 

 We have implemented the INR algorithm in C/C++ and 
integrated the INR module into dChip software [22]. In addi-
tion, INR method has been implemented in a way that nor-
malization can be carried out either at probe level for oli-
gonucleotide array data or at gene level for cDNA array data. 
When carried out at probe level, we only use perfect match 
(PM) probes to select IEGs for normalization. Note that this 
is consistent with the implementation of iterative ranking 
(IR) method [14], but different from Bolstad’s implementa-
tion where both PM and mismatch (MM) probes are used for 
invariant probe selection [15]. 

DATA SETS AND EXPRESSION MEASURMENT 

 We used two data sets in our experimental tests - the di-
lution experiment from GeneLogic and the muscular dystro-
phy (MD) profiling experiment from Children’s National 
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Medical Center (CNMC). The dilution data set was made 
available to the public specifically for comparison between 
different normalization methods [23]. A total number of 60 
arrays were acquired by Affymetrix’s 75 HG-U95A microar-
rays to study the dilution/mixture effect of two sources of 
RNA from human liver tissue and central nervous system 
(CNS) cell line. The CNMC's MD data set with 125 arrays 
was acquired by Affymetrix's GeneChip (U133A) microar-
rays to study different types of muscular dystrophy [24]. For 
both data sets, the gene expression measurements were ob-
tained using Affymetrix's MAS 5.0 probe set interpretation 
algorithm [12]. 

 

INR NORMALIZATION 

 Fig. (4) shows an example of the iterative IEG selection 
process when applied to CNMC’s MD data set. A large sec-
tor was initially used for IEG selection and regression func-
tion estimation. As iteration goes on, the sector was gradu-
ally narrowed down since IEGs were expected to move 
closer to the 45-degree line after each interim normalization 
step. The final set of IEGs was obtained when the following 
two conditions met: (1) the selected IEGs differ little from 
that selected in the previous step, and (2) the estimated re-
gression function is close to the 45-degree line in scatter 
plot. Fig. (5) shows the normalization result of INR, showing  
 

 

Fig. (4). Iterative IEG selection (the red dots are the selected IEGs and the black dots are non-IEGs). (a) Initial IEGs, (b) selected IEG after 5 

iterations, (c) selected IEGs after 10 iterations, and (d) final selected IEGs. The green curve is the estimated nonlinear regression function 

using the selected IEGs. The blue line indicates the 45-degree line. 



An Iterative Nonlinear Regression Method for Microarray Data Normalization The Open Applied Informatics Journal, 2007, Volume 1    15 

 
Fig. (5). Normalization by INR method - an example of CNMC’s 

MD data set (the red dots are the selected IEGs and the black dots 

are non-IEGs). (a) scatter plot of unnormalized arrays (floating 

array vs baseline array), (b) selected IEGs for normalization (the 

green curve is the estimated nonlinear regression function using the 

selected IEGs), and (c) scatter plot of normalized arrays. The blue 

line indicates the 45-degree line. 

scatter plots of two MD arrays prior to normalization, final 
selected IEGs, and normalized MD arrays, respectively. 

 Fig. (6) shows some typical results of INR as applied to 
normalizing GeneLogic’s data set on dilution study. In the 
experiment, we chose an array (94397hgu95a11) as the base-
line array since it is of median intensity among all arrays. 
Fig. (6) shows a second array (94394hgu95a11) normalized 
to the baseline array. The INR method estimated nonlinear 
regression functions based on the selected IEGs as shown in 
Fig. (6b) (i.e., the red points). Evidently, as we can see from 
the figure, INR method effectively moved the IEGs to the 
45-degree sector after normalization (Fig. 6c). 

PERFORMANCE COMPARISON 

 To compare the performance of INR method with that of 
peer methods such as LR, Loess and IR methods, we used 
the following two criteria to quantitatively assess whether 
one method outperforms the other [14]: (1) lower variance of 
expression level across replicated arrays, and (2) preserva-
tion of true fold-change in controlled realistic simulations. 
As discussed in [14], the first criterion ensures that genes 
known to have identical expression levels shall remain or 
incline to being identically expressed after normalization. 
The second criterion ensures that the first criterion is not 
achieved at the expense of destroying the very biological 
variations the technology aims to detect. Note that other cri-
teria such as bias comparison based on spike-ins are also 
valuable to assess the performance of a normalization 
method under consideration [15]. 

Variance Comparison 

 In GeneLogic’s dilution study, there are 30 arrays for 
each RNA source (Liver or CNS) with 6 different masses of 
cRNA (1.25, 2.5, 5.0, 7.5, 10.0, and 20.0 μg). Each dilution 
level was hybridized on HG-U95A chips and then scanned 
by 5 different scanners as replicate measurements. This data 
set is ideal for performance comparison of different normali-
zation methods, since non-biological variability (or system-
atic errors) was purposely introduced through replicates and 
dilutions, while the goal of normalization is to correct these 
system errors so that multiple arrays can be further analyzed 
for the problem being studied. 

 We used two sets of the 60 arrays of dilution study for 
our variance comparison, the first set consisting of 30 arrays 
of liver and the second set consisting of 30 arrays of CNS. 
The following normalization methods were applied to the 
data sets: (1) LR method, (2) Loess method, (3) IR method 
and (4) INR method. After having normalized the arrays by 
these normalization methods respectively, we calculated 
expression measurements for each probe set on each array 
using MAS 5.0. We then computed the mean and variance of 
the expression measurements across all 30 arrays in each set. 
For variance comparison, we performed a pair-wise com-
parison between all four normalization methods. For any two 
methods (e.g., INR against IR), we counted the number of 
probe sets that have a larger variance of expression meas-
urements using INR than that using IR. The percentage of 
the probe sets with larger variance was then calculated and 
used to assess the method’s performance according to Crite-
rion 1 [14]. 
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Fig. (6). Normalization by INR method - an example of GenLogic’s 

dilution data set (the red dots are the selected IEGs and the black 

dots are non-IEGs). (a) scatter plot of unnormalized arrays (floating 

array vs baseline array), (b) selected IEGs for normalization (the 

green curve is the estimated nonlinear regression function using the 

selected IEGs), and (c) scatter plot of normalized arrays. The blue 

line indicates the 45-degree line. 
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Fig. (7). Variance comparison using GeneLogic dilution data set 

(Liver). Four normalization methods, (1) LR (Linear Regression), 

(2) Loess (Loess Regression), (3) IR (Iterative Ranking) and (4) 

INR (Iterative Nonlinear Regression), are compared in terms of 

expression variance reduction. The normalization results are also 

compared with the unnormalized arrays (denoted as UN in the fig-

ure). The table should be interpreted as in the following example: 

(INR, LR) = 28% means that with INR method, only 28% of the 

genes are of larger expression variance than that with LR method. 

 Fig. (7) shows the results using the liver data set from 
GeneLogic’s dilution study. As we can see, all four normali-
zation methods significantly reduced the expression variance 
when compared to the raw data (denoted as “UN” in Fig. 
(7)). All these normalization methods, in overall, produce 
more consistent expression measurements across these 30 
arrays. In particular, IR and INR methods outperformed LR 
method in reducing the variance of expression measure (only 
about 30% and 28% of probe sets having larger variance 
than that using LR method, respectively). Furthermore, INR 
method showed 68% of probe sets having less variance than 
that from IR method, i.e., only 32% of probe sets having 
larger variance than that of IR method. 

 Fig. (8) shows the variance comparison results on the 
CNS data set, which again confirmed similar observations: 
(1) INR method exhibited a much better performance than 
LR and Loess methods in keeping the expression measure-
ments consistent; (2) INR method further reduced the ex-
pression variance compared to IR method. 

Fold-Change Comparison 

 In order to conduct fold-change comparison, we have 
constructed two sets of controlled realistically simulated 
microarray data based on GeneLogic’s dilution data set. We 
chose ten replicates and dilution arrays to begin with - five 
of them were the replicate arrays at 5μg mass of cRNA from 
liver tissue and the other five were at 10μg mass of liver 
cRNA. The simulated microarray data sets were constructed 
using the same procedure as originally designed by Schadt et 
al. 2001[14]. Below, we give a brief description of the pro-
cedure. 

 In the first set, 300 genes that were consistently detected 
as present across five low-intensity replicate arrays (5μg 
Liver cRNA) and 600 from high-intensity replicate arrays 
(10μg Liver cRNA) were randomly selected. Six sets con-
taining 50 genes each for the low-intensity arrays and 100 
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genes each for the high-intensity arrays were then generated 
by a random selection process from the sets of 300 and 600 
genes selected. The expression measurements of the selected 
genes in each of the six sets were then multiplied by 2.0, 0.5, 
4.0, 0.25, 6.0, and 0.17, respectively, to simulate fold-
changes between the samples. The ten original arrays (with-
out modification) and ten modified arrays were used to com-
pare the performance of normalization methods in preserving 
the controlled fold-changes. The same procedure was used to 
construct the second simulated data set consisting of ten rep-
licates (5μg and 10μg of CNS cRNA) from dilution study of 
CNS. Similarly, the ten original arrays and ten modified ar-
rays were used in the comparative experiments. 
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Fig. (8). Variance comparison using GeneLogic dilution data set 

(CNS). Four normalization methods, (1) LR (Linear Regression), 

(2) Loess (Loess Regression), (3) IR (Iterative Ranking) and (4) 

INR (Iterative Nonlinear Regression), are compared in terms of 

expression variance reduction. The normalization results are also 

compared with the unnormalized arrays (denoted as UN in the fig-

ure). The table should be interpreted as in the following example: 

(INR, LR) = 25% means that with INR method, only 25% of the 

genes are of larger expression variance than that with LR method. 

 We tested the four different normalization methods (LR, 
Loess, IR and INR) on the same simulated data sets. After 
normalization, we calculated the fold-changes of the altered 
genes and computed the mean square errors (MSEs) between 
the observed and true fold-changes across replicates as fol-
lows: 

  
fold_change

=
1

N
(R

i
R

i

0 )2

i=1

N

,     (3) 

where N is the number of arrays being modified (in this case, 
N = 10); 0

i
R is the true fold change (i.e., ground truth) and 

i
R  is the observed fold change after normalization. Again, 
we performed a pair-wise comparison between all four nor-
malization methods. For any two methods (e.g., INR against 
IR), we counted the number of genes having larger 

fold_change  when using INR than that using IR. The percent-
age of the genes with larger fold_changewas then calculated 
for assessing the performance according to Criterion 2 [14]. 

 Fig. (9) shows the comparison results of fold-change 
preservation on the first testing data set (Liver). The per-
formances can be observed as follows. First, LR method was 
the worst one among all four normalization methods in pre-

serving the authentic fold-changes. Second, Loess method 
was the second worst method in that it exhibited 96% of 
genes having larger fold_change than that using IR method, 
and 100% of genes having larger fold_change than that using 
INR method. Third, INR method gave the best performance 
in terms of fold-change preservation, only 16% of genes hav-
ing larger fold_change than that using IR method. Note that the 
table of Fig. (9) was calculated with the “greater than” rela-
tion (i.e., the “>” relation). Therefore, the sum of (INR>IR: 
16% for example) and (IR>INR: 78%) is 94%, which is not 
equal to 100%. This is because there are 6% of genes are of 
equal fold_change  in Fig. (9) (i.e., the “=” relation). This ap-
plies to Figs. (10,11), therafter as well. 
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Fig. (9). Fold-change comparison using GeneLogic dilution data set 

(Liver). Four normalization methods, (1) LR (Linear Regression), 

(2) Loess (Loess Regression), (3) IR (Iterative Ranking) and (4) 

INR (Iterative Nonlinear Regression), are compared in terms of fold 

change preservation. The table should be interpreted as in the fol-

lowing example: (INR, IR) = 16% means that with INR method, 

only 16% of the differentially expressed genes are of larger fold-

change than that with IR method. 

 Fig. (10) shows the comparison results on the second 
testing data set (CNS). Among all four normalization meth-
ods, LR method was again the worst one in terms of fold-
change preservation. As expected, INR method continued to 
show the best performance in preserving fold-changes, spe-
cifically, only 30% (or 25%) of the genes having larger 

fold_change than that using IR method (or Loess method). 

 To further test the performance on the genes with small 
fold-changes, we constructed a third set with many small 
fold-changes (0.5< fold-change <2.0), 700 genes that were 
consistently detected as present across five low-intensity 
replicate arrays (5μg Liver cRNA) and 1400 from high-
intensity replicate arrays (10μg Liver cRNA) were randomly 
selected. Fourteen sets containing 50 genes each for the low-
intensity arrays and 100 genes each for the high-intensity 
arrays were then generated by a random selection process 
from the sets of 700 and 1400 genes selected. The expression 
measurements of the selected genes in each of the fourteen 
sets were then multiplied by 1.2, 0.83, 1.4, 0.71, 1.6, 0.63, 
1.8, 0.56, 2.0, 0.5, 4.0, 0.25, 6.0, and 0.17, respectively, to 
simulate fold-changes between the samples. The ten original 
arrays (without modification) and ten modified arrays were 
used to compare the performance of normalization methods 
in preserving the controlled fold-changes. 
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Fig. (10). Fold-change comparison using GeneLogic dilution data 

set (CNS). Four normalization methods, (1) LR (Linear Regres-

sion), (2) Loess (Loess Regression), (3) IR (Iterative Ranking) and 

(4) INR (Iterative Nonlinear Regression), are compared in terms of 

fold change preservation. The table should be interpreted as in the 

following example: (INR, IR) = 30% means that with INR method, 

only 30% of the differentially expressed genes are of larger fold-

change than that with IR method. 

 Fig. (11) shows the comparison results on the third test-
ing data set. Among all four normalization methods, LR 
method was again the worst one in terms of fold-change 
preservation. As seen from the figure, INR method continued 
to show the best performance in preserving fold-changes, 
specifically, only 19% (or 36%) of the genes having larger 

fold_change than that using IR method (or Loess method). 
Note that compared to Fig. (9), we can see that adding in 
small fold-changes does worsen the performance although 
not significantly; in particular, the percentage of the genes 
using INR having larger fold_change than using Loess method 
increases from 0% in Fig. (9) to 36% in Fig. (11). 
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Fig. (11). Fold-change comparison using GeneLogic dilution data 

set (Liver) with many small fold-changes (0.5< fold-change <2.0). 

Four normalization methods, (1) LR (Linear Regression), (2) Loess 

(Loess Regression), (3) IR (Iterative Ranking) and (4) INR (Itera-

tive Nonlinear Regression), are compared in terms of fold change 

preservation. The table should be interpreted as in the following 

example: (INR, IR) = 19% means that with INR method, only 19% 

of the differentially expressed genes are of larger fold-change than 

that with IR method. 

 

CONCLUSIONS 

 In this paper, we have reported a new method, INR, for 
microarray data normalization. The INR method features an 
iterative procedure for selecting IEGs and performing non-
linear regression normalization. By cycling back and forth 
between the following two steps - (1) identifying control 
genes and (2) estimating regression functions, we can effec-
tively identify the underlying IEGs for normalization. In 
particular, we have devised an efficient algorithm to identify 
the IEGs by gradually reducing the size of a sector-shaped 
region while moving the IEGs to be close to the 45-degree 
line in scatter plot. 

 We tested the INR method on two real microarray data 
sets – GeneLogic’s array data set for dilution study and 
CNMC’s microarray data set for muscular dystrophy study. 
The experimental results have demonstrated that an im-
proved performance can be obtained using INR method for 
correcting systematic errors. It becomes evident to us that 
correct selection of IEGs is the key to assure the success of 
any normalization method. Not like other methods (e.g., LR 
method, Loess method and quantile method), INR and IR 
methods are the only ones that perform the normalization 
based on IEGs selected via carefully designed procedures. 

 We also compared the performance of INR method with 
other three widely adopted methods (i.e., LR, Loess and IR 
methods). The performance was evaluated based on the fol-
lowing two criteria: (1) expression variance and (2) fold-
change preservation. From the experimental results, we have 
come to the conclusions that (1) LR method was the worst 
one among the four normalization methods tested on the data 
sets used in the experiments; and (2) INR method outper-
formed all other three methods (LR, Loess and IR methods) 
in reducing expression variance across replicates and pre-
serving the fold-changes of targeted differentially expressed 
genes. 
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