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Abstract: The trigeminal nerve supplied muscles share many traits due to their common embryological derivation from 
the mandibular branchial arch. Many of these muscles, especially the masticatory, exhibit very complex intra- and 
intermuscular anatomical and functional specializations which continue to be investigated. Two schemes have been 
proposed to classify the intramuscular and extramuscular slips associated with these muscles: 1) based on recognizable 
laminae within each muscle; 2) based on the pattern of nerve distribution to definable parts of each muscle. The 
extramuscular slips have been identified on the bases of their nerve supply. The second scheme is beginning to yield 
results which confirm Edgeworth’s (1914, 1935) hypothesis regarding the ontogeny and phylogeny of the trigeminal 
nerve supplied musculature. These advances in the rational classification of these muscles have resulted from improved 
methods to expose the deeper parts of the masticatory and related spaces. However, because of the piecemeal exposure of 
parts of the spaces which contain some of the deeper trigeminal muscles there remain several issues that still need to be 
resolved. We provide a detailed protocol by which all the trigeminal nerve supplied muscles can be isolated from the 
upper cranium so that the entire mandibular nerve tree along with its musculature may be described as a connected 
complex of related structures. The practical and clinical implications of this new methodology are evaluated and 
discussed. 
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INTRODUCTION 

 The trigeminal nerve (CN V) is the largest cranial nerve 
of the head region. It has three divisions: ophthalmic (V1; 
general sensory afferent, GSA); maxillary (V2; GSA), and 
mandibular (V3; GSA and special visceral efferent, SVE; 
e.g., [1, 2]. The maxillary and mandibular nerves innervate 
critical parts of the stomatognathic system; the mandibular 
nerve exclusively supplies all principal masticatory muscles 
which occupy large parts of the head, bilaterally. Warwick 
and Williams [1, p. 1004] write that “in view of the fact that 
the mouth is generally regarded as representing a pair of 
fused visceral clefts, the maxillary nerve can be described as 
the pretrematic and mandibular nerve as the post-trematic 
branch of the trigeminal nerve”. 

 In addition to the masticatory muscles (temporalis, 
masseter, lateral and medial pterygoids), branches of the 
mandibular nerve also supply the mylohyoid and the anterior 
digastric muscles which play supplementary roles during the 
masticatory cycle. Additionally, branches of the mandibular 
nerve supply a muscle of the soft palate (tensor veli palatini) 
and an otic muscle (tensor tympani). 
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 All muscles which receive branches of the mandibular 
nerve are proximately derived from the mandibular (first) 
branchial arch myological plate; the ultimate source of the 
cells programmed to form these muscles is Somitomere no. 4 
[3]. According to Edgeworth’s magisterial ontogenetic and 
phylogenetic studies only some of these “mandibular arch” 
muscles (masseter, temporalis, lateral pterygoid; tensor veli 
palatini, tensor tympani; medial pterygoid) are derived from 
the adductor mandibulae of plesiomorphic vertebrates; for 
instance, the mylohyoid and the anterior digastric are derived 
from “the intermandibularis muscle”, i.e. a muscle of the 
ventral region of the mandibular plate [4-8]. 

 As far back as 1914 Edgeworth (based on comparative 
myological and embryological studies of various vertebrate 
taxa) proposed that the mammalian masticatory muscles be 
classified in accordance with their positions in relation to the 
main stump of the mandibular nerve [7]. Thus, one closely-
related cluster of muscles - the masseter, temporalis and the 
lateral pterygoid - is located lateral to the main stump of the 
mandibular nerve (and are supplied by the branches of the 
mandibular nerve which originate on its outer, i.e. lateral, 
aspect) while the medial pterygoid (which receives a branch 
originating from the medial aspect of the main nerve) 
represents a distinct separate myogenetic pathway from the 
mandibular muscle plate. 

 In a major revision of the classification of the masticatory 
muscles, Tomo [9, 10] added the tensor tympani and the  
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tensor veli palatini, to the muscle mass which formed the 
medial pterygoid. Following Tomo’s [9] rational 
reclassification of the masticatory (and related) muscles, 
Shimokawa and his associates [11, 12] and Akita and his co-
workers [13, 14] undertook a major revision of the subparts 
of the masseter, the temporalis and lateral pterygoid muscles 
based on their nerve supply. The major aims of these 
investigations included: 1) an objective reclassification of 
these “complicated masticatory muscles” [15]; Tomo et al. 
[10] referred to the temporalis and the masseter each as 
“muscles”]; 2) to establish the true affinities of muscle slips 
such as the zygomatico-mandibularis, the pterygoid proprius 
(Henle), etc.; 3) to establish the true relationships of muscle 
slips which are attached to the TMJ disc; 4) to elucidate the 
reasons accounting for the relative positional closeness of 
certain masticatory muscles to each other in comparison to 
others, and 5) to use the trajectories of the branches of the 
mandibular nerve to postulate the migration patterns of the 
populations of myocytes which formed these muscles. 

 In over a century and a half since the publication of 
Gray’s Anatomy [16], morphologists have endeavored to 
access and comprehend the functional anatomy of the 
components of the deep masticatory space with incremental 
success. The following methods have been described: 1) the 
lateral approach [16-19]; 2) the medial approach [20-27]; 3) 
the superior approach [28-30]; 4) the posterior approach [31, 
32] and 5) lateral pterygoidectomy (see [33] for a review of 
this and other approaches). Collectively, these methods have 
constituted a collage of the deep masticatory space; however, 
these efforts have amounted to less than a sum of its 
individual parts. It has not always been easy to connect them 
into an organic, integrated framework [9-14]. 

 The objective of this report is to provide a detailed 
protocol by which the human mandible may be detached 
from the rest of the human skull along with all the trigeminal 
nerve supplied musculature [34] except the tensor tympani 
(our future efforts will endeavor to extract this muscle as 
well). The necessity and advantages of this en bloc method 
will be discussed. 

MATERIAL AND METHODS 

 The human head (Specimen #HU 01; Fig. 1A, B) used in 
this research was obtained from the Willed Cadaver 
Donation Program for the Training of Health Care 
Professionals at Howard University College of Medicine, 
Washington, D.C. This project was undertaken to develop 
high quality prosections for instruction in head and neck 
anatomy for freshmen students of medicine and (especially) 
dentistry. The superficial dissection of facial muscles on this 
specimen was done by freshmen students of dentistry; the 
rest of the head was available for further work on the 
masticatory muscles and their neurovascular structures. The 
specimen was hemisected to extract the brain which was 
used in the neuroanatomy instruction program; thus, the 
entire cranial cavity including the trigeminal nerve was 
available for further observations. 

 All specimens used for the preliminary osteological 
investigations were obtained from the Osteological 
Collection housed in the Human Anatomy Laboratory, 
Department of Anatomy, Howard University College of 
Medicine. 

 In addition to the traditional dissecting instruments 
commonly used in the gross anatomy laboratory, the 
following tools were essential to achieve optimal results: 
stryker saw; fluorescent magnifier lamp (1.75x); Hu-Friedy 
hard wire cutter (or any similar bone cutter); Blumenthal 30 
rongeur, and - important - the periosteal elevator (Hu-Friedy 
#9 molt ). At critical phases the dissection process was 
halted to permit photography, hand drawings, and note 
taking. The same dissection was performed on both sides. 

 After the removal of the mandible, the masticatory 
muscles and their nerves and vessels, further dissection was 
conducted under the fluorescent magnifying lamp using 
several microsurgical instruments, such as microscalpels, 
microscissors, the pin probe, and dissection pins. The 
magnifying lamp is essential to facilitate the clearer exposure 
of the finer nerves and vessels that are located deep to the 
lateral pterygoid heads. The following areas were studied in 
detail: 1) the middle cranial fossa; 2) the skull base; 3) the 
lateral skull; and 4) the mandibular ramus. 

RESULTS 

 The en bloc removal of the mandible, the masticatory 
muscles, the mandibular nerve (and its branches), the 
maxillary artery (and its branches), and the maxillary vein 
(and its tributaries) was achieved in the following sequential 
steps: 

Step 1: The zygomaticus major and minor, the platysma 
and the associated facial muscles and their fasciae 
were mobilized by dissection and reflected in the 
rostral direction. The outer surfaces of the zygoma 
and the zygomatic arch were exposed by 
removing all the fasciae and the periosteal 
membrane; cleaning was extended all the way 
posteriorly as close to the external auditory 
meatus as possible. The parotid duct and the 
buccal nerves (CN VII) were exposed as they 
coursed below the zygomatic arch. These were cut 
close to their origin from the parotid gland; they, 
too, were reflected in the same direction as the 
facial muscles and fasciae described above. The 
temporal fascia was detached from the temporalis 
(the superior part of which had mostly been 
removed during the craniotomy), and dissected 
down to its attachment along the zygomatic bone 
and arch. This fascia was cut and removed. 

Step 2: The borders of the parotid gland were more 
clearly defined by the removal of the binding 
connective tissue along the borders. The gland 
was pried away from the masseter and lifted up 
along its anterior border and reflected rostro-
dorsally towards the ear. It was lifted clear of its 
attachment along the posterior margin of the 
mandibular ramus. Thus, the retromandibular 
fossa/space was exposed. The glandular tissue in 
the area just below the temporomandibular joint 
(TMJ) was teased up in order to expose the 
auriculotemporal nerve, the external carotid artery 
(and its branches: the maxillary and the superficial 
temporal arteries), and the retromandibular vein 
(and its tributaries: the maxillary vein and the 
superficial temporal vein). 
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Step 3: The auricle of the ear was excised close to its 
attachment to the outer, cartilaginous margins of 
the external auditory meatus. Thus, the TMJ’s 
external surface, with its capsule, and ligament 

were now revealed. The whole area was cleaned 
in order to better delineate these structures; 
cleaning was extended to the posterior aspect of 
the joint. The membranous “stylomandibular” 

 

Fig. (1). A) Specimen HU O1, the outer aspect of the right half head. B) Specimen HU O1, the medial aspect of the right half head. C) 
Specimen HU O1, lines of osteotomy to mobilize the zygomatic arch. D) Specimen HU O1, significant bones and muscles on the lateral 
aspect of the specimen, showing the superficial part of the masseter (A), the deep part of the masseter (B), the parotid gland (C), the 
zygomatic arch (D), the temporalis muscle and fascia (E), the buccinator muscle (F), the mandibular body (G) and the posterior belly of the 
digastric (H). 
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ligament was found inserting on the posterior 
aspect of the mandibular ramus, just above the 
mandibular angle. 

Step 4: The external surface of the masseter was cleaned 
and its borders defined. Using the spatulate end of 
the periosteal elevator, the muscle was detached 
from its insertion on the outer aspect of the 
mandibular ramus. This detachment was 
continued towards the zygomatic arch. The 
muscle was lifted, and by gentle teasing in the 
area close to the (over the mandibular notch) TMJ, 
the masseteric nerve, artery and vein were located 
and defined as they divided and arborized in the 
muscle. The zygomatic arch was now mobilized 
by the following two cuts using the stryker saw: 
an oblique cut of the zygomatic bone and a cut of 
the zygomatic process of the temporal bone just 
anterior to the external auditory meatus (Fig. 1C, 
D). The zygomatic arch was pulled laterally to 
expose the deep masseter and the 
zygomaticomandibularis; some of the fibers of the 
zygomaticomandibularis were attached close to 
the temporalis tendon. In the vicinity of the TMJ, 
the deep masseter and the temporalis appeared to 
be continuous. 

Step 5: The temporalis was mobilized from the temporal 
fossa by using the spatulate end of the periosteal 
elevator. This process was extended all the way to 
the posterior margin of the frontal process of the 
zygomatic. Muscle detachment was continued as 
far inferiorly and caudally as possible. The 
anterior deep temporal artery and its branches 
could be seen after the fatty tissue (“corpus 
adiposum buccae”) covering the anterior margin 
of the zygomaticomandibularis was cleaned. The 
temporalis was pulled laterally to expose the 
anterior deep temporal artery as it coursed antero-
superiorly towards the border of the 
zygomaticomandibularis. The lower part of the 
temporalis in the vicinity of the infratemporal 
crest of the greater wing of the sphenoid was 
teased to expose the deep temporal nerves which 
were accompanied by the branches of the 
posterior deep temporal artery. 

Step 6: The hemi-section was now turned over to expose 
its medial aspect. The medial pterygoid’s 
superficial surface was cleaned and its boundaries 
delineated. 

Step 7: The soft palate was cut and removed. This 
exposed the rostro-superior aspect of medial 
pterygoid. It also exposed the tensor veli palatini 
which was located in the pterygoid fossa. The 
medial pterygoid was detached from its insertion 
on the medial aspect of the mandibular ramus. The 
muscle was mobilized along its posterior border. 
As this process was extended rostro-superiorly, 
the mylohyoid nerve and vessels could be seen 
attached to the deep/external aspect of the medial 
pterygoid. This neurovascular bundle was pried 
away from the muscle and laid on to the 
mandibular ramus. The muscle detachment was 

extended antero-superiorly to reveal the inferior 
alveolar neurovascular bundle as it entered the 
mandibular canal through the mandibular 
foramen. The spheno- mandibular ligament was 
clearly visible in this area. Further muscle 
mobilization in the rostral direction exposed the 
lingual nerve as it coursed toward the floor of the 
oral cavity; it traversed along the medial margin 
of the mandibular ramus and its body. It was 
accompanied by a lingual branch of the inferior 
alveolar artery. 

Step 8: The tensor veli palatini was pried away from the 
medial pterygoid to reveal the nerve to the medial 
pterygoid. A smaller nerve, located immediately 
to its rostro-superior aspect, was seen feeding into 
the tensor veli palatini. 

Step 9: The tensor veli palatini and the medial pterygoid 
were now detached from the pterygoid fossa. The 
pointed end of the periosteal retractor is an 
excellent tool to achieve this. Still, at some points, 
where the muscles were very strongly attached to 
the bone, the microscalpel was used to detach the 
muscle. The external part of the medial pterygoid 
was reflected by cutting along the external surface 
of the lateral pterygoid plate. This cut was 
extended upward to mobilize the origin of the 
inferior head of the lateral pterygoid muscle. 

Step 10: The TMJ capsule on the medial aspect of the joint 
was now cleaned, exposed and cut horizontally. 
The cut was no more than 4mm from the posterior 
margin. This limited cut prevented the excision of 
the main stump of the mandibular nerve as it 
emerged from the foramen ovale into the 
infratemporal fossa. 

Step 11: The hemi-head was now turned to bring the 
internal floor of the basicranium (i.e. the view 
showing the cranial fossae) into full view. The 
dura mater was peeled away to expose the entire 
trigeminal nerve, its sensory ganglion, and its 
three divisions (ophthalmic, maxillary, and 
mandibular nerves). The entire nerve was cleaned 
and its borders defined. The nerve, its ganglion, 
and its divisions (ophthalmic, maxillary, and 
mandibular) were now peeled away from medial 
wall of the middle cranial fossa (greater wing of 
sphenoid). The ophthalmic and maxillary nerves 
were cut and freed in the immediate vicinity of 
their entry into the superior orbital fissure and the 
foramen rotundum, respectively. 

 Now, a wedge-cut pointing towards the foramen 
ovale (containing the mandibular division of the 
trigeminal nerve and other structures) was made 
from the surface using the stryker saw (Fig. 2). 
The anterior cut was made starting from the area 
close to the sphenoparietal eminence - the area 
close to the optic canal. The posterior cut began in 
the posterior cranial fossa and was continued 
through the petrous temporal bone towards the 
foramen ovale. In order to preserve the 
mandibular nerve in the foramen ovale; care was 
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taken not to cut into it. Rather, the cuts reached 
close to the foramen in order to preserve the deep 
boundary of the opening. The trigeminal nerve 
was retracted laterally during the osteotomy to 
prevent damage to it. Now, using the pliers, the 
remaining bony wedge close to the foramen ovale 
was broken off. The rongeur was used to remove 
the remaining bone along the medial border of the 
foramen ovale; the area around the main stump of 
the mandibular nerve was cleaned to mobilize it 
along with vessels. The entire freed portion of the 
mandibular nerve (and the rest of the trigeminal 
nerve) were now pried out of the foramen ovale. 

 

Fig. (2). Shape of the bony wedge removed to expose foramen 
ovale and its contents. 

Step 12: The spatulate end of the periosteal retractor was 
inserted into the superior cavity of the TMJ. The 
cavity was opened by pushing the retractor 
caudally. This revealed the attached anterior part 
of the TMJ capsule. It was very carefully cut and 
the retractor was pushed forward and downward 
to peel the attachment of the superior lateral 
pterygoid from the infratemporal part of the 
greater wing of the sphenoid. The nerves to the 
masseter, the posterior and middle deep temporal 
nerves, and the (long) buccal nerve were separated 
out along with the superior pterygoid head. 

Step 13: A cut was made from the posterior edge of the 
oral cavity to divide the cheek in order to free the 
mandible. A careful inspection was made of all 
sides to free all structures that still articulated / 
connected the mandible to the cranium. Now, 
using measured force (and ensuring that the stump 
of the mandibular was clearly out of the foramen 
ovale), the mandible was pried away from the 
cranium (Fig. 3). 

 

Fig. (3). Specimen HU O1, detached mandible along with its 
muscles. 

Step 14: The entire mandible, its muscles, and 
neurovascular structures were cleaned by 
removing the covering fasciae. Following this the 
mandible was brought under the illuminated 
magnifier to extend the dissection to the finer 
structures of the entire complex (Figs. 4, 5). 

DISCUSSION 

 Since the second half of the 19th Century and early 20th 
Century, two schemes of classifying the complex myological 
components of each masticatory muscle in mammals, 
including the derived primates (humans included), have been 
devised by investigators: 1) partition of an individual muscle 
based on the laminae distinguishable by separations formed 
by fascial sheaths or by silver-toned tendons (aponeuroses) 
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or by tendinous septa (“laminar classification”) and 2) the 
subdivision of each muscle based on its nerve supply from 
the mandibular nerve (“nerve supply classification”) [2, 20, 
22, 23, 35-82]. 

 

Fig. (4). Specimen HU O1, medial aspect of the masticatory 
muscles and the mandibular nerve complex, right block (*indicates 
the inferior belly of the lateral pterygoid muscle). 1, Temporalis 
(pars superficialis). 2, Temporalis (pars profunda, main portion). 3, 
Temporalis (pars profunda posterior). 4, Ophthalmic nerve (CN 
V1). 5, Maxillary nerve (CN V2). 6, Trigeminal ganglion. 7, 
Mandibular nerve (CN V3; main stump). 8, Maxillary artery 
(pterygoid section). 9, Buccal nerve. 10, Medial pterygoid muscle 
(main body). 11, Medial pterygoid muscle (upper part). 12, Lingual 
nerve. 13, Stump of inferior alveolar and auriculotemporal nerves. 
14, Middle meningeal artery. 15, Head of condyle (covered by 
disc). 16, Parotid gland. 

 In the late 1940’s Tomo revisited the laminar 
classification of the canid masticatory muscles as described 
by earlier investigators [83-85] and found many 
discrepancies in the information. His aim was to develop a 
more rational, reliable, and essentially reproducible and 
predictable classification of canid masticatory muscle using 
the nerve supply of each muscle as had been originally 
proposed by Toldt [59]. Luter [86, 87], Luter and Lubosch 
[88], and Lubosch [89-91] had already used this method to 
developed a more satisfactory subdivision and classification 
of the constituent parts of each masticatory muscle in fish, 
amphibians and reptiles. This method made full use of 

ontogenetic and phylogenetic information about the 
organisms which were studied. Edgeworth [7, 8] also used 
similar comparative morphological and developmental 
analyses to propose a grand scheme of classifying 
mammalian craniomandibular muscles. 

 

Fig. (5). Specimen HU O1, superior aspect of the masticatory 
muscles and the mandibular nerve complex, left block (*indicates 
the inferior belly of the lateral pterygoid muscle). 1, Head of 
condyle covered by disc. 2, Disc-superior lateral pterygoid junction. 
3, Temporalis (deeper aspect). 4, Superior lateral pterygoid (upper 
view). 5, Maxillary artery (pterygoid section). 6, Buccal nerve. 7, 
Middle deep temporal nerve. 8, Posterior deep temporal nerve. 9, 
Nerve to the masseter (main stump). 10, Superior division of 
mandibular nerve. 11, Trigeminal ganglion. 12, Parotid gland. 

 The term “trigeminusmuskulatur” was first coined by 
Schulman [34] to refer to the craniomandibular muscle 
complex which received branches of the mandibular nerve 
and which was responsible for the functioning of the 
craniomandibular articulation and related structures in the 
immediate vicinity. Such holistic approaches of organizing 
muscles supplied by the trigeminal nerve were also used by 
Luter [86], Lubosch [89] and Göllner [60], on various 
vertebrates (including the derived primates). Tomo 
inaugurated his reclassification of the dog’s masticatory 
muscles by observing that “the methodology….involved 
careful removal of all bones from the muscles. Retaining the 
mandibular nerve…” [10]. For example, for a more detailed 
study of the dog’s lateral pterygoid muscle, Tomo et al. [92] 
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wrote that “the temporomandibular joints were decalcified” 
for sagittal sectioning and stained with methylene blue and 
fuchsin. Further refinement of the technique involved the 
preservation and acute observation of the mandibular nerve 
tree using a silicone permeation technique which facilitated 
“excellent localization of nerves innervating the muscle and 
(has) the added advantage of providing a three-dimensional 
structure of neural anatomy” [92]. 

 Tomo et al. [10] proposed a clearer, logical 
reclassification of the canid masticatory muscles which 
illuminated intra- and interrelationships, both ontogenetic 
and phylogenetic. Analyses of the mandibular nerve tree was 
a crucial part of this success. In addition to providing 
credible tests of Edgeworth’s [7, 8] hypotheses regarding the 
deeper bases of the organization of the masticatory muscles, 
Tomo et al. [10] convincingly demonstrated that the dog had 
distinct, named branches to the muscles: temporal, lateral 
pterygoid, and buccal (which forms several lateral pterygoid 
nerves and also gives of the anterior deep temporal nerve). 
These branches originated from the anterior trunk of the 
mandibular nerve. The posterior trunk is mainly sensory in 
nature; its motor branches supply selected muscles of the 
floor of the oral cavity (branches: lingual, inferior alveolar 
and the auriculotemporal nerve; the mylohyoid nerve is a 
branch of the inferior alveolar nerve). This pattern of 
branching of the proximal parts of the mandibular nerve 
appear to be ancestral and conservative and is critical to 
establishing a rational scheme of the relationships within and 
between the muscles supplied by the trigeminal nerve [93-
96]. Shimokawa and Akita have shown how we can use the 
precise trajectories of each named branch of the parts of the 
mandibular nerve to gain insights into the timelines of the 
differentiation of the mandibular and infrahyoid myoplates 
[11-14]. Oddly, Shimokawa’s and Akita’s recent papers do 
not refer to the subdivision of the main trunk of the 
mandibular nerve into its two trunks. 

 Warwick and Williams [1] write that “immediately 
beyond the junction of the two roots (sensory and motor), the 
(mandibular) nerve sends from its medial side its meningeal 
branch and the nerve to the medial pteygoid, and then 
divides into a smaller anterior and a large posterior trunk” 
in humans (p. 1007, our italics). Skinner and Aziz [96] have 
observed and discussed the phylogenetic basis of this 
important dichotomy of the mandibular nerve (see also [95]). 

 According to our observations, after its exit from the 
foramen ovale into the roof of the infratemporal fossa the 
human mandibular nerve may be divided as follows: 1) the 
main stump (branches: nervus spinosus; nerve to the medial 
pterygoid which give rise to the nerve branches to the tensor 
veli palatine and the tensor tympani); 2) the anterior trunk 
(branches: masseteric, posterior deep temporal, 
middle/accessory deep temporal nerves, the nerves to the 
lateral pterygoid heads and the buccal nerve); 3) the posterior 
trunk (branches: lingual, inferior alveolar, and the 
auriculotemporal nerves; the mylohyoid nerve is a branch of 
the inferior alveolar nerve). To gain insights into their 
migratory paths of the trigeminal muscles and their relative 
morphological, functional, ontogenetic and phylogenetic 
relationships to one another the elucidation of the branching 
pattern described above is crucial [11-14]. 

 Shimokawa and Akita and their co-investigators have 
produced much-needed clarity and an evolutionary (and 
developmental) perspective to issues related to the 
classification of those masticatory muscles which are 
innervated by the branches of the anterior trunk of the 
mandibular nerve [11-14]. These muscles include the 
temporalis-masseter-lateral pterygoid muscle complex. Yet 
this provides us information only about part of the trigeminal 
nerve supplied muscles. 

 The principal objective of our paper is to describe the 
protocol by which the entire hemisected human mandible, its 
musculature, the mandibular nerve tree, and the maxillary 
vasculature may be detached en bloc. Although we did not 
secure the extraction of the tensor tympani, this is entirely 
achievable. Thus we can obtain the entire trigeminal 
musculature complex along with all of its osteological, and 
neurovascular associates without altering their topographical 
relationships or sectioning it into discontinous blocks. Our 
method allows us to empirically dissect the main stump of 
the mandibular nerve (and its branches), the anterior trunk of 
this nerve (and its branches) and the posterior trunk of this 
nerve (and its branches); the named motor nerves (and their 
branches) can be traced to the named muscles and to their 
subparts. The trajectories of the named nerves (and their 
branches) permits us to further test the predictions of 
Edgeworth [7], Shimokawa et al. [11, 12] and Akita et al. 
[13, 14]. 

 Granted that no single anatomical trait exclusively and 
completely determines the status of the constituent 
intramuscular slips of each named muscle complex, nor the 
relationships of the individual complex to the other related 
complexes, the information gained from their nerve supplies 
provides significant clues to their affinities. Of course it is 
more persuasive to seek additional evidence, in addition to 
the conservative relations (e.g. nerves) of the muscles (or 
muscle parts), using several independent criteria, especially 
the evidence furnished by studies of comparative genetics, 
development, and phylogeny of the individual muscle 
complexes [5]. Nevertheless, nerves do provide powerful 
clues regarding muscle homology. Radinsky [4] writes that 
“similarity in nerve supply reflects similarity in pattern 
development. Hence nerve supply is a valuable criterion for 
determining muscle homology throughout the vertebrate 
classes”. More pertinent to our paper is his added 
observation that “this principle ...is not so easy to apply in 
practice because of the branching and anastomoses of nerves 
and the difficulty of tracing fine branches”. However, the 
application of proper methodology, especially the use of the 
dissecting microscope, has greatly increased our capacity to 
observe nerve branching between and within muscles with 
great accuracy [9-14, 33]. There are further advantages to 
accurately mapping the nerves supplying the masticatory 
muscles. For example, Tomo et al. [10] carefully described 
and analyzed the nerve supply to the dog’s pterygoid 
muscles to make a convincing case for the existence of a 
distinct, named branch to each pterygoid muscle as proposed 
by Edgeworth [7]. They also provided strong evidence 
showing that the singular canid lateral pterygoid represents 
the lower venter of the muscle we found in the primates; 
according to them the upper belly of the lateral pterygoid is 
absent in dogs. The detailed study of the nerve supply to the 
individual masticatory muscle complexes also helps to 
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elucidate the relationships of their subparts. For example, 
Aziz et al. [33] and Akita et al. [13] described the nerve 
supply to the lateral pterygoid heads and independently 
concluded that their separation could not be deduced 
exclusively by a study of their nerve supply. 

 Lastly, the elucidation of the anatomical and functional 
relationships between the motor branches of the mandibular 
nerve and their muscles has important clinical applications as 
well. For instance, disturbances during the early 
morphogenesis of the mandibular branchial arch (usually in 
association with the second arch) gives rise to a 
recognizable, diagnostic constellation of otomandibular 
anomalies, including those of the mandibular muscles, which 
are derived from that source. Neonates with such defects 
exhibit facio-auriculo-vertebral spectrum (FAVS; Goldenhar 
Syndrome); although its etiology remains to be firmly 
established, Summitt [97] described a case which was 
familial i.e. due to genetic inheritance. Yet another practical 
clinical aspect of knowing the precise relationship of the 
branches of the mandibular nerve and their muscles involves 
the so-called compression (tunnel) syndromes. Many of 
these nerves pass through narrow clefts in and around the 
masticatory muscles and are prone to entrapment resulting in 
severe headache, muscular paresis, paraesthesia and 
compromised TMJ function [27, 98]. 

 In the attempts to alleviate TMJ pain and tic 
douloureaux, anesthesiologists inject botox into selected 
masticatory muscles. The safe application of anesthesia in or 
around the infratemporal fossa requires a detailed knowledge 
of the layout of the mandibular nerve tree along with its 
associated musculature [99]. 

CONCLUSIONS 

 Burrows et al. [100] used the novel “masking” method to 
dissect and expose in exquisite detail the mimetic muscles of 
the chimpanzee. These investigations led them to conclude 
that contrary to previous claims, there are minimal 
anatomical differences between chimpanzees and humans, 
and idea corroborated by Diogo et al.'s recent comparative 
study of the facial muscles of primates [101]. Similarly, 
sophisticated methods are necessary to describe the details of 
the mandibular nerve tree and its associated muscles in 
humans [64]. 

 The muscles supplied by the branches of the mandibular 
nerve play a crucial role in food ingestion and mastication, 
bolus formation, deglutition, communication (non-verbal and 
speech), oral respiration, and display, among others. 
Individually and collectively these functions are critical for 
the survival of our species. Phylogenetic and ontogenetic 
studies of the vertebrates show that the trigeminal 
musculature has a common history which is reflected in its 
osteology, arthrology, nerve and blood supply. The source of 
all these inter-related structures is the mandibular (or first) 
branchial arch. Standring [37] stated that the pharyngeal 
arches are also known as branchial arches because of their 
evolutionary origin supporting the gills in the earliest 
vertebrates and that many of the changes seen during 
development of the mammalian pharynx reflect the 
functional evolutionary origins of this region. Therefore, it 
can be argued that the mandibular arch (and its derivatives) 
represents a region under the control of a set of inter-related, 

and possibly linked, structural and regulatory genes that 
continue to be highly selected for as an interrelated complex. 

 In the absence of precise, detailed and comprehensive 
studies which chart the course of development of each of its 
components various schemes have been proposed to discern 
their ontogeny. Although the descriptions of the complex 
anatomy of each muscle in the trigeminal group continues to 
be refined, many questions regarding their precise ontogeny 
still remain to elucidated. However, the scheme based on the 
comparative anatomical studies proposed by Edgeworth [7, 
8] has recently received confirmation and elaboration by 
analyses of the nerve supply to the muscles and by 
independent neurotopographical studies (using tracers) of the 
motor nucleus of the trigeminal nerve [9-14, 60, 92]. 
Nevertheless, these studies only provide a 
compartmentalized view of the whole system because of the 
difficulties in obtaining an integrated, interconnected block 
of all the components derived from the mandibular arch. 

 Finally, mandibular arch derivatives play a critical role in 
food processing (ingestion, mastication, bolus formation, 
etc.), communication (non-verbal and speech) and 
respiration (oral respiration and panting), among others. 
These have been critical in the survival and evolutionary 
development of the human species. It is very likely that the 
structural and regulatory genes which code for the 
mandibular arch derivatives are hereditarily linked in some 
manner and are passed down in human genealogy. 

 The method which we propose in this study precisely 
facilitates a complete exposition of the entire mandibular 
nerve tree and its connected muscles. Our method will 
facilitate the topographical mapping of each mandibular 
muscle and its component parts with reference to the 
mandibular nerve, its trunks and their branches. We hope 
that this will provide stronger tests of the hypothesis 
proposed by Edgeworth [7, 8], which has recently been 
questioned, in part, by Akita et al. [13]. Edgeworth [7, 8] 
proposed that the mandibular arch muscle plate diversified 
into a lateral and a medial component with reference to the 
mandibular nerve stump. The medial component forms the 
medial pterygoid, the tensor tympani and the tensor palate. 
The lateral anlage differentiates into the temporalis, the 
zygomaticomandibularis and the masseter. Edgeworth [8] 
wrote “the levator m. externus developed into the 
pterygoideus externus, temporalis, zygomatico-mandibularis 
and masseter”. Lubosch [89] suggested that the lateral 
pterygoid was phylogenetically related to the temporalis, and 
Tomo [9] and Tomo et al. [10] have concurred with this 
view. 

 Akita et al. [13, 14] have reexamined Edgeworth’s 
hypothesis regarding the ontogeny and phylogeny of 
individual human masticatory muscles with a new set of 
observations which include the positional relationships of the 
muscles and their subparts in relation to their positions to 
each other and to specific parts of the mandibular nerve tree. 
They believe that such mapping reveals information about 
the ontogeny and phylogeny of these muscles. Akita et al. 
[13] write that in “1 specimen it was observed that the 
mandibular nerve trunk passed through the lower head of the 
lateral pterygoid. In addition, the nerve to the medial 
pterygoid sometimes formed a common trunk with the 
branch to the lower head; therefore, the mandibular nerve 
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trunk may not serve as a clear demarcation between the 
medial and the lateral anlagen”. They imply that the lateral 
pterygoid may be heterogenous in origin. However, this 
claim is based on isolated, single cases. Additional 
observations are necessary to test their claim. Their 
observations are based on a dissection protocol which uses 
the superior approach (Pinto’s method [28]). 

 Although nerve-muscle specificity may provide strong 
augments regarding the relationship of muscle groups, it is 
best to test such claims with independent additional criteria. 
In fact, Edgeworth [7, 8] presented convincing arguments in 
favor of multifactorial analyses to establish muscle 
homologies, and this has been further stressed in Diogo & 
Abadala's [102] recent review about the comparative 
anatomy, evolution, homologies and development of the 
head, neck, pectoral and forelimb muscles of vertebrates. 
The method which we have carefully described in the present 
paper thus provides a fresher way to analyse the trigeminal 
muscles and their nerves, and therefore to discuss the 
evolution and homologies of these structures, by using a 
more holistic, integrated and comprehensive approach. 
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