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1. INTRODUCTION 

 In considering a numerical approximation of the 

saturation problem 

S

t
+ ( f (S)u) (k(S) S) = Q(S) on (0,T0 ]

( f (S)u k(S) S) n = q on [0, T0 ]

S(x, 0) = S0 (x) on

(1.1) 

obtained from modeling a two-phase immiscible flow 

through a porous medium [1-4], where  is a bounded 

domain of Rn
, n = 1, 2, 3 , one encounters two major 

problems: the nonlinearity of the equation and the 

degeneracy of the diffusion coefficient k . The degeneracy is 

often addressed by regularizing the problem in some way, 

though some works bypass this step (see [5]). One then 

produces a numerical scheme which, often, is still nonlinear. 

So a linearization in some sense follows in order to 

implement the scheme on a computer. Two earlier papers [6, 

7] dealt with the latter part of the problem. This work is a 

sequel of these papers. 

 In (1.1), the unknown S  is the saturation of the invading 

phase. The diffusion coefficient k  (see Fig. 1) is the 

conductivity of the medium and is assumed to satisfy the 

following conditions. 

k(0) = k(1) = 0  (1.2) 
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k( )

c1
μ if 0 1

c2 if 1 < < 2

c3(1 )μ if 2 1,

 (1.3) 

where 0 < 1 <
1

2
< 2 < 1 , and 0 < μ 2 . 

 

Fig. (1). Example of a graph of k(s). 

 By [8] and [9], we have 

| K(s2 ) K(s1 ) |2 C | K(s2 ) K(s1 ) || s2 s1 |,  (1.4) 

thanks to the fact that K  is Lipschitz ( K (s) = k(s) ), and 

| s2 s1 |1+μ C | K(s2 ) K(s1 ) | .  (1.5) 

0

k(s)

s
-
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 For the derivation of the error estimates, we assume that 

k  is continuously differentiable in the variable s . 

 The function f  is twice continuously differentiable in 

the variable s , and 

f (0) = f (1) = 0.  (1.6) 

 We notice, by [8] and [9], that if (1.3) and (1.6) hold, 

then 

| f (s2 ) f (s1 ) |2 C | K(s2 ) K(s1 ) || s2 s1 |  (1.7) 

where 

K(s) =
0

s
k( )d .  (1.8) 

 We also notice, through (1.7) and (1.8), that 

| f (s) | C k(s).  (1.9) 

 We assume that the porosity of the medium, , satisfies 

the condtion 

0 < 0 (x, t) = (x) 1 < .  (1.10) 

 As in [8-10] and [6], we assume that the Darcy velocity 
u  is given and has the necessary regularity we need for this 

analysis. 

 The main purpose of this paper is to establish error 

estimates for a linearization of the Backward Euler scheme 

obtained by fully discretizing Problem 1.1 (see [6]) Problem 

1.1 has been studied by many authors under various forms 

and conditions (see for instance [8-15], among others). Also 

similar studies have been done in [16-19] for the Richard's 

Equation which models water flow (single phase flow) 

through a porous medium, among other physical phenomena. 

We also refer to [20] which, in addition to our concern here, 

includes the study of problems with phase change (Stefan 

type problems). However, our approach in this work, is 

different from the approaches in the cited papers in the sense 

described below. 

 Because of the degeneracies ( k(0) = k(1) = 0 ), Problem 

1.1 has often been regularized into a family of nondegenerate 

problems whose solutions converge to the solution of (1.1) 

(see [8-10, 12, 13, 15]). Usually, the numerical 

approximation of the solution of (1.1) is done in three steps: 

regularization, continuous Galerkin method, and fully 

discretized Galerkin method. In the last step, some of the 

works cited above obtain a nonlinear implicit scheme 

(backward Euler). Therefore, one needs to linearize in some 

way for a computer implementation of the scheme. Often, a 

Picard iteration is used (see for instance [21] and [16]). For 

the third step (Discrete Galerkin Method), we choose, in this 

paper, to linearize the nonlinear functions intervening in 

(1.1) by Taylor approximations, of first order, of these 

quantities (see [6]). We then establish error estimates 

corresponding to this choice. 

 This paper is a continuation of [6] (where a method was 

proposed that linearizes the scheme), and of [7] (where some 

regularity results were established). 

 The remaining of the paper is structured as follow. 

 In section 2, we state some preliminary results 

established in previous works. We establish a new (at least at 

our knowledge) regularity result for the continuous Galerkin 

Method. The is helpful in the derivation of error estimates 

for the linear scheme. 

 In section 3, we state and prove our second main result, 

after establishing a regularity result for the linear scheme. 

Error estimates are obtained through a choice of  (the 

regularization parameter) and/or h  (the spatial discretization 

parameter) in terms of the time-stepping parameter t . 

 Finally, we set additional notation which will be used 

throughout the remainder of this paper. We define 

( f , g) := ( f , g) := fgdx  when this has a meaning. The 

notation f
Lp := f

Lp ( )
 is used for the standard Lebesgue 

norm of a measurable function, when this quantity is finite. 

Similarly, we denote by 
 

f
Lp (Lq )

:= f
Lp (0,T ,Lq ( ))

 the mixed 

Lebesgue norm for f . We will also denote 

L2 (t n , t n+1, L2 ( )) := L2 ( [t n , t n+1 ]) . We use C , c , to 

denote positive constants which may change from line, but 

which are independent of the parameters , h  and t , 

unless otherwise explicitly specified. For u, v 0 , the 

notation u v  means there exist positive constants c1  and 

c2  such that c1v u c2v . 

2. PRELIMINARY RESULTS 

 In this section, we summarize previous results that are 

useful for the present analysis and establish a new regularity 

result. 

2.1. The Regularized Problem 

 In order to get a family of nondegenerate problems 

approximating (1.1), we replace k  by k , with k k  

strongly as 0  strongly, and with k  satisfying the 

condition: 

 

0 < k (s) k
L

= sup{k(s), s [0, 1]}.  (2.1) 

 For example, let 0 <
1

2
 and define k  by 

= min(k( ), k(1 )).  (2.2) 

 Define k  by 

k (s) = k(s) if k(s)

1

2
k (s) otherwise.

 (2.3) 

 (see Fig. 2) Set 

K (s) =
0

s
k ( )d .  (2.4) 

 Then, for each , we get the nondegenerate problem 
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S

t
+ ( f (S )u) (k (S ) S ) = Q(S ) on (0,T0 ]

( f (S )u k(S ) S ) n = q on [0, T0 ]

S (x, 0) = S0 (x) on .

 (2.5) 

 

Fig. (2). Example of a perturbation of k. 

 For the remaining of this paper, we assume, to simplify, 

that Q 0  and q 0 . Also, because of (1.10), we can 

assume, without lost of generality, that 1 . 

Let 

 

C0 ( ) = K ( ) K( )
L

 (2.6) 

where 

=
2 + μ

1+ μ
 (2.7) 

is the conjugate of 2 + μ . Let S  and S  be solutions of 

(1.1) and (2.5) respectively. Then, by [9], 

 

K (S ) K(S)
L2 (L2 )

  C 2+μ .  (2.8) 

2.2. Continuous Galerkin Method 

 Let {Mh}h>0  be a family of finite dimensional spaces, 

with Mh H 1( ) , and assume that Mh  has the 

approximation property: 

 
Mh

inf f
Lp ( )

Ch2 | f |
W 2,p for all f W 2,p ( ). (2.9) 

 We will also need the inverse estimate assumption on 

Mh  (see, for example, Section 4.5 of [22]): 

 H1 Ch 1

L2 for all Mh .  (2.10) 

 To account for possible numerical oscillations, extend k  

as follows (and call it again k ): 

k ( ) =
k (1) if 1

k ( ) if 0.
 (2.11) 

 For the same reason, extend the fractional function f  as 

follows. 

  

f ( ) =
f (1),       if 1

f ( ),    if 0
 (2.12) 

 Then K  is bijective from R  to  R . We set 

H = K 1.  (2.13) 

 Consider the discretized problem: Find Vh Mh  such 

that 

t
H (Vh ), ( f (H (Vh ))u, ) + ( Vh , ) = 0  (2.14) 

for all Mh , and t (0,T0 ]  with the initial condition: 

PhH (Vh (0)) = PhS
0

 (2.15) 

where S0
 is as in (1.1), and Ph  the L2

 projection on Mh . 

Vh  is hopefully the Galerkin approximation to K(S)  with S  

the solution to Problem 1.1. Indeed, by [10], we have 

Vh K(S)
L2 (L2 )

C h2
μ

1+μ
+

2+μ ,  (2.16) 

where 

=
2 + μ

1+ μ
.  (2.17) 

 Remark 2.1 Differentiating (2.14) with respect to the 

time variable t , we obtain 

d

dt
((H (Vh ))t , ) ( f (H (Vh ))u, ) + ( Vh , )( ) = 0  (2.18) 

for all Mh  and for all t [0, T ] . 

 Because we will be using Taylor expansions of up to 

order 2  in this analysis, we assume that the solution, Vh , to 

(2.14) and (2.15) is three times differentiable in the time 

variable t . 

2.3. Regularity Results for the Continuous Galerkin 
Method 

 The following regularity result was established in [7] and 

will be useful in this paper. We give a note on an improved 

proof of this lemma. 

 Lemma 2.2 Let Vh  be the solution to problem (2.14)-

(2.15). Then 

 

Vht L (L2 )
C(u) 3h 2 .  (2.19) 

Remark 2.3 Note on the proof of the Lemma 2.2. 

 The proof of this lemma in [7] seemed to assume that 

 

Vht L4 (L4 )
C  

independently of  and h . In fact we do not need this 

assumption. Using the last term on the righthand side of 

Equation (3.6) of [7], we can write 

0

kβ(s)

s
-
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H ' (Vh )Vht( , H ' (Vh )( )
t
Vht )  

H ' (Vh )Vht
L2

H ' (Vh )Vht( )
t L2

 (2.20) 

C H ' (Vh )Vht
L (L2 )

H ' ' (Vh )Vht
2

L2  

where we use the fact that 

H ' (Vh )( )
t
=

1

2

H ' ' (Vh )

H ' (Vh )
Vht .  

 With this different manipulation of the terms, Equation 

(3.14) of [7] becomes 

1

2

d

dt
H ' (Vh )Vht

L2

2

C H ' (Vh )Vht
L (L2 )

H ' ' (Vh )Vht
2

L2  

 

+C(u) Vht L2
2

+
1

Vht L2
2

+ ut L2
2 .  (2.21) 

 Now integrate (2.21) on the interval (0, t) , for 

t (0,T0 ) , and notice that 

0

t
H ' (Vh )Vht L (L2 )

H ' ' (Vh )Vht
2

L2 d  

= H ' (Vh )Vht
L (L2 ) 0

t
H ' ' (Vh )Vht

2

L2 d  

3 H ' (Vh )Vht
L (L2 ) 0

t
Vht L4

2
d  (2.22) 

where we have used (3.51) and the fact that 

 

v2

L2 = v
L4
2 ,  (2.23) 

for all v L4 ( ) . But then, 

0

t
Vht L4

2
d C

0

t
Vht H1

2
d  

Ch 2

0

t
Vht L2

2
d  

 

Ch 2 Vht L2 (L2 )

2 .  (2.24) 

 Going back to (2.22), we obtain 

0

t
H ' (Vh )Vht L (L2 )

H ' ' (Vh )Vht
2

L2 d  

 

1 H ' (Vh )Vht
L (L2 )

2

+
1

1

6h 4 Vht L2 (L2 )

4
 (2.25) 

 Finally take the sup over [0, T ]  after integrating and then 

hide the first term of the righthand side of (2.25) in the 

corresponding term on the left hand side of the final result to 

get the lemma. 

 Next, we state and prove a new (at least at our 

knowledge) regularity result for the Continuous Galerkin 

Method which is useful in the analysis below. This is the 

first main result of this paper. 

 Lemma 2.4 Let Vh  be the solution to problem (2.14)-

(2.15). Then 

 

H '(Vh )Vhtt
L2 (L2 )

2

+ Vht L (L2 )

2 C(u) 18h 12 .  (2.26) 

 Proof of Lemma 2.4. 

 In (2.14), set = Vhttt . Then 

(H (Vh ))t , Vhttt( ) ( f (H (Vh ))u, Vhttt ) + ( Vh , Vhttt ) = 0.  (2.27) 

 Let us treat separately each term on the lefthand side of 

(2.27). Using the product rule, the first term can be written as 

((H (Vh ))t ,Vhttt ) =
d

dt
((H (Vh ))t ,Vhtt ) ((H (Vh ))tt ,Vhtt )  

=
d

dt
((H (Vh ))t ,Vhtt )  

(H '(Vh )Vhtt ,Vhtt ) (H ' (Vh )Vht
2 ,Vhtt )  

=
d

dt
((H (Vh ))t ,Vhtt )  

H '(Vh )Vhtt
L2

2

(H ' (Vh )Vht
2 ,Vhtt ).  (2.28) 

 We write the second term on the lefthand side of (2.27) 

as 

( f (H (Vh ))u, Vhttt ) =
d

dt
( f (H (Vh ))u, Vhtt )  

(( f (H (Vh ))u)t , Vhtt ).  (2.29) 

 We rewrite the third term as 

 

( Vh , Vhttt ) =
d

dt
( Vh , Vhtt )

1

2

d

dt
Vht L2

2  (2.30) 

 Going back to (2.27) and putting (2.28), (2.29), and 

(2.30) together, we obtain 

H '(Vh )Vhtt
L2

2

+
1

2

d

dt
Vht L2

2  

=
d

dt
((H (Vh ))t ,Vhtt ) (H ' (Vh )Vht

2 ,Vhtt )  

d

dt
( f (H (Vh ))u, Vhtt )  

+(( f (H (Vh ))u)t , Vhtt ) +
d

dt
( Vh , Vhtt ).  (2.31) 

 Now, by (2.18), if we choose = Vhtt , we have 

d

dt
((H (Vh ))t ,Vhtt )

d

dt
( f (H (Vh ))u, Vhtt )  

+
d

dt
( Vh , Vhtt ) = 0.  (2.32) 

 So (2.31) becomes 
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H '(Vh )Vhtt
L2

2

+
1

2

d

dt
Vht L2

2  

= (H ' (Vh )Vht
2 ,Vhtt )  

+(( f (H (Vh ))u)t , Vhtt ),  (2.33) 

which we treat as follows. 

H '(Vh )Vhtt
L2

2

+
1

2

d

dt
Vht L2

2  

H ' (Vh )Vht
2

H '(Vh )
L2

2

+
1

4
H '(Vh )Vhtt

L2

2

 

+h 2 k
L

( f (H (Vh ))u)t
L2

2

+
h2

4

1

k
L

Vhtt

L2

2

 

H ' (Vh )Vht
2

H '(Vh )
L2

2

+
1

4
H '(Vh )Vhtt

L2

2

 

 

+h 2 k
L

( f (H (Vh ))u)t
L2

2

+
h2

4

h 1

k
L

Vhtt

L2

2

 

H ' (Vh )Vht
2

H '(Vh )
L2

2

+
1

4
H '(Vh )Vhtt

L2

2

 

+h 2 k
L

( f (H (Vh ))u)t
L2

2

+
1

4
H '(Vh )Vhtt

L2

2
 (2.34) 

where we have used (2.1), the inverse estimate assumption 

(2.10), the fact that 

 

H '(v) =
1

k (H (v))

1

k
L

 (2.35) 

by (2.13) and (2.1), and the definition of k , (2.3). Also, 

notice that we have made use of the following fact: 

| ab |=
ha

2
2h 1b

1

2

ha

2

2

+
1

2
2h 1b

2
 

1

4
h2a2

+ h 2b2  (2.36) 

 Finally, hide the second and fourth terms on the left hand 

side of (2.34) in its righthand side and then integrate over 

[0, T ]  to obtain 

 

H '(Vh )Vhtt
L2 (L2 )

2

+ Vht L (L2 )

2  

C
H ' (Vh )Vht

2

H '(Vh )
L2 (L2 )

2

 

 

+h 2 k
L

( f (H (Vh ))u)t .
L2 (L2 )

2

}  

 

+ Vht L2
2 |t=0  (2.37) 

 The first term on the left hand side of (2.37) can be 

treated as follows. 

H ' (Vh )Vht
2

H '(Vh )
L2

2

C 6 Vht
2

L2
2 C 6 Vht L4

4
 

C 6 Vht H1
4 C 6h 4 Vht L2

4
 (2.38) 

where we have used (3.51), the inverse estimate assumption 

(2.10), and the fact that H 1( )  is continuously imbedded in 

L4 ( ) , for the spatial dimension n = 2  or 3  [23, 24]. 

 The second term on the left hand side of (2.37) can be 

treated in the following way. 

h 2 k
L

( f (H (Vh ))u)t .
L2

2

Ch 2 f (H (Vh ))H '(Vh )Vhtu L2
2  

 

+Ch 2 f (H (Vh ))ut L2
2

 

 

Ch 2 1 u
L

2 Vht L2
2

+Ch 2 ut L2
2

 (2.39) 

where we have used (3.52), (1.9), and (2.3). Now by Remark 

3.1 of [10], 

 

Vht L2 (L2 )
C(u).  (2.40) 

 We also have  

 

Vht L4 (L2 )

4 Vht L (L2 )

4 C 12h 8 ,  (2.41) 

by Lemma 2.2. 

 Therefore, combining (2.37) through (2.39), we get the 

lemma.  

3. LINEARIZATION AND ERROR ANALYSIS 

 In this section, we consider the perturbation given by 

(2.2) and (2.3) and establish error estimates for the linearized 

scheme proposed in [6]. 

3.1. The Linearized Scheme 

 As done in [6], we consider first order Taylor expansions 

of the functions H  and 
 
f H : 

H (v2 ) H (v1 ) = (v2 v1 )H (v1 ) + O((v2 v1 )2 ),  (3.1) 

 
( f H )(v2 ) ( f H )(v1 ) = (v2 v1 )( f H ) (v1 ) + O((v2 v1 )2 ).  (3.2) 

 If we discard the second order terms in (3.1) and (3.2), 

and replace in (2.14), we obtain the approximate problem: 

 Find a sequence of functions {Uh
n}n=0

N
 of Mh  verifying 

 

Uh
n+1 Uh

n

t
H ' (Uh

n ), ( f H )(Uh
n ) + (Uh

n+1 Uh
n ){(  
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( f H ) (Uh

n )}un+1, )  

+ Uh
n+1,( ) = 0, Mh  

0 n N 1  (3.3) 

PhH Uh
0 = PhS

0
 (3.4) 

where H  is defined by (2.13). Here un := u( , t n ) = u( ,n t) . 

 In this section we wish to show that the solution obtained 

through this scheme converges to the solution to Problem 1.1 

(for Q = 0  and q = 0 ) in some functional space. For this, it 

is enough to show that the solution to Problem (3.3)-(3.4) 

converges to the solution to (2.14)-(2.15) in that same 

functional space, independently of  and h , by [9, 10]. 

 Let A  be the matrix of the system of linear algebraic 

equations given by (3.3)-(3.4) (see [6]). The following 

theorem, which shows the existence and uniqueness for the 

system above, was proved in [6]. 

 Theorem 3.1 Let v Mh . Then under conditions (1.2)-

(1.7), we have 

 

(t v, Av) c2 1
tc3(u)

2
v

L2 ( )

2
+ t v

L2 ( )

2
 (3.5) 

where c2  and c3  are independent of , h , and t . 

 The following regularity result was established in [7] and 

will be used in the present work 

 Lemma 3.2 If (Uh
n )n=0

N Mh  is the solution to the 

problem (3.3)-(3.4), then 

0 n N 1

t H' (Uh
n )

Uh
n+1 Uh

n

t
L2

2

+
0 n N 1
max (Uh

n+1 )
L2

2
 

C(u) 1
 (3.6) 

for some > 0  and  as in (2.2), and C = C(u,Uh
0 , Uh

0 )  

 Next we state and prove a new discrete regularity result 

for the linearized full discretized scheme that will also be 

helpful in establishing our main result in this paper. 

 Lemma 3.3 If (Uh
n )n=0

N Mh  is the solution to the 

problem (3.3)-(3.4), then 

0 n N 1
max

Uh
n+1 Uh

n

t
L2

2

+ t
0 n N 1
max

(Uh
n+1 Uh

n )

t
L2

2

 

C( t +1) 1h 2
 (3.7) 

for some > 0  and  as in (2.2), and C = C(u,Uh
0 , Uh

0 )  

 Proof of Lemma. 

Set =
Uh

n+1 Uh
n

t
 in (3.3) to get 

Uh
n+1 Uh

n

t
H '(Uh

n )
L2

2

+ Uh
n+1,

(Uh
n+1 Uh

n )

t
 

 

= ( f H )(Uh
n )un+1,

(Uh
n+1 Uh

n )

t
 

 
+ (Uh

n+1 Uh
n )( f H ) (Uh

n )(  

un+1,
(Uh

n+1 Uh
n )

t
.  (3.8) 

 We split the second term on the lefthand side of (3.8) as 

follows. 

Uh
n+1,

(Uh
n+1 Uh

n )

t
= t

(Uh
n+1 Uh

n )

t
L2

2

 

+ Uh
n ,

(Uh
n+1 Uh

n )

t
.  (3.9) 

 Next, combining (3.8) and (3.9), and using the obvious 

inequality 

| ab |
1

2
h 2 1a2

+
1

2
h2 b2  (3.10) 

by the Young Inequality, we get 

Uh
n+1 Uh

n

t
H '(Uh

n )
L2

2

+ t
(Uh

n+1 Uh
n )

t
L2

2

 

C(u) 1h 2 ( f H )(Uh
n )

L2
2{  

 

+
1h 2 ( f H ) (Uh

n )(U n+1 Uh
n )

L2
2

 

+
1h 2 Uh

n

L2
2 } + h2 (Uh

n+1 Uh
n )

t
L2

2

.  (3.11) 

 By the regularity assumption on f , we obviously have: 

( f H )(Uh
n )

L2 C.  (3.12) 

 The second term on the righthand side of (3.11) can be 

handled in the following manner. 

 

( f H ) (Uh
n )(U n+1 Uh

n )
L2
2 =

f (H (Uh
n ))H '(Uh

n ) t
Uh

n+1 Uh
n

t
L2

2  

= f (H (Uh
n )) H '(Uh

n ) t H '(Uh
n )

Uh
n+1 Uh

n

t
L2

2

 

C( t)2 Uh
n+1 Uh

n

t
H '(Uh

n )
L2

2

,  (3.13) 

where we have used (1.9) and the fact that 
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H '(s) =
1

k (H (s))
,  (3.14) 

by (2.4) and (2.13). Thus, by Lemma 3.2, we have 

 

( f H ) (Uh
n )(U n+1 Uh

n )
L2
2 C t 1.  (3.15) 

 Also by the same lemma, 

 

Uh
n

L2
2 C 1.  (3.16) 

 Thanks to the inverse estimate assumption (2.10), and 

because Uh
n+1 Uh

n Mh , the last term of the righthand side 

of (3.11) can be treated as follows. 

(Uh
n+1 Uh

n )

t
L2

2

Ch 2 Uh
n+1 Uh

n

t
L2

2

.  (3.17) 

 We also notice that 

 

H '(s)
1

k( )
L

,  (3.18) 

by (2.1) and (3.14). Hence the first term on the lefthand side 

of (3.11) is bounded below as follows. 

Uh
n+1 Uh

n

t
H '(Uh

n )
L2

2

k( )
L

1 Uh
n+1 Uh

n

t
L2

2

.  (3.19) 

 Substituting (3.19) in (3.11), multiplying the new 

inequality by 
 

k( )
L

, and using (3.12), (3.13), (3.15), and 

(3.16), we obtain 

Uh
n+1 Uh

n

t
L2

2

+ k( )
L

t
(Uh

n+1 Uh
n )

t
L2

2

 

C(u) 1h 2 (1+ t 1
+

1 )  

+ k( )
L

Uh
n+1 Uh

n

t
L2

2

.  (3.20) 

 Now, choose  in the arithmetic-geometric mean 

inequality (3.10) so that 

 

k( )
L

1

2
,  (3.21) 

in order to hide the last term on the righthand side of (3.20) 

in the corresponding term of the lefthand side. Finally, take 

the maximum of both sides over 0 n N  to get the 

Lemma.                

3.2. Error Estimates 

 We now establish the second main result of this paper. 

3.2.1. Preparation for the Main Theorem 

 To prepare for the statement and the proof of our main 

results, we do some preliminary work. 

 Let Vh Mh  be the solution to Problem (2.14)-(2.15). 

Let Vh
n := Vh ( , t n )  with t n = n t . 

 Using a first order Taylor expansion of the function 

H (v)  in the variable v , we obtain 

H (v2 ) H (v1 ) = (v2 v1 )H (v1 ) +
(v2 v1 )2

2
H ' (v0 )

 (3.22) 

with v0  between v1  and v2 . Hence, we have 

H (Uh
n+1 ) H (Uh

n )

t
=

Uh
n+1 Uh

n

t
H (Uh

n )  

+
(Uh

n+1 Uh
n )2

2 t
H ' ( h

n )  (3.23) 

for some h
n

 between Uh
n

 and Uh
n+1

. 

 Similarly, using a first order Taylor expansion of the 

function 
 
( f H )(v) , we get 

 
( f H )(Uh

n+1 ) = ( f H )(Uh
n ) + Uh

n+1 Uh
n

( ) f H( ) '(Uh
n )  

+
(Uh

n+1 Uh
n )2

2
f H( )"( h

n )  (3.24) 

for some h
n

 between Uh
n

 and Uh
n+1

. 

 We can rewrite (2.14) as 

H (Vh
n+1 ) H (Vh

n )

t
, ( f H )(Vh

n+1 )un+1,( )  

+
(H (V n ))

t

H (Vh
n+1 ) H (Vh

n )

t
,  

+ Vh
n+1,( ) = 0, Mh .  (3.25) 

 Next using (3.24) and (3.23) in (3.3), we get 

H (Uh
n+1 ) H (Uh

n )

t
,

Uh
n+1 Uh

n
( )

2

2 t
H ( h

n ),  

f H (Uh
n+1 )un+1,( )  

 

(Uh
n+1 Uh

n )2

2
( f H ) ( h

n )un+1,  

+ Uh
n+1,( ) = 0, Mh  

0 n N 1  (3.26) 

 Now, subtract (3.25) from (3.26) and rewrite to get 

H (Uh
n+1 ) H (Vh

n+1 )

t

H (Uh
n ) H (Vh

n )

t
,  

+ Uh
n+1 Vh

n+1
( ),( )  

(( f H )(Uh
n+1 ) ( f H )(Vh

n+1 ))un+1,( )  
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(Uh
n+1 Uh

n )2

2
( f H ) ( h

n )un+1,  

(H (V n ))

t

H (Vh
n+1 ) H (Vh

n )

t
,  

Uh
n+1 Uh

n
( )

2

2 t
H ( h

n ), = 0, Mh .  (3.27) 

 We need the following for the proof of Theorem 3.4 

below. 

3.2.2. The Discrete Analogue of the Poisson Solution 

Operator 

 We give some properties of the discrete analogue of the 

Poisson operator, which we need in the proof of our second 

main result below. For more details on this operator, see the 

appendix of [7], for instance. 

 We define the operator Th  from (H 1( ))*
 into Mh  

(defined in section 2) by Th f = h , where h  is the unique 

solution of the discretized elliptic problem: 

( h , ) = ( f f , ) for all Mh ,

( h ) = f
 (3.28) 

where g :=
1

| |
g(x)dx , is the mean value of g  over . 

In the present analysis, we assume that | |= 1 , to simplify. 

 Then we have the following properties. 

( Th f , ) = ( f , ) f , Mh ,  (3.29) 

(Th , )
(H1( ))*

=:
Hh

1 Mh ,  (3.30) 

 

Th L2 Hh
1 Mh ,  (3.31) 

and 

Th L2 Th H1 Hh
1 , Mh .  (3.32) 

 Finally, by definition of Th , and by the fact that 

f = fdx = ( f ,1) = (Ph f ,1) = (Ph f ) ,  (3.33) 

(since 1 Mh ), we have 

Th f = ThPh f  (3.34) 

for all f (H 1( ))*
, where Ph  is the L2

-projection onto 

Mh . 

3.2.3 The Main Theorem 

 Thanks to the above preparatory work, we can now state 

and prove our second main result. 

 Theorem 3.4 Suppose conditions (1.2)-(1.9) hold. Let 

Vh  be the solution to (2.14)-(2.15). Denote 

Vh
n := Vh ( , t n ) = Vh ( ,n t) , 0 n N . Let {Uh

n}0 n N  be the 

solution to (3.3)-(3.4). Then 

0 n N 1
max PhH (Uh

n+1 ) PhH (Vh
n+1 )

Hh
1

2
 

+

0 n N 1

t((Uh
n+1 Vh

n+1 ), H (Uh
n+1 ) H (Vh

n+1 ))  

C(u)(( t)2 ( h 12 19 )),  (3.35) 

for some > 0.  

 Proof. 

 We first notice that, for Mh , we have 

(H (Uh
n+1 ) H (Vh

n+1 ), ) = (Ph (H (Uh
n+1 ) H (Vh

n+1 )), )

 (3.36) 

 Also, by [7], page 376, 

 

1

2
Ph (H (Uh

n+ ) H (Vh
n+1 ))

Hh
1

2 1

2
Ph (H (Uh

n ) H (Vh
n ))

Hh
1

2  

Ph (H (Uh
n+1 ) H (Vh

n+1 )),Th (H (Uh
n+1 ) H (Vh

n+1 ))( ).  (3.37) 

 In (3.27), set = Th H (Uh
n+1 ) H (Vh

n+1 )( ) , and use 

(3.32), (3.36), (3.37), and the arithmetic-geometric inequality 

to obtain 

1

2 t
Ph H (Uh

n+1 )({ H (Vh
n+1 ))

Hh
1

2
 

Ph (H (Uh
n ) H (Vh

n ))
Hh

1
2 }  

+( (Uh
n+1 Vh

n+1 ), Th (H (Uh
n+1 ) H (Vh

n+1 ))  

 
1 ( f (H (Uh

n )) f (H (Vh
n )))un+1

L2
2

+E  

 

+F + G + C Th (H (Uh
n+1 ) H (V n+1 ))

L2
2

 (3.38) 

where 1  can be made arbitrary small thanks to the 

arithmetic-geometric inequality, and where the terms E , F , 

and G  are to be specified and treated below. 

 Using (3.29), the third term on the left side of (3.38), can 

be treated as follow. 

( (Uh
n+1 Vh

n+1 ), Th (H (Uh
n+1 ) H (Vh

n+1 ))  

= (Uh
n+1 Vh

n+1, H (Uh
n+1 ) H (Vh

n+1 ))  

Uh
n+1 Vh

n+1
( ) H (Uh

n+1 ) H (Vh
n+1 )( ) .  (3.39) 

 We rewrite (3.38) using (3.31), (3.34), and (3.39): 

1

2 t
Ph H (Uh

n+1 )({ H (Vh
n+1 ))

Hh
1

2
 

Ph (H (Uh
n ) H (Vh

n ))
Hh

1
2 }  

+((Uh
n+1 Vh

n+1 ), (H (Uh
n+1 ) H (Vh

n+1 ))  



Convergence Estimates for a Linear Backward Euler Scheme for the Saturation Equation The Open Applied Physics Journal, 2012, Volume 5    49 

Uh
n+1 Vh

n+1
( ) H (Uh

n+1 ) H (Vh
n+1 )( )  

+ 1 ( f (H (Uh
n+1 )) f (H (Vh

n+1 )))un+1

L2
2

+E  

+F + G + C Ph (H (Uh
n+1 ) H (V n+1 ))

Hh
1

2
 (3.40) 

 Next, we treat each of the terms on the righthand side of 

(3.40) separately. The first term on the righthand side of 

(3.40) is treated as follows. 

| Uh
n+1 Vh

n+1
( ) H (Uh

n+1 ) H (Vh
n+1 )( ) | 2 Uh

n+1 Vh
n+1

( )
2

 

+
1

2

H (Uh
n+1 ) H (Vh

n+1 )( )
2

.  (3.41) 

 We have 

(Uh
n+1 Vh

n+1 ) = (Uh
n+1 Vh

n+1 )dx  

 

Uh
n+1 Vh

n+1

L2 ,  (3.42) 

by Holder Inequality (using the assumption that | |= 1 ). In 

the same way, we have 

H (Uh
n+1 ) H (Vh

n+1 )( ) = (H (Uh
n+1 ) H (Vh

n+1 ))dx  

= Ph (H (Uh
n+1 ) H (Vh

n+1 ))dx  

 

Ph (H (Uh
n+1 ) H (Vh

n+1 ))
Hh

1 1
H1  

 

Ph (H (Uh
n+1 ) H (Vh

n+1 ))
Hh

1 ,  (3.43) 

where we have used (3.33). 

 We can now rewrite (3.41) using (3.42) and (3.43): 

| Uh
n+1 Vh

n+1
( ) H (Uh

n+1 ) H (Vh
n+1 )( ) |  

 
2 Uh

n+1 Vh
n+1

L2
2

 

+C Ph (H (Uh
n+1 ) H (Vh

n+1 ))
Hh

1
2 .  (3.44) 

 The second term on the righthand side of (3.40) is 

bounded as follows. 

 

( f (H (Uh
n+1 )) f (H (Vh

n+1 )))un+1

L2
2

 

 

C u
L (L )

2 Uh
n+1 Vh

n+1, H (Uh
n+1 ) H (Vh

n+1 )( ),  (3.45) 

by (1.7). 

 To treat the term 

F =
(H (V n ))

t

H (Vh
n+1 ) H (Vh

n )

t
L2

2

,  

we notice, using Taylor expansion, that 

 

 

(H (V n ))

t

H (Vh
n+1 ) H (Vh

n )

t

=
1

t tn

tn+1

(H (Vh ( , )))tt ( t n )d .

 (3.46) 

 Hence, the term F  is bounded as follows. 

F =
1

t tn

tn+1

(H (Vh ( , )))tt ( t n )d
L2

2

 

 

1

t tn

tn+1

(H (Vh ))tt ( t n )d
2

 

 

t (H (Vh ))tt L2 (tn ,tn+1;L2 ( ))

2 .  (3.47) 

 To bound the terms E , F , and G , one can check easily 

that, for  v R , 

H (v) =
k (H (v))

k (H (v))( )
3 .  (3.48) 

and 

 

( f H ) (v) =
f (H (v))k (H (v)) f (H (v))k (H (v))

k (H (v))( )
3  (3.49) 

where we have used (2.4) and (2.13). 

 Thus, with the assumption that k  is continuously 

differentiable and f  twice continuously differentiable, we 

get 

| ( f H ) (v) |
C

3  (3.50) 

and 

| (H ) (v) |
C

3 ,  (3.51) 

for all  v R . Also 

| H (v) |=
1

k (H (v))

C
,  (3.52) 

by (2.3) and (2.13). 

 Now 

H (Vh )( )
tt

= H ' ' (Vh )Vht
2

+ H ' (Vh )Vhtt ,  (3.53) 

and 

H ' (Vh )Vhtt L2 = H ' (Vh ) H ' (Vh )Vhtt
L2

 

1
H ' (Vh )Vhtt

L2
.  (3.54) 

 Therefore 

 

 



50    The Open Applied Physics Journal, 2012, Volume 5 Koffi B. Fadimba 

 

(H (Vh ))tt L2 (tn ,tn+1,L2 ( ))
H ' ' (Vh )Vht

2

L2 (tn ,tn+1,L2 ( ))
 

 

+
1

H ' (Vh )Vhtt L2 (tn ,tn+1,L2 ( ))
 (3.55) 

where we have used the fact that H 1( )  is continuously 

imbedded in L4 ( ) , for n = 2  or 3  (see for instance [23, 

24]), and (3.58) below. 

 Hence, (3.47) becomes 

F C t H " (V
h
)V

ht

2

L2 tn ,tn+1,L2 ( )( )

2

 

  

+
1

H ' (V
h
)V

htt
L2 tn ,tn+1,L2 ( )( )

2

 (3.56) 

 The term E  is bounded as follows, 

 

E =
(Uh

n+1 Uh
n )2

2
( f H ) ( h

n )
L2

2

 

C( t)2

6 ( t)2 Uh
n+1 Uh

n

t

2

L2

2

.  (3.57) 

 Given that 

 

v2

L2 = v
L4
2 , for all v L4 ,  (3.58) 

estimate (3.57) becomes 

E
C( t)2

6 t
Uh

n+1 Uh
n

t
L4

2 2

.  (3.59) 

 The term G  is treated as the term E  and we get: 

G =
(Uh

n+1 Uh
n )2

2 t
H ( h

n )
L2

2

 

C
6 t

Uh
n+1 Uh

n

t
L4

2 2

.  (3.60) 

 Combining (3.44), (3.45), (3.56), (3.59), and (3.60) with 

(3.40), we get 

1

2 t
Ph H (Uh

n+1 )({ H (Vh
n+1 ))

Hh
1

2
 

 

Ph (H (Uh
n ) H (Vh

n ))
Hh

1
2 }  

+((Uh
n+1 Vh

n+1 ), (H (Uh
n+1 ) H (Vh

n+1 ))  

 
2 Uh

n+1 Vh
n+1

L2
2

 

 

+ 1 u
L (L )

2 Uh
n+1 Vh

n+1, H (Uh
n+1 ) H (Vh

n+1 )( )  

+
C( t)2

6 t
Uh

n+1 Uh
n

t
L4

2 2

 

  

+C t H '' (V
h
)V

ht

2

L2 tn ,tn+1,L2 ( )( )

2

 

 

+
1 H ' (Vh )Vhtt L2 (tn ,tn+1,L2 ( ))

2 )  

+
C

6 t
Uh

n+1 Uh
n

t
L4

2 2

 

 

+C Ph (H (Uh
n+1 ) H (V n+1 ))

Hh
1

2 .  (3.61) 

 Next, in view of (1.7), choose, in the arithmetic-

geometric inequality, 2  such that 

 
2 Uh

n+1 Vh
n+1

L2
2 1

4
Uh

n+1 Vh
n+1, H (Uh

n+1 ) H (Vh
n+1 )( ).

 (3.62) 

 In the same manner, choose 1  such that 

1 u
L (L )

2 1

4
.  (3.63) 

 Then the first two terms on the righthand side of (3.61) 

can be hidden in its lefthand side. After hiding these terms, 

multiply (3.61) by t , and then sum for 0 n m , with 

0 m N 1 , to get 

1

2
Ph H (Uh

m+1 )({ H (Vh
m+1 ))

Hh
1

2
 

 

Ph (H (Uh
0 ) H (Vh

0 ))
Hh

1
2 }  

+
1

2 0 n m

t((Uh
n+1 Vh

n+1 ), (H (Uh
n+1 ) H (Vh

n+1 ))  

 

C( u
L (L )

)
t 3

+ t
6

0 n m 1

t
Uh

n+1 Uh
n

t
L4

2 2

 

 

+ t 2 H ' ' (Vh )Vht
2

L2 (L2 )

2
+

1 H ' (Vh )Vhtt
L2 (L2 )

2

 

 

+C
0 n m

t Ph (H (Uh
n+1 ) H (V n+1 ))

Hh
1

2 .  (3.64) 

 The second term on the left hand side of (3.64) vanishes 

thanks to (2.15) and (3.4). 

 We notice the following obvious fact. 

0 i n

v
Lp (ti ,ti+1,Lp ( ))

p = v
Lp (0, T0 ,Lp ( ))

p , 1 p < ,  (3.65) 

for all v Lp (0, T0 , Lp ( )) . This justifies the presence of the 

second and third terms in the righthand side of (3.64). 

 Next, to deal with the first term in the righthand side of 

(3.64), we notice the obvious fact: If (ai )  are nonnegative 

real quantities for 1 < i < n , then 
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1 i n

ai
2

1 i n

ai

2

.  (3.66) 

 Using this fact, we obtain 

0 n m 1

t
Uh

n+1 Uh
n

t
L4

2 2

0 n m 1

t
Uh

n+1 Uh
n

t
L4

2 2

 

0 n m 1

t
Uh

n+1 Uh
n

t
H1

2 2

 

Ch 4

0 n m 1

t
Uh

n+1 Uh
n

t
L2

2 2

,  (3.67) 

where we have used the fact that H 1( )  is continuously 

imbedded in L4 ( )  and the inverse estimate assumption 

(2.10). Now, use (2.35) and Lemma 3.3 to see that 

0 n m 1

t
Uh

n+1 Uh
n

t
L4

2 2

C(u)T0 t h 8 2 .  (3.68) 

 Use lemma 2.4, (2.38), (2.41), and (3.68) in (3.64) to 

obtain 

1

2
Ph H (Uh

m+1 )({ H (Vh
m+1 ))

Hh
1

2
 

+
1

2 0 n m

t((Uh
n+1 Vh

n+1 ), (H (Uh
n+1 ) H (Vh

n+1 ))  

C(u)(( t)2 ( h 12 19
+ h 8 8 ))  

 

+C t
0 n m

Ph (H (Uh
n+1 ) H (V n+1 ))

Hh
1

2 .  (3.69) 

 Finally, apply the discrete Gronwall Lemma to (3.69) and 

then take the maximum for 0 m N 1  to get the 

theorem.               

 Remark 3.5 The application of the discrete Gronwall 

Lemma to (3.69) needs some justification. Split the last term 

of (3.69) as follows. 

 

C t
0 n m

Ph (H (Uh
n+1 ) H (V n+1 ))

Hh
1

2
 

 

= C t Ph (H (Uh
m+1 ) H (V m+1 ))

Hh
1

2
 

 

+C t
0 n m 1

Ph (H (Uh
n+1 ) H (V n+1 ))

Hh
1

2 .  (3.70) 

 Now, for t  sufficient small so that 

1

2
C t c0 > 0,  (3.71) 

for some c0 > 0 , the first term on the righthand side of 

(3.70) can be hidden in the first term of the lefthand side of 

(3.69). 

 Theorem 3.4 can be made specific thanks to (1.5) and 

(1.7). We do this through the following. 

 Corollary 3.6 Under the conditions of Theorem 3.4, we 

have 

 

 0 n N

t Uh
n+1 Vh

n+1

L2
2 C(u)( t)2 h 12 19 ,  (3.72) 

0 n N

t H (Uh
n+1 ) H (Vh

n+1 )
L2+μ

2+μ

C(u)( t)2 h 12 19 ,  (3.73) 

where μ  is as in (1.3). 

 Clearly, Theorem 3.4 (through Corollary 3.6) states that, 

for fixed  (thus ), the regularization parameter, and h , 

the spatial discretization parameter, the solution to problem 

(3.3) and (3.4) converges to the solution to problem (2.14) 

and (2.15). More interestingly, it also states that for a fixed 

, the solution to problem (3.3) and (3.4) converges to the 

solution to problem 2.5 uniformly in h , if h  is appropriately 

chosen in terms of t . This mean that scheme (3.3)-(3.4), as 

we expected, will converge faster when applied to the non 

degenerate case i.e. the case where k(s) k0 > 0 , for all 

s [0, 1] . 

4. CONCRETE EXAMPLES AND DISCUSSION 

 We illustrate these through examples of appropriate 

choices of  and h  in terms of t . 

 By (1.3) and (2.2), we have 

c μ .  (4.1) 

 As in [13, 12], for the corollary below, we make the 

assumption 

k(s) c3s
μ .  (4.2) 

 We choose  and h  in terms of t  as follows. 

h 1 ,  (4.3) 

and 

h ( t) 2 ,  (4.4) 

with 1 > 0  and 2 > 0 . 

 Define 

= 2 19μ 1 2 12 2 ,  (4.5) 

4.1. Choice 1 

 In view of (4.3), if we choose 1  such that (2.16) 

becomes 

 

Vh K(S)
L2 (L2 )

= O 2+μ
( ) = O h 1(2+μ )

( ),  (4.6) 

then it suffices that, 

1 =
4 + 2μ

2 + 4μ + μ2 .  (4.7) 
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 Set 

K n ( ) := K(S( , t n )) = K(S( ,n t)).  (4.8) 

 

 

 Then, thanks to the triangle inequality, we have the 

following 

 Corollary 4.1 Under the conditions of Theorem 3.4, and 

conditions (4.3) through (4.8), we have 

 0 n N 1

t K n Uh
n+1

L2 (L2 )

2 C u( )( t) .  (4.9) 

 Next we choose 1  as in (4.7), with μ  as in (1.3). If we 

then set 

2 =
3

4

2 + 4μ + μ2

12 + 62μ + 25μ2 ,  (4.10) 

then 

=
1

2
.  

 For 1  given by (4.7), if we set 

cμ =
2 + 4μ + μ2

12 + 62μ + 25μ2 ,  

we get Table 1. As expected, we see that the rate of 

convergence 2  decreases as 2  increases. 

Table 1. Variation of the Rate of Convergence as a Function 

of 2 

 

 1 =
4 + 2μ

2 + 4μ + μ2
 

 2   
7cμ

8
   

5cμ

6
  

3cμ

4
   

2cμ

3
 

3cμ

5
 

cμ

2
  

    
1

4
   

1

3
   

1

2
   

2

3
 

4

5
 1   

 

4.2. Choice 2 

 Putting (2.16) and (3.72) together and using the triangle 

inequality, we get 

 0 n N 1

t K n Uh
n+1

L2 (L2 )

2 C u( )( 2+μ
 

+h2
μ

μ+1
+ ( t) ).  (4.11) 

 Now, choose 1  and 2  in such a way that 

 0 n N 1

t K n Uh
n+1

L2 (L2 )

2 = O 2+μ
( ) = O ( t) 1 2 (2+μ )

( ).

 (4.12) 

 For this purpose, from (4.11), it suffices that 

2 2

μ

1+ μ
1 2 = 1 2 (2 + μ)

2 19μ 1 2 12 2 = 1 2 (2 + μ).
 (4.13) 

 Using (2.7) and solving system (4.13) for 1  and 2 , we 

obtain 

1 =
4 + 2μ

2 + 4μ + μ2

2 =
1

2

2 + 4μ + μ2

8 + 33μ +13μ2 ,
 (4.14) 

which yields 

=
(2 + μ)2

8 + 33μ +13μ2 .  (4.15) 

5. CONCLUSION 

 This paper has established three main results: a regularity 

result for the continuous Galerkin formulation for the 

saturation equation, a regularity result for a linear scheme for 

the saturation equation, and error estimates for a fully 

discretized and linearized scheme for the same equation, 

under reasonable conditions on the data, and without any 

pretention to optimal estimates. The choices made here are 

not necessarily optimal, but they do show there is 

convergence when the perturbation, spatial discretization, 

and time-stepping parameters, , h , and t  are chosen in 

such away that all converge to 0 , with the first two as some 

powers of the latter. How good is the proposed method will 

hopefully come from a continuation of this work which will 

concern itself with improving the present results by 

improving, for instance, Lemma 2.4 above, and, especially, 

doing some numerical experiments. The results obtained in 

this paper show, as expected, that we have a higher rate of 

convergence for the non degenerate case, i.e. for the case 

k(s) k0 > 0 , for all s [0, 1] . Another sequel of this paper 

will look more in depth at the special case of nondegenerate 

problems like the concentration problem. 

 The author intends to pursue investigations in the H 1
-

norm i.e. investigations for estimates for 

 0 n N

t (Uh
n+1 Vh

n+1 )
L2
2 .  

 As stated above, our perspective for a next paper (in 

association with other authors) is to implement effectively 

the scheme (3.3)-(3.4) on a computer and compare our 

results with the present estimates, and with existing methods. 
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