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Abstract: In this study we have proposed a method based on neural networks to retrieve refractivity, temperature, 

pressure and humidity profiles by using FORMOSAT-3/COSMIC GPS radio occultation data. To overcome the constraint 

of an independent knowledge of one atmospheric parameter at each GPS occultation, we trained three neural networks 

with refractivity profiles as input computed from the geometrical occultation parameters relative to the FORMOSAT-

3/COSMIC satellites, while the targets were the dry and wet refractivity profiles and the dry pressure profiles obtained 

from the contemporary European Centre for Medium-Range Weather Forecast data. We have considered 1041 available 

satellite radio occultations covering the entire ocean area spanning within the Tropics during July-August 2006. We have 

used 937 profiles for training the neural networks, the remaining 104 ones for the independent test. 

Keywords: GPS, radio occultation, neural network, atmospheric profiling. 

1. INTRODUCTION 

 Global Positioning System (GPS) radio occultation (RO) 
is considered as a global sounding technique for providing 
atmospheric profiles useful for numerical weather prediction 
and climate change studies. The radio occultation system 
employs GPS receivers placed on Low-Earth Orbit (LEO) 
satellites to sound the Earth’s neutral atmosphere and 
ionosphere evaluating the additional delay affecting a radio 
signal when passing through the atmosphere due to the 
refractivity index magnitude and its variations [1, 2]. Since 
1995, when the first LEO satellite Microlab-1 (GPS/MET 
mission) was operational [3, 4], several GPS-RO satellite 
missions have been launched, which include Stellenbosch 
University Satellite (SUNSAT), Challenging Mini-Satellite 
Payload (CHAMP), Satelite de Aplicaciones Cientificas-C 
(SAC-C), Gravity Recovery and Climate Experiment 
(GRACE) and Constellation Observing System for 
Meteorology Ionosphere and Climate (COSMIC). 

 GPS occultations provide an active probing of the 
atmosphere working under all-weather conditions due to the 
insensitivity of the GPS signal wavelength to scattering by 
clouds, aerosols, and precipitation, with relatively high 
vertical resolution throughout the depth of the atmosphere 
associated with the limb-viewing geometry. A limiting factor 
for this technique is the horizontal resolution. It is set by the 
Fresnel  diffraction-limited  pencil-shaped  sampling  volume  
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of each measurement which has a horizontal resolution of 
about 200 km in the direction along the occulted link and a 
resolution of 1 km or better in the cross-link and vertical 
directions [5]. 

 The GPS-RO technique is exploited to obtain profiles of 
refractivity, temperature, pressure and humidity in the 
atmosphere at global scale, and several investigations have 
demonstrated that the retrieval accuracies are comparable to 
traditional atmospheric remote sensing techniques [6, 7]. 
Even though the atmospheric refractivity profiling by radio 
occultation is a well-defined problem, care must be taken to 
analyze factors affecting the occulted signal (multipath, 
satellite motion etc.) and to compute temperature and 
particularly humidity profiles from refractivity [5]. The 
accuracy of atmospheric profile estimation is affected by the 
use of proper boundary conditions and by the presence of 
water vapour in the atmosphere, that complicates the 
interpretation of the refractivity [8]. Refractivity profiles can 
be converted in a straightforward way into pressure and 
temperature profiles in regions where water vapour is 
negligible such as in the upper troposphere. 

 In the middle and lower troposphere additional 
information is necessary, therefore GPS refractivity 
measurements are employed to derive profiles of water 
vapour partial pressure or specific humidity given an 
independent knowledge of temperature obtained from 
independent observations (i.e. radiosoundings or data from 
atmospheric numerical modeling). 

 For example, an iterative method exploiting GPS RO 
refractivity measurements and temperature profiles obtained 
from radiosoundings or models to derive profiles of water 
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vapor partial pressure and specific humidity is discussed in 
[1]. An improved and widely used approach for atmospheric 
profiling, known as one-dimensional variational assimilation 
(1D-var) [9], consists in solving for the optimal one-
dimensional atmospheric state, i.e. optimal pressure, 
temperature and water vapor partial pressure, using observed 
GPS RO refractivity and a background atmospheric state 
from a model, each accompanied by its own error 
characterization. 

 The main drawbacks of these methods consist essentially 
in their dependence on additional sources of information at 
each GPS occultation, and the need of post-processing RO 
data to obtain the target atmospheric profiles. 

 In this paper, a retrieval method based on neural 
networks is proposed to retrieve profiles of atmospheric 
parameters from RO refractivity overcoming the requirement 
for temperature profile availability at each GPS occultation. 
We have trained three neural networks with inputs consisting 
of refractivity profiles computed from the occultation 
parameters observed by the COSMIC Microsat Constellation 
satellites and provided by the COSMIC Data Analysis and 
Archive Center (CDAAC) of Boulder (Colorado) [10]. The 
targets employed in the training are the dry and wet 
refractivity profiles, together with the dry pressure ones, 
obtained from the contemporary European Centre for 
Medium-Range Weather Forecast (ECMWF) analysis data. 

 ECMWF data are used only in the training phase of the 
neural networks. Once trained, they are capable of providing 
in real time the decomposition into wet and dry components 
of the incoming RO refractivity, thus allowing one to obtain 
temperature and water vapor pressure profiles, without 
requiring independent data sets. 

 The neural network training and the following 
independent test were performed over the entire ocean area 
between Tropics by using the available data set of 1041 
refractivity profiles from July 17 to August 18 2006. We 
chose to split ocean from land RO events: in a 
complementary paper [11] the performances of four NN 
algorithms are compared considering the same dataset of RO 
events selected over land. 

 The output decomposition in wet and dry refractivity and 
the estimation of dry pressure allows to obtain temperature 
and water vapour pressure profiles, without requiring 
independent information on atmospheric temperature. 

 To evaluate the performances of the proposed approach 
in processing RO data and to assess the quality of the 
retrieved profiles, we have computed the errors affecting the 
estimated profiles (refractivity, temperature, dry and wet 
pressure) with respect to ECMWF analysis which have been 
assumed as the truth or anyway as a good approximation of 
the real atmosphere. Such a choice of ECMWF data as a 
reference in the comparison was also adopted by other 
authors [12-14], considering that these data provide global 
coverage and high spatial resolution reconstruction of the 
global atmosphere. Of course, the use of ECMWF analysis 
occasionally might wrongly correlate atmospheric variables: 
a true validation with independent and actual measurements, 
such as radiosoundings (RAOBs), would provide a better 
benchmark, but over sea RAOBs are not available. 

 Our paper is structured as follows: at first, we explain the 
method used to extrapolate refractivity profiles from 
geometrical parameters of RO and atmospheric parameters 
from the acquired ECMWF data; then we deal with the 
chosen methodology to retrieve atmospheric profiles 
overcoming the need of knowing the temperature profile at 
each GPS occultation; finally we describe the neural network 
approach and we assess the quality of the obtained profiles 
with respect to ECMWF analysis ones. 

2. ATMOSPHERIC PROFILE RETRIEVAL 

2.1. Atmospheric Bending and Refractivity Profiles 

Retrieval 

 GPS-RO observations are performed in a limb-scanning 
mode, where in the geometrical optics approximation a ray 
passing through the atmosphere is refracted due to the 
vertical refractive profile. The overall effect of the 
atmosphere can be characterized by a total bending angle , 
an asymptotic impact parameter a and a tangent radius rp, as 
shown in Fig. (1), and their variations depend primarily on 
the vertical profile of refractive index [5]. 

 With the assumption of local spherical symmetry, the 
refraction index profile n can be retrieved from 
measurements of  as a function of a during an occultation 
by using an Abel transformation as in [15]: 

n(rp ) = exp
1 (a)

a2 arp
2
da

arp

            (1) 

where arp = n(rp) rp is the impact parameter for the ray whose 
tangent radius is rp. The refractivity profile is then N=(n-
1) 10

6
. Also, the “occultation point” is defined as the point 

on the Earth’s surface to which the retrieved refractivity 
profile is assigned, located under the perigee point of the 
bended ray [13]. 

2.2. Selection of Radio Occultation Data 

 In this work, first we have collected all the 1718 
FORMOSAT-3/COSMIC radio occultation events provided 
by CDAAC, covering the inter-tropical ocean area during the 
period from July 17 to August 18, 2006. The FORMOSAT-
3/COSMIC is a joint Taiwan - U.S. mission that provides a 
constellation of six identical micro-satellites successfully 
launched on April 14, 2006. The receivers installed onboard 
of the satellites register the phase and the amplitude of radio 
waves at the two GPS carrier frequencies, L1 (1575.42 
MHz) and L2 (1227.6 MHz), useful for the computation of 
the geometrical parameters introduced in section 2.1. 

 Then, we have computed the refractivity profiles using 
the geometrical parameters as in (1). The impact parameters 
and the bending angles employed in this study are contained 
in the atmPrf product collected in the level 2 atmospheric 
profile section of the CDAAC, vertically spaced from 4 m to 
50 m in the low and high atmosphere, respectively. 

 The distribution of the considered GPS-RO events is 
shown in Fig. (2), by marking the ones used for the neural 
network training with stars and those for the network test 
with open circles. 
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 In this work, we have produced a complete database 
matching the FORMOSAT-3/COSMIC GPS occultations 
with the corresponding ECMWF observations co-located in 
space and time. The RO profiles and the ECMWF data have 
been co-located on the basis of the correspondence between 
the terrestrial coordinates of the occultation points of RO and 
those provided in ECMWF data, with a maximum 
geographical coordinate distance of 0.5° and a maximum 
time difference of 1 hour. Data regarding only ocean area 
have been chosen on the basis of the land/sea flag included 
in the ECMWF data. 

 A possible source of errors in the occultations is a large 
difference between L1 and L2 bending angles, that could 
indicate extreme ionospheric conditions or L2 tracking 
errors. Another source of errors is a large absolute value of 
the mean deviation smean of the observed ionosphere free 
bending angle from CIRA-86 (COSPAR International 
Reference Atmosphere) climatological model, between 60 
and 80 km. A great value of smean could invalidate the 
occultation event above the altitude of 20 km. Although in 
this work we have considered only altitudes under 20 km, 
because usually above this altitude the observed bending 
angle profiles are weighted with the first guess bending 
angles derived from the CIRA-86 model [13], we have 
carefully rejected all the occultations (19 events from the 
above-mentioned collection) presenting an absolute value of 
smean greater than 10

-4
 rad. 

 In order to train and test the neural networks we have 
created a database of refractivity profiles by interpolating all 
parameters involved in the computation of refractivity at the 
same altitude intervals at each observation. As a result, each 
profile has 689 fixed altitude levels, representing the 
atmosphere from 0.9 to 20 km. 

 By analyzing the remaining 1699 events, we have chosen 
the altitude of 0.9 km as the minimum height above the 
surface as a trade-off between the requirement of a great 
number of observations to train the networks and the need of 
atmospheric profile estimation as much as possible close to 
the surface. On the other hand, such a choice limits the 
knowledge of the atmosphere at lower levels where 
substantial deviations of normal refractivity gradients may 
occur, typically due to super-refractive or, sometimes, 
ducting layers [16, 17]. 

 Therefore, discarding RO ending at an altitude higher 
than 0.9 km, we have finally selected 1041 occultations, and 
hence 1041 impact parameter and bending angle profiles to 
compute refractivity. 

2.3. Conventional Retrieval of Atmospheric Profiles 

 The atmospheric refractivity at microwave wavelength is 
given by [18]: 

 

Fig. (1). Instantaneous GPS-LEO occultation parameters. 

 

 

Fig. (2). Distribution of FORMOSAT-3/COSMIC GPS occultations. 
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N = 77.6
Pd
T

+ 72
Pw
T

+ 3.75 105
Pw
T 2            (2) 

where Pd is the pressure of dry air in hPa, Pw the partial 
pressure of water vapour in hPa, T is the atmospheric 
temperature in Kelvin. This equation is accurate to within 
0.5% for frequencies up to 100 GHz. To solve for T, Pd and 
Pw given N, we use the additional constraints of ideal gas and 
hydrostatic equilibrium laws, respectively, as: 

=
P

T

Md

R0
+
Pw
T

(Mw Md )

R0
            (3) 

dP(z) = g (z)dz             (4) 

where (z) is the air density in kg m
-3

, P=Pd+Pw, Md and Mw 
are respectively the mean molecular mass of dry air and 
water vapour, R0 is the universal gas constant, g the 
gravitation acceleration. Given N, we have a system of three 
equations and four unknowns (T, Pd, Pw and ), and therefore 
it is necessary to have an independent knowledge of one of 
the four parameters to solve the atmospheric profiling 
problem [12, 19]. For instance, some authors exploit the 
temperature profile derived from independent observations 
or weather analysis [5]. In this study, a method based on 
neural networks is proposed to retrieve atmospheric profiles 
overcoming the need of knowing the temperature profile at 
each GPS occultation. 

2.4. Refractivity and Pressure from ECMWF Data 

 The targets for the neural network training and the 
references for the following test are the dry and wet 
refractivity profiles and the dry pressure profiles. These 
profiles were obtained by processing data provided by the 
ECWMF, such as the logarithm of pressure, the specific 
humidity and the temperature, belonging to the “ECMWF 91 
model levels” data set, representing the atmosphere from 75 
km to the ground with a vertical resolution spanning from 5 
km to 25 m in the high and low atmosphere, respectively. 

 From ECMWF analysis data we have computed the 
water vapour partial pressure profile Pw by using the 
relationship between Pw and mixing ratio: 

Pw =
wP

Rdry
Rvap

+ w

             (5) 

where w is the mixing ratio in kg kg
-1

 derived from the 
specific humidity, Rdry and Rvap are the gas constant for dry 
air and water vapour respectively and P is the total pressure 
in hPa. Hence, the dry pressure profile has been obtained by 
subtracting the partial pressure of water vapour from the 
total pressure profile. Finally we have computed the 
refractivity by using (2) and than we have vertically 
interpolated these profiles at the same vertical levels of the 
refractivity profiles obtained from Abel transformation, as 
described in section 2.2. 

3. NEURAL NETWORK APPROACH 

 To solve the atmospheric profiling problem of GPS LEO 
occultations overcoming the need of external information 
(i.e., temperature profiles), we have considered three neural 

networks where predictors are the total refractivity profiles 
N(z) provided by the RO technique using (1) and the targets 
are the corresponding dry Nd(z) and wet Nw(z) refractivity 
profiles and the dry pressure profiles Pd(z) computed from 
ECMWF data. Nd(z) is the first term on the right-hand side of 
(2), while Nw(z) is the second and third term. Note that the 
consideration of ECMWF data allow the neural network to 
reproduce similar relations between the variables as those 
found in the training data set, and thus producing profiles 
coherent with those physical constraints. 

 The neural network training and the following 
independent test were performed over the entire ocean area 
between Tropics by using the available data set of 1041 
refractivity profiles, representing the atmosphere from 0.9 to 
20 km. We have chosen, randomly, 937 profiles for the 
training and the remaining 104 for the independent test of the 
network, that represent 90% and 10% of the entire available 
dataset, respectively. 

 First, before the training session, we have processed 
input and target matrices, with columns representing 
atmospheric parameter profiles, standardizing each row’s 
means to 0 and standard deviations to 1 [20]. After 
standardization, we have processed the input and target 
matrices using Principal Component Analysis (PCA) by 
expanding the 689-level refractivity profiles on a basis of 
empirical orthogonal functions called principal components 
[21]. The PCA permits a reduction of the number of 
descriptive profile parameters by exploiting the correlation 
among values at different altitudes, ensuring a faster post-
processing and a reduction of computer memory 
requirements in comparison with the original data. We have 
chosen to employ a number of principal components 
representing the 99.9% of the total variance of the original 
data [20], leading to the use of only 22 principal components 
for the total refractivity instead of the original 689 levels. 
Concerning the neural network targets, the number of 
components for dry refractivity, wet refractivity and dry 
pressure profiles are 17, 20 and 10, respectively. The need of 
a bigger number of wet refractivity principal components 
with respect to dry refractivity and dry pressure is an 
evidence of a greater variability in the troposphere of the wet 
parameters with respect to the dry ones. 

 For the training session of the neural networks, we have 
applied the early stopping technique, useful for determining 
the optimal number of training epochs. The early stopping 
technique divides the available events in two disjoint 
subsets: the training set and the validation set. The first one 
is used for the learning itself, the second one to choose the 
number of training epochs. Learning ends when the error on 
the validation set begins to rise even if the error on the 
training set could be further reduced. In practice, the 
validation set improves the ability of generalization of the 
network. Since overtraining could occur even on the 
validation set, a further test subset should be used to assess 
the capacity of generalization of the network. Then we have 
divided the training data set (937 events) in three subsets: the 
training subset used for the learning itself, the validation 
subset and the test subset, by assigning them randomly the 
70% (655 events), the 15% (141 events) and the 15% (141 
events) of the whole data set, respectively. 
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 Instead of the standard back-propagation, we have used 
the Levenberg-Marquardt optimization that is often the 
fastest back-propagation algorithm for training moderate-
sized feed-forward neural networks, in agreement with the 
early stopping technique [22, 23]. We have considered feed-
forward neural networks having, besides the input layer, a 
number (1 to 3) of hidden layers with tan-sigmoid transfer 
functions and an output layer with linear transfer functions. 
The degrees of freedom in designing the neural network 
architecture are two: the number of hidden layers and the 
number of neurons per layer. To select the more suitable 
architecture, we have added 1 neuron starting from the first 
hidden layer at each training session, until a maximum of 20 
neurons for each hidden layer. We have considered a 
maximum of 3 hidden layers, choosing among the possible 
combinations the architecture with the lower root mean 
square (RMS) error computed comparing the network 
outputs of the test session with the corresponding ECMWF 
profiles, where the test session employs the 104 refractivity 
profiles not used in the training phase. The best performance 
for the dry refractivity retrieval has been obtained using a 
neural network with 1 hidden layer with 8 neurons. Also, the 
neural network for the wet refractivity includes 1 hidden 
layer of 10 neurons, while the one for dry pressure includes 1 
hidden layer of 5 neurons. 

4. RESULTS 

 The integration of (1) introduces some systematic errors 
on the estimation of the total refractivity profiles N. The 
hypothesis of a spherically symmetrical atmosphere, implied 
in the Abel transform inversion, produces a small error due 
to the ellipsoidal shape of the Earth and to the horizontal 
gradients of the atmospheric structure [24, 25]. RO data 
analysis centers, as CDAAC, mitigate the error associated to 
the hypothesis of spherical symmetry by selecting Earth 
center and radius of curvature appropriate to the latitude and 
orientation of occultation measurements [25]. Another 
approximation is the assumption of the co-planarity of the 
ray paths during an entire occultation [5]. For these reasons, 
taking into account the low horizontal resolution of RO and 
the possible errors of the ECMWF data, the comparison 
between the total refractivity profiles N obtained using Abel 
transformation and the corresponding ECMWF N profiles 
exhibits a not negligible root mean square (RMS) difference, 
that the network anyway contributes slightly to reduce, as a 
sort of calibration, as reported in Fig. (3). The RMS error 
profile of N from Abel transformation (green line) is shown 
in Fig. (3) superimposed to the corresponding ECMWF 
standard deviation profile (red line). The latter defines the 
standard deviation profile of the atmospheric parameter 
computed from the entire ECMWF database: it can be 
assumed as an index of the climatological variability of a 
given parameter, than a good accuracy of a retrieval 
algorithm is obtained when its RMS error is clearly below it. 
Also, the RMS error profile computed from the comparison 
between N obtained as output of the neural network training 
(N=Nd+Nw), i.e. the autotest result, and the corresponding 
ECMWF profiles is shown in Fig. (3) (blue line), exhibiting 
a vertically averaged RMS error of 2.78 (N unit). The 
vertically averaged RMS error of N from Abel 
transformation is 3.58 (N unit), while the mean standard 
deviation of the entire ECMWF database is 6.13 (N unit). 

 

Fig. (3). RMS error profile for N (blue line) obtained as output of 

the neural network training (autotest, 937 occultations), RMS error 

profile for N from Abel transformation (green line) using the same 

937 occultations and ECMWF standard deviation profile (red line). 

 To evaluate the performances of the neural networks on 
the ability to reconstruct Nd, Nw and Pd profiles from N 
obtained from the Abel transform, the RMS error profiles for 
Nd, Nw and Pd (green line) employing the independent test set 
of 104 occultations are shown in Figs. (4-6), respectively, 
superimposed to the corresponding ECMWF standard 
deviation profiles (red line). For Nd, the vertically averaged 
RMS error is 0.76 (N unit), while the corresponding mean 
standard deviation of the entire ECMWF database is 1.21 (N 
unit). For Nw, the vertically averaged RMS error is 2.73 (N 
unit), while the mean standard deviation of the 
corresponding ECMWF database is 6.34 (N unit). Finally, 
for Pd, the vertically averaged RMS error is 1.61 hPa against 
a mean standard deviation ECMWF of 2.55 hPa. In 
particular, the use of the neural networks tend to cut down 
the bias error. 

 

Fig. (4). Neural network independent test (104 occultations): profile 

of RMS error for Nd (green line) and ECMWF standard deviation 

profile (red line). 

 The performances of the trained networks have been 
evaluated by performing a regression analysis between the 
network responses and the corresponding targets data [20]. 
The regression plots for Nd, Nw and Pd are shown in Figs. (7-

9), respectively. For each parameter, the network outputs are 
plotted versus the targets as open circles, the best linear 
regression fit is indicated by a continuous line and the 
perfect fit, that relate outputs equal to targets, is indicated by 
a dashed line. Concerning the dry parameters, the best linear 
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fits relating targets to network outputs are very close to the 
corresponding perfects fits, by showing respectively for Nd 
and Pd slope values equal to 1 and y-intercept values equal to 
0.08 and - 0.15. Also, the dry parameters Nd and Pd exhibit a 
quasi-perfect correlation between targets and outputs by 
presenting values of correlation coefficients (R-values) equal 
to 0.999 for both. Wet refractivity Nw profiles show also a 
good R-value of 0.964, but the tendency of the best linear fit 
is worse with respect to those of dry parameters (slope of 
0.93 and y-intercept of 0.74), giving evidence of the complex 
behavior of the wet components due to their greater 
variability compared to the dry parameters. 

 

Fig. (5). Neural network independent test (104 occultations): profile 

of RMS error for Nw (green line) and ECMWF standard deviation 

profile (red line). 

 

Fig. (6). Neural network independent test (104 occultations): profile 

of RMS error for Pd (green line) and ECMWF standard deviation 

profile (red line). 

 Furthermore, to evaluate the ability of generalization of 
the neural networks, the RMS error profile for the total 
refractivity N estimated in the test session (N=Nd+Nw, green 
line) and the RMS error profile for N estimated in the 
training session, or autotest (blue line), are shown in Fig. 
(10), superimposed to the ECMWF standard deviation 
profile (red line). The two RMS error profiles exhibit an 
evident correspondence, pointing out the neural network 
ability to identify the correct refractivity profiles despite the 
independent data set they belong to. 

 Also, we have chosen to estimate the dry pressure Pd 
from the network instead of solving the ideal gas and 
hydrostatic equilibrium laws in dry conditions, since the 
error introduced by the neural network is significantly lower 

than the one obtained by the numerical integration through 
the trapezium rule of (4) after using (2) and (3) in dry 
conditions. Of course, the dry pressure employed in the 
neural network learning, computed from ECMWF analysis 
data, obeys the hydrostatic equation. 

 

Fig. (7). Neural network independent test (104 occultations) for Nd : 

output versus target (open green circles), best linear regression fit 

(black line), perfect fit (dashed red line). 

 

Fig. (8). Neural network independent test (104 occultations) for Nw : 

output versus target (open green circles), best linear regression fit 

(black line), perfect fit (dashed red line). 

 

Fig. (9). Neural network independent test (104 occultations) for Pd : 

output versus target (open green circles), best linear regression fit 

(black line), perfect fit (dashed red line). 

 The choice to train three networks for the three outputs is 
justified by the necessity of retrieving atmospheric profiles 
without the constraint of temperature profile availability at 
each GPS occultation, as required to solve the system of (2), 
(3), (4). With the availability of Nd, Nw and Pd, first we can 
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solve for temperature T in a straightforward way from the 
dry refractivity relation 

Nd = 77.6
Pd
T

              (6) 

and then for partial pressure of water vapor Pw from the wet 
refractivity relation 

Nw = 72
Pw
T

+ 3.75 105
Pw
T 2             (7) 

 

Fig. (10). RMS error profiles for N from neural network test (green 

line) and from neural network autotest (blue line) and ECMWF 

standard deviation profile (red line). 

 In Figs. (11, 12) the RMS error profiles for T and Pw 
(green line) are shown superimposed to the corresponding 
ECMWF standard deviation profiles (red line). 

 For T, the vertically averaged RMS error is 1.53 K while 
the corresponding mean standard deviation of ECMWF 
database is 2.22 K. For Pw, the vertically averaged RMS 
error is 0.54 hPa against a mean standard deviation ECMWF 
of 1.27 hPa. 

 

Fig. (11). Neural network independent test (104 occultations): RMS 

error profile for T (green line) and ECMWF standard deviation 

profile (red line). 

5. CONCLUSIONS 

 In this work, we have proposed a method to estimate 
profiles of refractivity, temperature, pressure of dry air and 
of water vapour in the troposphere from FORMOSAT-
3/COSMIC GPS radio occultation over the entire ocean area 

between Tropics. The work has regarded July-August 
climatic conditions. 

 

Fig. (12). Neural network independent test (104 occultations): RMS 

error profile for Pw (green line) and ECMWF standard deviation 

profile (red line). 

 To overcome the necessity to know the true temperature 
profile at each occultation, we have trained three neural 
networks with targets that permit to solve the atmospheric 
profiling problem by using only (2), and to reflect the 
physical constraints learned from the ECMWF analysis data. 

 The results have shown good performances of the neural 
networks using the principal component analysis for a fast 
and less expensive approach, exhibiting a fairly good 
accuracy for temperature and partial pressure of water 
vapour profiles. However, wet parameter retrieval exhibits 
lower accuracies than dry one, due to their complex behavior 
and the greater variability of the wet components of the 
troposphere. 

 Furthermore, such results can be improved with the 
future availability of a larger data set for training the neural 
network, covering a wider variety of atmospheric conditions 
spanning a larger seasonal and geographical extension. 

 In conclusion, our analysis sets itself the goal of showing 
the possibility to retrieve each atmospheric parameter 
included the wet ones only from RO refractivity, and then 
the ability to increase the atmospheric observations, 
integrating them successively in the NWP models, thanks to 
a wide spatial coverage of RO soundings on the Earth (only 
COSMIC mission produces 1500-2500 profiles per day). The 
bound of this approach is that the informative contribution 
brought by RO soundings is in some way connected to the 
necessary employment of the ECMWF atmospheric model 
profiles as targets for the neural network training. 
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