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1. INTRODUCTION 

 Howard's semi-circle theorem [1] states that the complex 
wavespeed for an unstable mode must fall within the range 
of values of the base flow, a conclusion that has proven to be 
of fundamental importance for a wide variety of flow 
phenomena. Howard's original proof applies to a two-
dimensional basic state, u(z) , where z  is the vertical 
distance and u  is the horizontal velocity, with two 
dimensional disturbances. Yih [2] demonstrated that two-
dimensional disturbances are the most unstable, making the 
three-dimensional problem unnecessary for u(z) . 

 Howard's theorem was extended by Kochar and Jain [3], 

who proved that the complex wave velocity for any unstable 

mode lies within a semi-ellipse whose major axis coincides 

with the diameter of Howard's semi-circle, while its minor 

axis depends on the stratification. Banerjee et al. [4] found a 

more limiting version of Howard's theorem by restricting 

attention to homogeneous flow. Pedloski [5, 6] proved 

Howard's theorem for flow with a base rotation, which was 

later improved by Kanwar and Sinha [7]. Dahlburg et al. [8] 

treated the magnetohydrodynamics case. 

 Blumen [9] was the first who emphasized the importance 

of another base flow for geophysics, the basic state that 

varies with latitude, u(y) . He has extended Howard's semi-

circle theorem to infinitesimal two-dimensional non-

divergent disturbances in a compressible fluid with a 

horizontal shear layer. Latter he has generalized further the 

semi-circle theorem for a class of three-dimensional long-

wave perturbations (see [10]), in a Boussinesq stratified 

fluid. Scaling the variables for long length waves simplified 

greater governing equations and mathematical analysis 

eliminating the vertical velocity in the equations for mass 

conservation. 
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 Ivanov and Morozov [11] used a numerical approach to 

study linear waves in a horizontally sheared fluid with a 

specific mean flow profile. Basovich and Tsimring [12] used 

the WKB method to also study linear waves in specific mean 

flow profiles. Staquet and Sommeria [13] review these 

works briefly. 

 Here we generalize Howard's theorem further for three-

dimensional disturbances in the case of a flow with vertical 

stratification, (z) , and a mean flow varying in both lateral 

and vertical directions, u(y, z) . Such a flow is inherently 

three-dimensional, and Yih's theory [2] no longer applies. It 

is also showed that in case when the basic flow varies only 

with latitude, u(y) , the Howard's theorem is valid once the 

Boussinesq approximation is applied. This restriction is a 

result of mathematical obstacles that arise for non-

Boussinesq case. Furthermore, Rayleigh's inflection point 

theorem is generalized for this case when the basic flow has 

its first derivative vanishing on the lateral boundaries. 

2. HOWARD'S THEOREM WITH HORIZONTALLY 
AND VERTICALLY VARYING MEAN FLOW 

 Assume an incompressible, inviscid, stratified flow. The 

governing equations are the Euler equations, the continuity 

equation, and the equation of incompressibility (see [14]). 

The mean flow consists of a parallel flow, nonuniform in 

two directions u(y, z) , and a stable density stratification, 

(z) . A non-divergent disturbance is added to the mean 

flow solution, and the governing equations are linearized by 

neglecting quadratic terms, resulting in 

[ut + uux + uyv + uzw] =
p

x
,  (1) 

[vt + uvx ] =
p

y
,  (2) 

[wt + uwx ] =
p

z
r,  (3) 



24    The Open Atmospheric Science Journal, 2011, Volume 5 Panayotova and McHugh 

u

x
+

v

y
+

w

z
= 0,  (4) 

rt + urx N 2w = 0,  (5) 

where u, v,w  are the components of the disturbance 

velocity, p  is the disturbance pressure, and r  is the 

buoyancy, defined as 

r =
g( )

,  (6) 

and the Brunt-Vaisala frequency is 

N 2 =
g z .  (7) 

note that N = N(z) . 

 Choose the normal mode form for the disturbances, 

(u, v,w, p) = (û(y, z), v̂(y, z), ŵ(y, z), p̂(y, z))ei(kx t ) ,  (8) 

where k  is a wavenumber, assumed real, and  is the 

frequency, expected to be complex. Substitute (8) into 

equations (1)-(5) and drop the circumflex to obtain 

ik(u c)( u) + uy ( v) + uzw = ikp,  (9) 

ik(u c)( v) = py ,  (10) 

ik(u c)( w) = pz r,  (11) 

iku + vy + wz = 0.  (12) 

ik(u c)r N 2w = 0,  (13) 

where c  is the horizontal wave velocity, c =
k

, also 

expected to be complex. 

 Reduce the equations to a more useful form by 

eliminating all variables but one; the pressure. To obtain the 

equation for pressure, eliminate r  between (11) and (13) to 

get 

[N 2 k2 (u c)2 ] w = ik(u c)pz .  (14) 

 Eliminate v  between (9) and (10) to obtain 

u =
1 p

(u c)2
+

uy
k2 (u c)2

py
uz pz

N 2 k2 (u c)2
.  (15) 

 Finally, use (15), (10), and (14) to eliminate u , v , and 
w , respectively, in (12). After some manipulation, the result 

is 

d

dy

py
(u c)2

+
k2 p

(u c)2
d

dz

pz
(u c)2 M 2( )

= 0,  (16) 

where 

M =
N

k
.  

 The boundary condition on the side walls is zero normal 

velocity: v = 0  on y = y1, y2 , and no vertical velocity on the 

horizontal boundaries: w = 0  on z = z1, z2 . Equation (10) 

may be used to conclude that the normal derivative of the 

pressure, in this case, py , will also vanish on the side walls. 

Equation (14) can be used to show that pz  will also vanish 

on the horizontal boundaries. Note that the sidewalls may 

extend to infinity. 

 Multiply (16) by p* , the complex conjugate of p , and 

integrate across the domain. Simplify with integration by 

parts and use the sidewall boundary conditions to obtain 

z1

z2

y1

y2 | py |
2

(u c)2
dydz +

z1

z2

y1

y2 k2 | p |2

(u c)2
dydz

+
z1

z2

y1

y2 | pz |
2

(u c)2 M 2( )
dydz = 0.

 (17) 

 The real and imaginary parts are 

z1

z2

y1

y2[(u cr )
2 ci

2 ]Qdydz =
z1

z2

y1

y2 M
2 | pz |

2

q2
dydz,  (18) 

ci z1

z2

y1

y2(u cr )Qdydz = 0,  (19) 

where 

q =| (u c)2 M 2 |,  

s =| u c |,  

and 

Q =
k2 | p |2

s4
+
| pz |

2

q2
+
| py |

2

s4
,  

which is positively definite for the statically stable fluid 

under consideration. Equation (18) and (19) are similar as 

Howard's [1961] equations (3.2) and (3.3), except for the 

definition of the positive definite quantities. The remainder 

of the theory follows that of Howard, and will be reiterated 

here for completeness. 

 Assume the flow is unstable, which implies that the 

imaginary part of the wave velocity is not zero, ci 0 , for 

which (19) shows that (u c)  must change sign somewhere 

in the flow, that is 

a < cr < b, a =
y,z
minu, b =

y,z
maxu,  (20) 

i.e. cr  lies in the range of u . Limits of the maximum growth 

rate can be also predicted. Equation (18) gives 

z1

z2

y1

y2 u
2
2ucr + cr

2 ci
2 dydz > 0,  

which after applying (19) in the form 

z1

z2

y1

y2uQdydz = cr z1

z2

y1

y2Qdydz, ci 0,  (21) 



On the Stability of Three-Dimensional Disturbances in Stratified Flow The Open Atmospheric Science Journal, 2011, Volume 5    25 

results in the equation 

z1

z2

y1

y2 u
2

cr
2 ci

2( )Qdydz > 0.  (22) 

 Now since (a u) 0  and (b u) 0 , it is always true 

that 

z1

z2

y1

y2(a u)(b u)Qdydz 0,  

or equivalently 

z1

z2

y1

y2 ab + u
2

u(a + b) Qdydz 0.  

 Using (22) gives 

z1

z2

y1

y2 ab + cr
2
+ ci

2 u(a + b) Qdydz 0,  

and after applying identity (21) it becomes 

z1

z2

y1

y2 ab + cr
2
+ ci

2 cr (a + b) Qdydz 0.  

 Since the quantity within the brackets is independent of 

y  and z , and the Q > 0 , then we have that the expression 

within the brackets must be negative. With some 

rearrangement this condition can be written as 

cr
1

2
(a + b)

2

+ ci
2 1

2
(b a)

2

.  (23) 

 In addition (23) says that the maximum growth rate is 

limited by 

kci
k

2
(b a).  (24) 

3. HOWARD'S THEOREM FOR BOUSSINESQ FLOW 
WITH u(y)  

 Consider a base flow that varies only with the latitude, 

u(y) . Howard's theorem may be proven for such a flow, but 

only once Boussinesq flow has been assumed. 

 The Boussinesq equations are 

ut + uux + uyv = px ,  

vt + uvx = py ,  

wt + uwx = pz r,  (25) 

ux + vy + wz = 0,  

rt + urx N 2w = 0,  

where p  is now the pressure divided by a reference density 

and N  is a constant. Assume the normal mode form, 

(u, v,w, p) = (û(y), v̂(y), ŵ(y), p̂(y))ei(kx+mz kct ) ,  

drop the circumflex and proceed as before to obtain 

py
(u c)2

y

+
k2 p

(u c)2
+

m2 p

(u c)2 M 2
= 0, . (26) 

where M =
N

k
, as before. Multiply by p*  and integrate (by 

parts if necessary) to get 

y1

y2 | py |
2

(u c)2
dy +

y1

y2 k
2 | p |2

(u c)2
dy +

y1

y2 m2 | p |2

(u c)2 M 2
dy = 0,  (27) 

where the velocity boundary conditions have been used to 

set the normal derivative of pressure at the boundary to zero. 

 Real and imaginary parts of (27) are 

y1

y2[(u cr )
2 ci

2 ]Qdy =
y1

y2 M
2 | p |2

q2
dy,  (28) 

ci y1

y2(u cr )Qdy = 0,          (29) 

where 

q =| (u c)2 M 2 |,  

s =| u c |,  

Q =
k2 | p |2

s4
+
m2 | p |2

q2
+
| py |

2

s4
,  

all positive definite. Note that q  and s  are defined as 

before, but Q  is different. Howard's theorem follows in the 

same manner as before. 

4. RAYLEIGH'S THEOREM WITH MEAN FLOW 
VARYING WITH LATITUDE 

 Return to equation (26) and change variables using 

=
p

(u c)
.  

 After some simplification, the result is 

yy +
uyy

(u c)
+

2uy
2

(u c)2
+ k2 1

m2 (u c)2 N 2

k2 (u c)2 N 2
= 0.  (30) 

 Multiply (30) by 
*
, integrate across the domain, and 

simplify to obtain 

y1

y2 | |2
uyy

(u c)
+

2uy
2

(u c)2
+

k2m2 (u c)2

k2 (u c)2 N 2
dy =  (31) 

=
y1

y2(| y |
2
+k2 | |2 )dy | |2

uy
(u c)

|y1
y2 .  

 Note that to obtain the above equation we used that on 

the lateral boundaries 

y =
py

(u c)

puy
(u c)2

=
puy

(u c)2
=

uy
(u c)

,  
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as py = 0  for y = y1  and y = y2 . To proceed further we 

assume that the first derivative of the background flow 

vanishes on the boundaries, i.e. uy (y1 ) = uy (y2 ) = 0 , then the 

boundary term disappears, and (31) takes the form 

y1

y2 | |2
uyy

(u c)
+

2uy
2

(u c)2
+

k2m2 (u c)2

k2 (u c)2 N 2

dy =
y1

y2(| y |
2
+k2 | |2 )dy

 (32) 

 The imaginary part of this equation is 

2ici y1

y2 | |2
uyy
r2

+
2k2m2N 2

q2
+
4uy

2

r4
(u cr ) dy = 0.  (33) 

 For instability, ci 0 , resulting in 

y1

y2Puyydy =
y1

y2R(u cr )dy,  

where P =| |2 /r2  and R =
2k2m2N 2

q2
+
4uy

2

r4
 are both 

positive definite. 

 By Howard's theorem, cr  must be in the range of u  for 

instability, leading to 

y1

y2(umin cr )Rdy y1

y2Puyydy
y1

y2(umax cr )Rdy.  

 Since ( (umin cr ) 0 ) and ( (umax cr ) 0 ), then 

y1

y2Puyydy = 0.  

 Therefore, uyy  must change sign, and Rayleigh's theorem 

is proven for this case. 

5. CONCLUDING REMARKS 

 With stratification, two types of disturbance modes are 

expected to be present; 1) modes associated with the parallel 

flow that would exist in a similar form without stratification, 

and 2) internal waves that would exist without the mean 

flow, but are distorted by presence of the mean flow. The 

above theorems of course apply to both types of modes. One 

may thus conclude that internal waves moving faster than the 

mean flow cannot be linearly unstable. Internal waves that 

do travel with the range of the mean flow may be unstable, 

and could grow into large amplitude waves. 
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