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Abstract: Turbulent time scales and velocity variances for a convective boundary layer are derived from large eddy 
simulation spectral data. Spectral peak frequencies obtained from LES data are used directly in expressions that allow 
establishing such times scales and velocity variances. These turbulent parameters were compared with those provided by 
experimental turbulence data. The comparison employing a stochastic dispersion model and observed concentration data 
shows that both parameterizations reproduce adequately the contaminant dispersion process in a convective boundary 
layer. 
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1. INTRODUCTION 

 The determination of characteristic time scales and 
velocity variances associated to geophysical turbulent 
phenomena is of fundamental importance in contaminant 
dispersion models. Particularly, such quantities are employed 
to parameterize the Lagrangian stochastic dispersion models 
[1]. 
 Concerning the homogeneous turbulence there is an exact 
definition for the Lagrangian integral time scales which is 
represented by 

TLi = ρL (τ )dτ
0

∞

∫  (1) 

where i = u, v,w  are the velocity components, ρLi  is the 
dimensionless form of the Lagrangian autocorrelation 
function and TLi  is a measure of the longest time during 
which, on the average, a fluid particle persists in a motion in 
a given direction [2]. However, for an inhomogeneous 
turbulence in a planetary boundary layer (PBL), TLi becomes 
a local velocity decorrelation time scale and can be 
expressed as [3], 

Ti =
βiFi (0)
4

  (2) 

 
 

*Address correspondence to this author at the Universidade Federal de 
Santa Maria, Departamento de Física, Santa Maria, Brazil;  
Tel: +555532208616; E-mail: gervasio.degrazia@pesquisador.cnpq.br 

where βi =
πU
4σ i

is defined as the ratio of the Lagrangian to 

the Eulerian decorrelation time scale [4], U is the mean wind 
speed, σ i is the turbulent velocity standard deviation, and 
Fi (0)  is the spectrum of turbulent energy normalized by the 
velocity variance and calculated at the frequency n→ 0 . 
Such time scale, as given by Eq. (2), describes a local 
memory effect associated with the eddy patterns in a PBL. 
 Following Degrazia et al. [3] the convective turbulence 
spectrum in the PBL can be expressed as: 

nSi
w*
2 =

1.06ci f (ψε z / zi )
2/3

( fm )i[ ]5/3 1+1.5 f / fm( )i#$ %&{ }5/3
  (3) 

where ci = α iαu 2πk( )−2/3  and αu = 0.5 ± 0.05  and 
α i = 1, 4 / 3, 4 / 3  for u, v and w components, respectively [5, 
6], f = nz /U is reduced frequency, z  is the height above of 
the ground, zi  is the convective boundary layer height, 
ψε = εzi / w*

3 is the adimensional dissipation rate function, 
w* is the convective velocity scale, ε  is the buoyant rate of 
turbulent kinetic energy dissipation and fm( )i  is the 
normalized frequency of peak spectral. By analytically 
integrating the Eq. (3) over the whole frequency domain one 
can obtain the following turbulent velocity variance: 
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σ i
2 =
1.06ciψε

2/3w*
2 z / zi( )2/3

fm( )i
2/3   (4) 

 The velocity variances indicate the turbulence intensity 
and consequently its ability to disperse the contaminants 
 Therefore, normalizing the energy spectrum (Eq. 3) by 
the velocity variance (Eq. 4), yields 

Fi (0)=
z

U fm( )i
  (5) 

 Substituting Eq. (5) into Eq. (2) results the following 
equation: 

Ti =
1
4

βiz
U fm( )i

  (6) 

 Both formulations for TLi  and σ i  (Eqs. (4) and (6)), are 
described in terms of the reduced frequency of the energy 
spectral peak. Such fundamental frequency provides time 
and length scale associated to the energy-containing eddies 
of the turbulent flow. As a consequence, such parameters can 
be used in dispersion models. Therefore, fm( )i  is important 
for investigations of turbulent transport in the PBL. 
Generally, expressions for fm( )i  are almost all obtained 
from fitting expressions to experimental data. However, 
experimental data of this fundamental parameter connected 
to the turbulence energy spectra are fairly difficult to obtain, 
particularly, if such observations are extended to the whole 
depth of the PBL. Not many of such observations are, 
therefore, available, and for this reason large-eddy 
simulation (LES) models constitute quite a useful tool to that 
purpose. 

 The aim of the present study is to obtain new algebraic 
formulations for the local velocity decorrelation time scales 
and turbulent velocity variances in a convective boundary 
layer (CBL). These relations are obtained from Eqs. (4) and 
(6), in which fm( )i  is derived from a simulation employing 
a LES model. An additional aim is to apply a well known 
Lagrangian stochastic dispersion model and concentration 
data obtained from Prairie Grass classical short-range 
dispersion experiment to compare these new expressions for
σ i and TLi  with the formulations given by Eqs. (4) and (6), 
in which fm( )i  is obtained from field experimental data. 

2. VERTICAL PEAK WAVELENGTH FROM LARGE 
EDDY SIMULATION 

 Large eddy simulation (LES) models represent a 
powerful computational methodology to describe the 
physical properties of the planetary boundary layer [7, 8]. In 
LES, the large eddies (energy-containing eddies) of the 
turbulent field are explicitly resolved and the contribution of 
the smaller eddies (sub-filter scales) is parameterized. 
Generally, the basic equations in the LES model are the 
incompressible Navier-Stokes equations. The resolved 
turbulent field parameters (velocity components, potential 
temperature and pressure) are calculated by the application 

of a low-pass spatial filter which presents a particular 
dimension, known as the turbulent resolution length scale. 
 In this study, a numerical simulation of the convective 
boundary layer was performed employing the LES code of 
Moeng [8] with Sullivan et al. [9] subfilter parameterization. 
The filtered Navier Stokes equations for the resolved 
turbulent flow time dependent variables in the LES of 
Moeng [8] are written as: 

∂u
∂t
= vζ z −wζ y + f v−

∂P*

∂x
−
∂< P >
∂x

−
∂τ xx
∂x

−
∂τ xy
∂y

−
∂τ xz
∂z  (7) 

∂v
∂t
= wζ x −uζ z − f u −

∂P*

∂x
−
∂< P >
∂x

−
∂τ xy
∂x

−
∂τ yy
∂y

−
∂τ yz
∂z  

∂w
∂t

= uζ y − vζ x + g
θ
θ0
−
∂P*

∂z
−
∂τ xz
∂x

−
∂τ yz
∂y

−
∂τ zz
∂z

− uζ x − vζ x + g
θ
θ0
−
∂P*

∂z
−
∂τ xz
∂x

−
∂τ yz
∂y

−
∂τ zz
∂z

 

where the brackets represent horizontal means, ζ are the 
vorticity components, g is the gravitational acceleration, f is 
the Coriolis parameter, θ  is the virtual potential 
temperature, P is the pressure and τ  are the subfilter 
Reynolds stress. On the other hand, the virtual potential 
temperature is calculated from the following equation: 

∂θ
∂t
= −u ∂θ

∂x
− v∂θ

∂y
−w ∂θ

∂z
−
∂τθx
∂x

−
∂τθy
∂y

−
∂τθz
∂z

       (8) 

where τθ = νθ
∂θ
∂x

, being νθ  the eddy diffusivity for heat 

 The subfilter Reynolds stress in Eqs. (7) are 
parameterized in the LES model employing the Sullivan well 
known parameterization (9) which is described by 

τ ij = −2ν tδ Sij − 2νT Sij   (9) 

where Sij  is the resolved flow rate of strain tensor, ν t  and 
νT  are respectively the fluctuating and mean field eddy-
viscosities and δ  is the isotropy factor. 

 The numerical experiments utilized in this study were 
accomplished with constant values of the kinematic turbulent 
heat flux and of the geostrophic wind. A (5,5,2) Km box 
domain with variable points in each direction were used in 
five simulations. From each LES numerical simulation was 
obtained a spatial spectrum. These spatial spectra were 
calculated according to Moeng and Wyngaard [10] using a 
bidimensional fast fourier transform of the tridimensional 
fluctuations of the turbulent velocity components. Therefore, 
the spectral peak wavelengths were estimated from these 
spatial spectra generated of the five LES numerical 
simulations. The spectra generated from these simulations 
are described in detail in Marques Filho [11]. Therefore, 
from the numerical spectral data generated from the LES 
simulations were derived the following expressions for the 
vertical and horizontal peak wavelengths: 
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λm( )w =1.3zi 1− exp −4.8z / zi( )− 0.005exp(4.8z / zi )#$ %&   (10) 

λm( )u,v = 1.29± 0.05( ) zi   (11) 

3. DERIVATION OF VELOCITY VARIANCES 
OBTAINED OF LES AND OBSERVATIONAL DATA 

 Defining fm( )w = z / λm( )w  in Eq. (4) and employing 

Ψε = 0.65  and cw = 0.4  [12], yields the following relation 
for σ w

2  

σ w
2 = 0.37w*

2 1− exp −4.8z / zi( )− 0.005exp(4.8z / zi )#$ %&
2/3

  (12) 

 On the other hand, accomplishing an identical 
development and utilizing the following observational 
vertical wavelength at the spectral peak proposed by [13] 

λm( )w =1.8zi 1− exp −4z / zi( )− 0.0003exp(8z / zi )#$ %&   (13) 

it is possible to obtain a different relation for the vertical 
velocity variance: 

σ w
2 = 0.44w*

2 1− exp −4z / zi( )− 0.0003exp(8z / zi )#$ %&
2/3

  (14) 

 Fig. (1) shows observational data [13] and a comparison 
between the vertical velocity variances given by the Eqs. 
(12,14). The normalized vertical velocity variance, described 
by the Eqs. (12,14), presents a parabolic shape with values 
between 0.3 and 0.4 in height range 0.2 < z / zi < 0.6  
(middle of the convective boundary layer). It is important to 
note that both formulations for σw

2  reproduce well the 
observational data in the shallow region close to the ground. 

Fig. (1). Comparison between the vertical velocity variances (Eqs. 
12, 14). 

 To obtain the lateral and longitudinal velocity variances 
we employ Eq. (4) considering Ψε = 0.65 , cv = 0.4 , 
cu = 0.27  with fm( )u,v= z / λm( )u,v . The lateral and 

longitudinal wavelength at the spectral peak, λm( )u,v , 

provided by the LES simulation, is given by the Eq. (11). 
The substitution of these values in Eq. (4) yields 

σ u
2 = 0.24w*

2 , σ v
2 = 0.37w*

2  (15) 

 On the other hand, according to [14] the observed lateral 
and longitudinal wavelength at the spectral peak is described 
by [14, 15] λm( )u,v = 1.5Zi . Therefore, the observed 
horizontal velocity variances can be written as: 

σ u
2 = 0.28w*

2, σ v
2 = 0.41w*

2   (16) 

 The values for σ u
2  and σ v

2  calculated from LES spectral 
data are in agreement with the horizontal diffusion data in a 
water-tank experiment [16, 17]. Furthermore, the differences 
between the numerical constants in Eqs. (15) and (16) are 
not physically relevant. 

3. DERIVATION OF TURBULENT TIME SCALES 
OBTAINED OF LES AND OBSERVATIONAL DATA 

 A formulation for the local vertical velocity decorrelation 
time scale from LES spectral data can be obtained using Eqs. 
(10) and (12) into Eq. (6), yielding: 

TLw = 0.23
zi
w*
1− exp(−4.8z / zi )− 0.005exp(4.8z / zi )[ ]2/3  (17) 

 On the other hand, using Eqs. (13) and (14) into Eq. (6) 
results the following observational time scale: 

TLw = 0.29
zi
w*
1− exp(−4z / zi )− 0.0003exp(4z / zi )[ ]2/3   (18) 

 Fig. (2) presents the vertical profile of the local time 
scales obtained from Eqs. (17) and (18). It can be seen that 
both formulations present an identical form. There is not a 
remarkable difference between the two profiles. 

Fig. (2). Profiles of the local times scales (Eqs. 17, 18). 

 The lateral and longitudinal time scales from LES 
spectral data can be obtained employing Eqs. (11) and (15) 
into Eq. (6) resulting: 
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TLu = 0.29
zi
w*

 and TLv = 0.23
zi
w*

  (19) 

 On the other hand, using λm( )u,v = 1.5Zi  from 
observational data [14,15] and Eq. (16) into Eq. (6), the 
following times scales can be written as: 

TLu = 0.58
zi
w*

 and TLv = 0.40
zi
w*

  (20) 

 The formulations for the horizontal turbulent time scales 
as given by the Eqs. (19) and (20) are in agreement with the 
expressions suggested by [16, 18]. 

4. EMPLOYMENT OF TIME SCALES AND 
VELOCITY VARIANCES OBTAINED OF LES 
SPECTRAL DATA IN A LAGRANGIAN DISPERSION 
MODEL 

 The following section aims to use a Lagrangian 
stochastic dispersion model employing turbulent parameters 
given by the Eqs. (12, 14, 15, 16, 17, 18, 19, 20) to simulate 
the ground-level cross wind integrated concentrations of 
contaminants released from a low continuous source in a 
CBL. Lagrangian Stochastic particle models are numerical 
tools for the study of the atmospheric turbulent diffusion 
process. In such models, the fluid particle movements are 
generated by random velocities and the displacement of a 
particle is a Markov process. These models are based on 
Langevin equation. In this work, the Lagrangian Particle 
Model LAMBDA is employed to simulate the dispersion of 
passive contaminants. LAMBDA is a Lagrangian Stochastic 
Dispersion Model (LSDM) based on a three-dimensional 
form of the Langevin equation for the random velocity 
[19,20]. Thus, the velocity and displacement of each fluid 
particle, in each time step, is obtained by numerical 
integration of the following equations [19, 21]: 

 dui (t)= ai (x

,u

,t)dt +bij (x


,u

,t)dWj   (21) 

and 

dxi = uidt   (22) 

where i, j = 1, 2, 3 , dWj  is the incremental Wiener process, 

 ai (x

,u

, t) is a deterministic term,  bij (x


,u

, t)dWj  is a 

stochastic term,  u


 is the Lagrangian velocity vector and  
x  

is the displacement vector [20, 21]. The term  bij (x

,u

, t)  can 

be derived from the Kolmogorov theory of local isotropy in 
the inertial subrange. On the other hand, the deterministic 
term is provided from the stationary Fokker-Planck equation. 
In the present study, the Lambda model employs a Gaussian 
probability density function (PDF) on the horizontal plane 
and a Gram-Charlier PDF, truncated to the fourth order, in 
vertical. Wind speed profiles has been parameterized 
following the similarity theory of Monin-Obukhov and OML 
model [20]: 

U(z)= u*
k
ln z

z0

!

"
#

$

%
&−Ψm

z
L
!

"#
$

%&
+Ψm

z0
L
!

"#
$

%&
!

"
#

$

%
&  if z < zb   (23) 

U(z)=U(zb )  if z > zb   (24) 

where zb = min L , 0.1h!" #$ , k = 0.4 is the Von Karman 
constant, u*  is the friction velocity, z0  is the roughness 
length, L is the Monin-Obukhov length and Ψm  is a stability 
function given by [20]: 

Ψm = 2 ln
1+ A
2

"

#$
%

&'
+ ln 1+ A

2

2
"

#
$

%

&
'− 2 tan−1 A+

π
2

  (25) 

and 

A = 1−16 z
L

"
#$

%
&'

1/4

  (26) 

 In this study, we simulate the Prairie Grass diffusion 
experiment. The Prairie Grass diffusion experiments are 
described in detail in [20] and [22]. 

 In this atmospheric dispersion experiment, the pollutant 
(SO2) was emitted at a height of 0.5 m and it was measured 
by samplers at a height of 1.5m in five downwind distances 
(50, 100, 200, 400, 800 m). In LAMBDA simulations the 
horizontal domain was determined according to sampler 
distances and the vertical domain was set equal to the 
observed mixing height. The time step was maintained 
constant and it was obtained according to the value of 
Lagrangian decorrelation time scale ( Δt = TLi / c ), where 
TLi  must be the smaller value between TLu , TLv and TLw  and 
c is an empirical coefficient set equal to 10. One hundred 
particles were released in each time step during 1000 time 
steps. 
 The simulation results employing the turbulent local time 
scales and velocity variances, obtained from LES spectral 
data (Eqs. 12, 15, 17, 19), are presented in Fig. (3). Fig. (3) 
presents the scatter diagram between observed and predicted 
ground-level cross-wind integrated concentrations. 
Therefore, in order to establish a comparison between LES 
and observational turbulent parameters we simulate the 
Prairie Grass contaminant concentration data employing the 
formulations given by the Eqs. (14, 16, 18 and 20). Fig. (3) 
shows also this comparison. Table 1 presents the results of 
the statistical analysis made with observed and simulated 
values of the ground-level cross-wind integrated 
concentration. This table presents statistical indices for the 
simulations using LES spectral and observational turbulent 
parameters. LAMBDA model, employing the Eqs. (12, 15, 
17, 19) derived from LES spectral data, shows a good 
performance, with correlation coefficient ( R ) near to 1 and 
normalized mean square error (NMSE), fractional standard 
deviation (FS) and fractional bias (FB) near to zero. Fig. (3) 
and statistical indices show that the simulation results 
reproduce well the observed concentration data for both 
turbulent parameterizations (LES spectral and 
observational). From this statistical viewpoint we may 
conclude that the LAMBDA model utilizing the Eqs. (12, 15, 
17, 19), representing the phenomenon of the passive scalars 
dispersion, simulates fairly well the concentration 
observational data in a convective PBL. It is important, at 
this point, to consider that such results from the present 
analysis, employing LES data, have a distinct character from 
those obtained from observational data. The normalized 
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frequencies of the spectral peak, used in the studies from 
[13] and [15], were derived from fitting equations to 
observational data, while in the present investigation the data 
are generated from a LES spectral simulation. The 
importance of this difference lies in the fact that 
experimental data of the turbulence spectra are quite difficult 
to obtain, particularly considering that the observation points 
must span the depth of the CBL. As a consequence, very few 
turbulent spectral observations are available and for this 
reason, LES spectral data constitutes quite a useful tool for 
that purpose. The present work has, therefore, shown that 
such LES methodology, to investigate complex turbulent 
statistical properties, is physically adequate and that it 
provides compatible results when compared with 
observational methodology. Furthermore, LES methodology 
allows better spatial representation, not restrained to vertical 
levels where the observations are accomplished. 

Fig. (3). Scatter diagram between observed and predicted ground-
level cross-wind integrated concentrations (CY). 

Table 1. Statistical evaluation of the LAMBDA performance. 
 

Eqs. (12, 15, 17, 19) 
NMSE FS FB R 

0.08 -0.06 0.02 0.93 

Eqs. (14, 16, 18, 20) 0.04 0.05 0.04 0.96 

 

CONCLUSION 

 Turbulent local time scales and velocity variances are 
fundamental statistical parameters for passive scalars 
dispersion modeling. Generally, such quantities are derived 
from the measured turbulent energy spectra. In this case, the 
spectral peak wavelengths are employed in formulations that 
provide the turbulent time scales and velocity variances. 
However, such observations for the whole vertical region of 
the CBL are extremely difficult to accomplish. Therefore, in 
present study, we apply LES simulation data to obtain 
algebraic formulations for the turbulent local time scales and 
velocity variances in a CBL. These expressions are derived 
from Eqs. (4, 6) in which the peak frequencies are extracted 
directly from LES spectral data. The analysis shows that 
there is a fairly good agreement between the times scales and 
velocity variances derived from LES data with those 

provided by turbulence observations in the CBL. Finally, in 
order to test the times scales and velocity variances derived 
from LES data we introduce the new turbulent 
parameterization in a Lagrangian stochastic dispersion model 
and, employing concentration data from dispersion field 
experiments, we compare them with formulations obtained 
from observations accomplished in a CBL. Evaluating the 
results and related statistical indices it can be seen that the 
LAMBDA dispersion model reproduces adequately the 
measurements of experimental concentration with the 
turbulent time scales and velocity variances calculated from 
LES spectral data. It can be concluded that good contaminant 
concentration simulations are determined with the turbulent 
approach obtained from LES spectral data. This analysis 
shows that when LES derived Eqs. (12, 15, 17, 19) are 
utilized in a dispersion model, results are tantamount to those 
extracted from field observations. The major difference lies 
in the fact that LES simulations results give more detailed 
information about of the distinct parameters of the CBL and 
do not depend on difficult and expensive observations, 
which present also some degree of uncertainty. The good 
quality of the results obtained from Lagrangian Dispersion 
model employing both the LES spectral turbulent time scales 
and velocity variances or those obtained experimentally 
shows that either of these parameterizations may be applied 
with equivalent results. 
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