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Abstract: Machine learning applied to large-scale remote sensing images shows inadequacies in computational capability 
and storage space. To solve this problem, we propose a cloud computing-based scheme for learning remote sensing imag-
es in a parallel manner: (1) a hull vector-based hybrid parallel support vector machine model (HHB-PSVM) is proposed. 
It can substantially improve the efficiency of training and prediction for the large-scale samples while guaranteeing classi-
fication accuracy. (2) The MapReduce model is used to achieve parallel extraction of the classification features for the 
remote sensing images, and the MapReduce-based HHB-PSVM model (MapReduce-HHB-PSVM) is used to implement 
the training and prediction for large-scale samples. (3) MapReduce-HHB-PSVM is applied to land use classification, ena-
bling various types of land use to be classified more efficiently by using fused hyperspectral images. Experimental results 
show that MapReduce-HHB-PSVM can substantially improve classification efficiency of large-scale remote sensing im-
ages while guaranteeing classification accuracy, and it can promote the machine interpretation of ground objects infor-
mation extracted from the large-scale remote sensing images to be conducted intelligently. 
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1. INTRODUCTION 

Processing of large-scale remote sensing data is very re-
source-intensive and remote sensing images can be easily 
segmented according to scale. Therefore, remote sensing 
data can be processed using parallel computing techniques. 
Machine learning of large-scale remote sensing images is a 
very complex project which demands a systematic approach. 
The existing machine learning systems, however, are based 
on the single machine and the traditional distributed models, 
and have the limitation of the capabilities in computation and 
storage. Cloud computing provides parallel processing and 
distributed storage for huge amounts of information, and it 
has been widely used for large-scale processing of remote 
sensing images [1-5]. In cloud-based processing of remote 
sensing data, the high-performance, highly available and 
scalable cloud computing techniques are combined with the 
distributed storage and parallel computing models to quickly 
process huge amounts of remote sensing data and generate 
remote sensing information products in batches [5]. The key 
to implementing cloud-based processing of remote sensing 
data is developing schemes that can process remote sensing 
images in a parallel manner by using cloud computing-based 
parallel processing architecture (e.g. MapReduce), as well as 
an efficient distributed storage platform for remote sensing 
data [5]. To approach the computation resource inadequacies 
in the machine learning of large-scale remote sensing image, 
we propose a MapReduce-based scheme. It can extract the  
 
 

classification features from the large-scale remote sensing 
images, train and predict large-scale samples in a parallel 
manner. In addition to guaranteeing classification accuracy, 
the proposed scheme can improve the classification efficien-
cy of large-scale remote sensing images, and promote the 
machine interpretation of ground objects information ex-
tracted from the large-scale remote sensing images to be 
conducted intelligently. 

2. HADOOP AND MAPREDUCE 

Hadoop is an open-source cloud computing platform and 
an imitation of the Google computing techniques [6]. The 
core of Hadoop includes HDFS and MapReduce. The largest 
advantage of Hadoop when it comes to implementing dis-
tributed computing is that it enables efficient local data pro-
cessing by combining the Hadoop distributed file system 
(HDFS) with the MapReduce programming model [7,8]. 
MapReduce is a reduced cloud computing model common 
among cloud computing platforms. It can execute parallel 
applications in large-scale distributed clusters and is highly 
robust and widely available [9]. MapReduce consists primar-
ily of Map and Reduce, which can be used to disassemble 
tasks and aggregate the intermediate results, respectively. 
This computing model enables users to compute a large 
amount of data by easily writing distributed parallel pro-
grams. 

During the operation of MapReduce, the user program 
first divides the input file into several file blocks (with a 64 
M default block size), and hands these blocks over to the 
master control program on the Master nodes and the  
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execution processing program on other nodes in the cluster 
[10]. Master will allocate the Map or Reduce tasks according 
to the loads of nodes in the cluster and the idle nodes will be 
given priority. The Map tasks on the nodes will process the 
input data blocks using related functions (these functions can 
be self-defined) and then output the intermediate results (i.e. 
the <key, value> pair), and store them into the buffer [11]. 
The intermediate results in the buffer will be periodically 
written into the R queues on the local hard disk. The Reduce 
nodes will then acquire the position information of the <key, 
value> pairs from the local hard disk and the intermediate 
results via Master (by calling the remote process, Master can 
read the intermediate results in the buffer from the hard disk 
of the local node that is performing the Map task) [11]. The 
Reduce node will sort all acquired intermediate data accord-
ing to the key values, and put the data with the same key 
values into the same group. Finally, the Reduce node will 
call the user-defined Reduce function to process the sorted 
intermediate data and temporarily store the output destina-
tion file into HDFS. After all Map and Reduce tasks are ac-
complished, Master node will return the control back to the 
start of MapReduce program [12]. 

3. HULL VECTOR-BASED HYBRID PARALLEL 
SUPPORT VECTOR MACHINE (HV-HYBRID-PSVM) 

3.1. Hull Vector 

The hull vector (HV) is the minimum convex set (a poly-
hedron in the feature space) which contains a class of train-
ing samples, also known as a convex hull [13]. The idea of 
the hull vector comes from the geometric significance of the 
SVM optimal classification hyperplane. That is, to ensure 
that the minimum distance between two classes of samples is 
maximized, the support vector can only appear at the very 
edge of the sample set [14-16]. Let A and B represent the 
training sample sets that correspond to different classes, re-
spectively. To maximize the minimum distance between 
them, the support vector point must be within the convex 
hull. Instead, it can only occur at the convex hull of the sam-
ple set labeled in Fig. (1).  

The hull vector usually contains samples that are at the 
very edge of the training sample set, i.e. the samples at the 
convex hull of the training sample set (convex vertexes). It 
has been proven in [15] that SVM incremental learning with 
the hull vector rather than the original training sample set 
produces consistent results [15]. Because the hull vector is 
usually a part of the entire original training sample set, SVM 
incremental learning with the hull vector rather than the orig-
inal training sample set will greatly reduce the number of 
samples that need to be included in SVM training and in-
crease the training speed [15, 17]. Meanwhile, because the 
support vector is part of the hull vector, the support vector 
will not be abandoned during incremental learning, and the 
hull vector can better represent the classification information 
in the original training sample set. Therefore, compared with 
the common SVM incremental learning strategies that adopt 
the support vector set rather than the original training sample 
set, the hull vector-based strategy can achieve better classifi-
cation accuracy without compromising training speed [17]. 
The hull vector computation method used in this paper is the 
same with that in [17]. 

3.2. Hybrid Parallel Support Vector Machine (Hybrid-
PSVM) 

There are many approaches when it comes to utilizing 
parallel support vector machines (PSVM) and these methods 
revolve mostly around the same idea, i.e. partitioning the 
large-scale training samples according to some criteria, gen-
erating local support vector sets by giving each partition 
SVM training separately, generating a new local support 
vector set by giving the local support vector sets a combina-
tion training or a feedback training again, and then repeating 
these procedures until the classification accuracy meets the 
pre-determined threshold. The currently popular PSVM de-
sign modes include the layered mode, feedback mode, 
grouped mode and hybrid mode [18]. To construct a PSVM 
model suitable for distributed parallel processing, the hybrid 
PSVM method achieves satisfying training accuracy, speed 
and parallelism by combing the advantages of other PSVM 
models [18]. In 2012, Zhang Yiwu and Lin Liang proposed a 
hybrid distributed parallel SVM model (DHybrid-PSVM) in 
[19, 20]. This model combines the advantages of the grouped 
PSVM and the layered PSVM models, and is a representa-
tive hybrid parallel SVM model. This model divides the 
original training sample set into n subsets first, then gives 
these subsets SVM training to generate their respective sup-
port vectors, combines these support vectors and divides 
them into k subsets, gives these subsets the SVM training to 
generate their respective support vectors, and finally com-
bines these support vectors to acquire the global support vec-
tors and the final SVM classification model. The final train-
ing accuracy of this model is close to the accuracy achieved 
when giving the original sample set a serial training , but the 
time consumption is at only 1/r of the latter method, where 
r=1/(1/n2+1/k2). Therefore, this model substantially improves 
the training speed (only second to grouped PSVM). Its train-
ing accuracy is higher than that of the grouped PSVM and 
layered PSVM, but is inferior to what can be achieved by 
feedback PSVM or serial training [19, 20]. 

 
Fig. (1). Convex hulls of the sample set. 
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3.3. Hull Vector-based Hybrid Parallel SVM (HHB-
PSVM) 

To further improve the training accuracy of Hybrid-
PSVM, we propose a hull vector-based hybrid parallel SVM 
(HHB-PSVM) in this subsection, as an improvement to the 
DHybrid-PSVM model introduced in Section 3.2. Fig. (2) 
provides the parallel training procedures of HHB-PSVM, 
where GHV denotes the hull vector computation method 
described in [17], BDT-SMO is a multi-category classifica-
tion method in [21] used for efficiently classifying the fused 
hyperspectral images. 

HHB-PSVM begins by dividing the original training 
sample set into n subsets, computes the hull vectors of these 
subsets via GHV, combines these hull vectors and divides 
them into m subsets, gives parallel training to these subsets 
using BDT-SMO and outputs their respective support vector 
sets, and finally combines these support vector sets to ac-
quire the global support vector sets and the final SVM classi-
fication model. As for classification accuracy, the ordinary 
support vector is replaced with the hull vector in the first 
layer of HHB-PSVM, so the loss of classification infor-
mation contained in the training sample set that is input to 
BDT-SMO is greatly alleviated, and the final training accu-
racy of HHB-PSVM is much higher than that of DHybrid-
PSVM. As for the training time, although computing the hull 
vector takes more time than computing the ordinary support 
vector, the introduction of BDT-SMO can reduce the time 
spent on computing the support vector set at the second layer 
of HHB-PSVM. Therefore, the training time consumption of 
HHB-PSVM is approximately the same as that of DHybrid-
PSVM. As for parallelism, both HHB-PSVM and DHybrid-
PSVM share the same parallel structure and thus have satis-
factory parallelism. To sum up, HHB-PSVM is more suitable 
than DHybrid-PSVM for parallel training of large-scale 
samples. 

 

4. MAPREDUCE-BASED PARALLEL LEARNING 
FOR LARGE-SCALE REMOTE SENSING IMAGES 

4.1. Boundary Overlapping-based Method for Segment-
ing Remote Sensing Images 

The boundary overlapping-based segmenting method will 
be used in this paper to extract features from large-scale re-
mote sensing images in a parallel manner. The optimal gran-
ularity will be decided upon via experiments to maximize the 
efficiency in parallel feature extraction from remote sensing 
images. To minimize the segmentation complexity, we pro-
pose applying a row-based method to the process of geomet-
rically segmenting remote sensing images, one which takes 
into account the optimal size of the sliding window for tex-
tural feature extraction and the final number of partitions. 
The segmentation procedures are shown in Fig. (3). 

To avoid the impact of image segmentation on extraction 
of textural features at the partition boundary, the boundary 
overlapping method is used to segment the remote sensing 
images at a fixed size. Finally, the sub-images are re-
combined by combing and clearing the overlapping parts of 
the processed sub-images. In Fig. (4), A denotes the pano-
ramic remote sensing image, A1, A2….An denote the sub-
images acquired after segmentation, L and h denote the 
number of rows and columns of A, respectively, a denotes 
the number of rows of each partition, and k denotes the width 
of the sliding window. Without taking the boundary effect 
into consideration, A can be divided into n parts 

(n= /L a⎡ ⎤⎢ ⎥ ), so the size of each sub-image as follows: 
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Fig. (2). Parallel training procedure of HHB-PSVM. 
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In equation (3), mod( ) represents the remainder compu-
tation function. Consider that in Experimental Zone 1, the 
remote sensing image size is 768×9558, the optimal sliding 
window size is 15×15. So when k=15, a=150, and n=64, the 
size of Ai is about 165×768 and the data size is about 500M. 
A small segmentation granularity (i.e. the value of a is small) 
means a large value of n and more sub-images. Accordingly, 
a single node in HDFS will be processed more quickly, but 
the communication overhead between nodes will increase, 
and the system’s parallel efficiency will deteriorate. This 
makes the choice of segmentation granularity very im-
portant. 

4.2. MapReduce-based Scheme for Parallel Extraction of 
Classification Features From Remote Sensing Images 

Extracting pixel-wise features from many images is very 
complex and burdensome, because the data size and compu-
tation complexity is prohibitive, especially when the textural 
feature extraction requires the window convolution method 
to be used to compute the level of gray, the gradient and the 
scale of the central pixels. This is a classical data-intensive 
problem and imposes high demands on the system’s data 
storage and parallel computation capabilities. Our procedures 
for parallel extraction of spectral and textural features are 
shown in Fig. (4). 

Fig. (4) shows that the boundary overlapping-based seg-
mentation has to be performed on the input remote sensing 
images at a certain granularity in order to extract the classifi-

 

Fig. (3). Boundary overlapping-based method for segmenting remote sensing images. 

 
Fig. (4). Scheme for the parallel extraction of classification features. 
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cation features in a parallel manner. Then, the spectral and 
textural features of the partitions should be extracted in a 
parallel manner (textural features are limited to specific 
wave bands). What is left is to aggregate and combine these 
extracted spectral and textural features, eliminate the over-
lapping parts of the partitions, combine the two aggregated 
types of features, and store the final sample sets into HDFS. 

The MapReduce parallel programming model is well 
suited for parallel extraction of classification features from 
large-scale images. The MapReduce-based procedures for 
parallel extraction of classification features from large-scale 
remote sensing images are shown in Fig. (5). The features of 
each image partition are extracted in a parallel manner using 
a self-defined Map function of Extract (), which can extract 
spectral and textural features simultaneously. When an im-
age partition is processed via the Map task, a new unpro-
cessed image will be selected from a set of unprocessed im-
ages to extract its features. After all image partitions are pro-
cessed, the self-defined Reduce function of Merge() will be 
used to eliminate the overlapping boundaries in the extracted 
characteristic indexes, combine the two types of features,  
 

and output a number of sample set files into HDFS. The 
sample sets acquired in this way can be further filtered to 
provide the training sample set, the test sample set and the 
to-be-predicted sample set. 

4.3. MapReduce-based HHB-PSVM Parallel Training 
Strategy (MapReduce-HHB-PSVM) 

PSVM parallel training is conducted in order to improve 
its training speed and extendibility while guaranteeing classi-
fication accuracy. Section 3.2 indicates that when compared 
with other PSVM models, HHB-PSVM has a satisfying level 
of classification accuracy, training speed and parallelism. In 
the MapReduce-based parallel mode, the priority processing 
for the local data, the distributed file system is very efficient, 
the mode is highly tolerant and extendable, and there is no 
frequent and data-intensive communication among nodes in 
the cluster. Therefore, it is well suited for parallel computa-
tion of data from the big data sets. The MapReduce-based 
HHB-PSVM parallel training strategy is given in Fig. (6).  

 

 

 

Fig. (5). MapReduce-based procedures for parallel extraction of features from remote sensing images. 

 

 
Fig. (6). MapReduce-based HHB-PSVM parallel training strategy. 
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The entire training process consists of two stages. In the 
first stage, the original training sample set is divided at a 
granularity into n sub-sample sets (SP0~SPn). The map() 
function (i.e. GHV function) is used to process the sub-
sample sets in a parallel manner and n hull vector sets, 
HV1~HVn. The number of computing nodes used in the first 
stage is n1=n. The second stage is responsible for combining 
the hull vector sets from the first stage into n2 subsets 
(n2=⌊log2(n1)⌋= ⌊log2(n)⌋), training these subsets separately 
using the Reduce() functions (BDT-SMO classification func-
tions) to generate the corresponding support vector sets 
SV1~SVn2, directly combining SV1~SVn2 into the final sup-
port vector set SV_final and the classification model, Fi-
nal_model. 

4.4. MapReduce-based Strategy for Remote Sensing Im-
ages Parallel Prediction 

Prediction of large-scale to-be-predicted samples is also a 
data-intensive problem. The usual approach to this problem 
involves a decision made for each to-be-predicted samples or 
pixel and it has great potential to adopt the parallel tech-
niques. Our work involves prediction of large-scale remote 
sensing images, so finding the means to improve the predic-
tion efficiency is of great importance. The MapReduce-based 

strategy for parallel prediction of remote sensing images 
provides a good solution to this problem and its procedures 
are shown in Fig. (7). 

First, divide the to-be-measured sample set into n subsets 
(sample_0~sample_n), and determine the optimal value of n 
experimentally (the optimal granularity for the to-be-
measured sample set). Then we process the n subsets by as-
signing them to n independent Map() functions (BDT-SMO 
classification function), and provide the predictions of each 
subset. Finally, combine these predictions and store the 
combination into HDFS. 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

5.1. Experimental Preperaton 

(1) Overview of Essential Data and Experimental Zone  
Experiments were carried out on two zones to improve 

the reliability of our land utilization classification results. 
The Hyperion hyperspectral images and the ALI high-
resolution images with the same time phase were collected 
from the same space-borne platform (EO-1). The Hyperion 
hyperspectral images of both zones are shown in Fig. (8). 

 

Fig. (7). MapReduce-based strategies for parallel prediction of remote sensing images. 

 

 
Fig. (8). Hyperion hyperspectral images of experimental zones (RGB: 164/48/31). 
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The Hyperion hyperspectral images of Experimental 
Zone 1 and the corresponding ALI panchromatic images 
were collected on March 10, 2003, the size of the images 
being 258×3176 and 774×9528, respectively. Experimental 
Zone 1 spans TaiZhou City and the eastern part of Wenzhou 
City, passing through the Sanmen County, Linhai County, 
Huangyan County, Wenling County and Yuhuan County of 
Taizhou City, as well as Leqing County of Wenzhou City 
from south to north, covering an area of 76.61km2. The Hy-
perion hyperspectral images of Experimental Zone 2 and the 
corresponding ALI panchromatic images were collected on 
March 26, 2003, the size of the images being 254×3186 and 
762×9558, respectively. Experimental Zone 2 spans the 
middle and eastern part of Fuzhou City, passing through the 
Luoyuan County, Lianjiang County, Jin’an County, Gulou 
County, Taijiang County, Changshan County, Minhou Coun-
ty, and Fuqing County from north to south, covering an area 
of 73.41km2. 

 (2) Image pre-processing and fusion 
The collected Hyperion hyperspectral image and the ALI 

panchromatic image of the above zones need to be pre-
processed, and the pre-processing procedures involve the 
unqualified wave bands elimination ( the original image has 
242 wave bands), radiation value conversion, incorrect line 
removal, streak recovery, Smile effect elimination, atmos-
pheric correction, and geometric accuracy correction. The 
aim of pre-processing is to generate the Hyperion image in-
cluding 134 wave bands based on ground reflectance and the 
ALI image including 1 Panchromatic-band. The Gram_ 
Schmidt method is then employed to fuse the two types of 
images. Because the Hyperion images and the ALI images of 
the two Zones are obtained by the EO-1 satellite and have 
the same time phase, the image fusion result is excellent. 

(3) Extraction and Combination of Classification Fea-
tures 

Because the distribution of ground objects (e.g. roads, 
buildings and rivers) in the Experimental Zones shows obvi-
ous textural characteristics, the classification features in this 
paper are the spectral characteristics and the textural charac-
teristics. The “overlearning” problem is not acute for SVM 
high-dimensional feature learning. With this in mind, as 
many characteristic indexes as possible are used in this paper  
 

to improve classification accuracy. A total of 178 character-
istic indexes are used in our work, including 136 spectral 
characteristic indexes and 42 textural characteristic indexes. 
The spectral characteristic indexes consist of 134 ground 
reflectance characteristics, 1 normalized difference vegeta-
tion index (NDVI) characteristic, and 1 normalized differ-
ence build-up index (NDBI) characteristic. The textural 
characteristic indexes consist of 6 gray distribution charac-
teristics (second moment, contrast grade, degree of correla-
tion, variance, inverse different moment and information 
entropy extracted using the gray-level co-occurrence matrix 
method), 15 gray level gradient characteristics (15 gradient 
characteristics, including the small gradient advantage, large 
gradient advantage, and the non-uniformity of the gray dis-
tribution, which are extracted using the gray level-gradient 
co-occurrence matrix method proposed by Hong Jiguang in 
1984 [22]), and 21 textural scale characteristics (semi-
variogram, energy and averages, all extracted from the 7 
high-frequency components after two levels of Wavelet de-
compositions). It has been proven in [23] that the accuracy 
and efficiency of classifying fused hyperspectral images can 
be improved by using the above-mentioned 178 indexes. 

(4) Sample Selection 

Based on the actual utilization of land, the Experimental 
Zones are classified into 12 types, including farmland (C1), 
woodland (C2), garden (C3), grassland (C4), nudation (C5), 
warehouse land (C6), residential land (C7), public administra-
tion land/ commercial service land/land concerning foreign 
affairs (C8), special land (C9), transportation land (C10), wa-
ter space (C11) and others (C12). According to field data and a 
comprehensive analysis of the remote sensing image, the 
representative areas were selected for ground object sample 
extraction. The training samples are usually required to be no 
fewer in number than the testing samples, and the training 
samples for each class of ground object are also required to 
be no fewer in number than the characteristic dimensionality 
of the classes. With the high-resolution images of the Exper-
imental Zones and the 1:10000 land utilization maps, sam-
ples that can suitably represent each class of land utilization 
are selected, as shown in Tables 1 and 2.  

After sample extraction, the training samples and the test 
samples need to be normalized, respectively, in order to  
 

Table 1. Samples selected for Experimental Zone 1. 

Classes of Land Uses C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

No. of training samples 6058 4874 8154 5497 7745 6332 6521 6335 5648 9258 7864 5426 

No. of test samples 2606 2416 3448 2584 2488 3154 2602 2588 2512 5785 4888 4846 

 
Table 2. Samples selected for Experimental Zone 2. 

Classes of Land Uses C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

No. of training samples 6244 7020 8056 7064 7008 7008 8214 6822 8544 9888 7848 6944 

No. of test samples 3654 3321 2948 2865 2660 2530 2956 2485 3452 3968 3210 2568 
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eliminate the differences in various characteristic indexes 
concerning dimensions, order of magnitude and data disper-
sion. 

5.2. Configuration of Hadoop Cloud Computing Experi-
mental Platform 

The Hadoop cloud computing experimental platform 
adopts the bus topology in this paper, including 1 major Ha-
doop node (Namenode), 1 backup Hadoop node (Secondary 
NameNode), 10 Hadoop data nodes (Datanode) and 1 virtual 
machine server. The CPUs type for all nodes in the platform 
is 2.50GHZ Intel Dual Core E5200 with 3.2G memory and a 
500G hard disk. The operating system on both the 
NameNode and the Secondary NameNode is Ubuntu Server 
12.10. Half of the DataNodes use Red Hat Linux as their 
operating systems and the other half use Windows XP sp3. 
The vvirtual machine server operating system is Windows 
Server 2003 and the virtual machine software is VMware 
workstation v10.0. 

5.3. Experiments on MapReduce-based Parallel Extrac-
tion of Classification Features 

Distributed parallel computing is usually evaluated by the 
metrics of speedup ratio and parallel efficiency. The speedup 
ratio is defined as the ratio of serial computing time to paral-
lel computing time [24] and can be used to measure the ac-
celeration achieved via parallel computing. The parallel effi-
ciency is defined as the ratio of speedup ratio to the total 
number of processes and can be used to indicate the average 
speedup ratio of all processes. A high parallel efficiency 
means that the parallel system is efficient [25]. The parallel 
efficiency is usually smaller than 1 and is 1 only in the case 
of linear speedup ratio [26].  

(1) Impact of different parallel modes on classification 
feature extraction time  

The theoretical time complexity of classification feature 
extraction from remote sensing images is O(n), i.e. in theory 
the time consumption scales linearly to the data size. But in a 
practical distributed parallel environment, the actual time  
 

consumption is subject to network environment and commu-
nication overheads, and thus varies depending on the classi-
fication methods being applied. Features of the remote sens-
ing images from Experimental Zones 1 and 2 were classified 
in stand-alone mode, traditional MPI mode and MapReduce 
mode, respectively. The time consumption is shown in Fig. 
(9).  

Fig. (9) shows that both the traditional MPI and the 
MapReduce schemes can accelerate classification feature 
extraction from remote sensing images. The speedup in fea-
ture extraction they provide over the stand-alone mode is 
3.98/3.99 and 17.25/12.96, respectively. Obviously, MapRe-
duce enables the classification features of remote sensing 
images to be extracted at a greater speed, reducing the time 
consumption from 4 hours to about 20 minutes.  

 (2) Impacts of the number of partitions on classification 
feature extraction time 

Before performing parallel extraction of classification 
features from the remote sensing images of the Experimental 
Zones, the images must be segmented using the boundary 
overlapping-based method.  

Because the segmentation granularity has a big impact on 
the overall parallel extraction efficiency, the optimal seg-
mentation granularity is determined experimentally in this 
paper. First, we segment the remote sensing images of Ex-
perimental Zones 1 and 2 at different granularities, and then 
process the images in a parallel manner at the stand-alone, 
traditional MPI and MapReduce modes, respectively. The 
methods are evaluated using the metrics of time consump-
tion, speedup ratio and parallel efficiency in order to deter-
mine the optimal segmentation granularity for different 
schemes. Experimental results are shown in Figs. (9-12) (on-
ly the results related to Experimental Zone 2 are presented 
here due to the similarity between the results of two Zones).  

These three figures show that MapReduce provides the 
least time consumption and the minimum is achieved when 
there are 20 partitions (about 1/50 of the stand-alone mode). 
The MapReduce method’s speedup ratio is also visibly high-
er than that of the MPI method, and increases almost linearly 
  

 

Fig. (9). Comparison of time consumption for extracting classification features from remote sensing images at different parallel modes. 
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Fig. (10). Comparison of time consumption for extracting classification features from remote sensing images when the images are segmented 
into a varied number of partitions. 

 

Fig. (11). Comparison of speedup ratio for extracting classification features from remote sensing images when the images are segmented into 
a varied number of partitions. 

 
Fig. (12). Comparison of parallel efficiency for extracting classification features from remote sensing images when the images are segmented 
into different numbers of partitions. 

 
when the number of partition is smaller than 18. The 
MapReduce method’s speedup ratio decreases when there 
are more than 18 partitions. The reason for this is that paral-
lel efficiency deteriorates due to the growth of communica-
tion overhead between nodes with the increase in the number 
of nodes. The MPI method’s speedup ratio decreases when 
there are more than 10 partitions, because the parallel effi-
ciency deteriorates seriously due to frequent communication 
and data transfer between nodes with the increase in the 
number of communicating nodes in the MPI cluster.  

(3) Impact of Different Data Sizes on Remote Sensing 
Image Classification Feature Extraction Time 

In the experiments (1) and (2), parallel processing is done 
after the same remote sensing image is segmented into sub-
images at different granularities. In this subsection, parallel 
extraction is done at the stand-alone, traditional MPI and 
MapReduce modes, respectively, after the remote sensing 
images of different sizes are segmented at the same granular-
ity (the default partition size being 64M). The experimental 
results are shown in Fig. (13). 

Fig. (13) shows that when the data size of remote sensing 
images is small (less than 10 data blocks), the advantages of 
MapReduce and MPI are not obvious (their time consump-
tion may be higher than that of stand-alone mode when the 
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data size is very small). But in case of huge data size (more 
than 10 data blocks), the time consumption of the stand-
alone mode increases rapidly and exponentially, and is much 
larger than the MapReduce and MPI modes. In cases where 
there are over 30 data blocks, MPI mode’s time consumption 
increases rapidly as well, and is much larger than that of the 
MapReduce mode. The time consumption of the MapReduce 
mode, however, does not increase considerably. 

To sum up, compared with other schemes, the MapRe-
duce method is better suited for parallel processing of huge 
amounts of data. When used to extract classification features 
from large-scale remote sensing images, the MapReduce 
method can provide the highest extraction speed, great 
speedup ratio and parallel efficiency, and the optimal seg-
mentation granularity is about 1/20 of the area of the Exper-
imental Zone 2’s image (data size being approximately 
200M). 

5.4. Experiments on MapReduce-HHB-PSVM Parallel 
Training 

(1) Analysis of MapReduce-HHB-PSVM classification 
accuracy 

Section 4.3 demonstrates that compared with other 
PSVM training methods, the classifiers based on HHB-
PSVM parallel training provide the highest accuracy, a 
satisfactory speed and parallelism. Both MPI and MapRe-
duce models are suitable for HHB-PSVM parallel training. 

To facilitate comparison, the original training sample set is 
first divided into different numbers of sub-sample sets. The 
HHB-PSVM parallel training will then be performed at the 
MPI and MapReduce mode, respectively. Finally, the im-
pacts of the two methods on the overall HHB-PSVM classi-
fication accuracy is analyzed. Due to the similarity between 
the results from Experimental Zones 1 and 2, only the results 
related to Experimental Zone 2 are shown here in Fig. (14). 

Fig. (14) shows that when the number of training sub-sets 
is n=1 (indicating stand-alone serial training), the overall 
classification accuracy is 84.89%. When 2<n≦20, with the 
increase in n, the overall HHB-PSVM classification accuracy 
based on MAP and MapReduce is close to that of serial 
training and stable. In the case of n=16, the MapReduce-
HHB-PSVM classification accuracy reaches the maximum at 
about 84.90%, slightly greater than the accuracy of serial 
training at 84.89%. In the case of n>16, the classification 
accuracy of MPI-based HHB-PSVM (MPI-HHB-PSVM) 
deteriorates quickly, becoming much smaller than that of 
MapReduce-HHB-PSVM. When n>20, the classification 
accuracy of MapReduce-HHB-PSVM deteriorates quickly. 
The reason for this is that when the number of partitions is 
too high, the classification accuracy decreases due to an in-
adequate number of samples in the single training sub-set 
and the imbalanced sample structure. The classification ac-
curacy of HHB-PSVM is in large part subject to the types of 
SVM kernels and the PSVM parallel training schemes and is 
almost immune to the way to implement parallelism. 

 
Fig. (13). Comparison of time consumption for classification feature extraction from remote sensing images with different data sizes. 

 
Fig. (14). Comparison of HHB-PSVM classification accuracy when the number of training sub-sets is different. 
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(2) Analysis of MapReduce-HHB-PSVM Parallel Train-
ing Efficiency 

The classification accuracy of the MPI- and MapReduce-
based HHB-PSVM methods is approximately close to that of 
serial training, but the two methods greatly improve the 
training efficiency. The original training sample set is seg-
mented with different granularities. The respective impacts 
of the number of subsets acquired after segmentation on the 
training time, speedup ratio and parallel efficiency of HHB-
PSVM are shown in Figs. (15, 16 and 17). Due to the simi-
larity between the results of Experimental Zones 1 and 2, 
only the results related to Experimental Zone 2 are shown 
below. 

Fig. (15) shows that compared to the stand-alone mode, 
the MPI and MapReduce methods can both effectively im-
prove the training speed of HHB-PSVM. When the number 
of training sub-sets is n>10, the time consumption of the 
MapReduce-based parallel training is much lower than that 
of the MPI and the stand-alone methods. When n=18, 
MapReduce-HHB-PSVM consumes the least amount of 
training time. 

Fig. (16 and 17) show that when the number of training 
subsets n<7, the speedup ratio of the MPI and MapReduce 
methods is less than the ideal ratio. The speedup ratio and  
 

 

parallel efficiency of MPI-HHB-PSVM is higher than that of 
MapReduce-HHB-PSVM. But when n>7, the speedup ratio 
and parallel efficiency of MapReduce-HHB-PSVM increase 
rapidly, and are much higher than that of MPI-HHB-PSVM. 
In the case of n>10, the speedup ratio and parallel efficiency 
of MPI-HHB-PSVM deteriorate enormously, due to frequent 
communication and data transfers between nodes when there 
are many communication nodes in the MPI cluster. In the 
case of n>18, the speedup ratio and parallel efficiency of 
MapReduce-HHB-PSVM deteriorate enormously. The rea-
son for this is that task scheduling, copy duplicating and data 
communication occurs more frequently with the increase in 
the number of training subsets, resulting in more communi-
cation overhead. 

When there are 18 training subsets, MapReduce-HHB-
PSVM provides the highest training speed, satisfying 
speedup ratio and parallel efficiency, the segmentation gran-
ularity of parallel training being about 5,000 training sam-
ples per subset (i.e. the total number of training samples 
from the experimental zone divided by the number of train-
ing subsets). That is, each class (up to a total of 12) has 420 
training samples in average, about 2.36 times the number of 
characteristic indexes (178), meaning that the number of 
training samples meets the basic requirements for SVM 
training. 

 

 

Fig. (15). Comparison of HHB-PSVM training time when the number of training subsets is different. 

 
Fig. (16). Comparison of HHB-PSVM speedup ratios when the number of training subsets is different. 
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5.5. Experiments on MapReduce-based Parallel Predic-
tion of Remote Sensing Images 

In predicting the to-be-measured sample set, fixed related 
classifiers need to be used to decide on each sample or pixel 
of the to-be-measured sample set. Its theoretical time com-
plexity is O(n), meaning that its time consumption is linear 
to the size of the to-be-measured data. Similar to the classifi-
cation feature extraction in Section 5.3, the MapReduce 
method is also well suited for large-scale to-be-measured 
sample parallel prediction. Parallel prediction experiments 
were performed on the to-be-measured sample sets from 
Experimental Zones 1 and 2 using the BDT-SMO classifiers 
acquired via parallel training in Section 5.4. The impacts of 
different parallel modes (single machine, MPI and MapRe-
duce), different numbers of subsets obtained after segmenta-
tion and different data sizes on the time consumption, 
speedup ratio and parallel efficiency of parallel prediction 
for to-be-measured sample sets were analyzed. Details are 
omitted here due to the similarity of the experimental results 
with the results of parallel extraction of classification fea-
tures from remote sensing images in Section 5.3. Only the 
final results related to Experimental Zone 2 are given here: 
compared with MPI, the MapReduce method is the more 
suitable one for large-scale to-be-measured sample parallel 
prediction, because the MapReduce method provides the 
greatest prediction speed (about 15 times that of the single 
machine scheme) and stisfactory speedup ratio and parallel 
efficiency. It is appropriate to acquire 36 subsets after seg-
mentation for parallel prediction, i.e. the segmentation 
granularity is about 110M per partition. 

CONCLUSION 

In order to improve the machine learning efficiency for 
large-scale remote sensing images while guaranteeing classi-
fication accuracy, a hull vector-based hybrid parallel support 
vector machine model(HHB-PSVM) is proposed, which uses 
the cloud computing and parallel SVM techniques. We also 
propose a MapReduce-based HHB-PSVM distributed paral-
lel model(MapReduce-HHB-PSVM), which can extract the 
classification features from large-scale remote sensing imag-
es and perform learning and prediction on the large-scale 
sample sets in a parallel manner. Experimental results show 
that compared with the stand-alone (serial) mode and the 

traditional MPI mode, the proposed MapReduce-HHB-
PSVM parallel learning scheme can greatly improve the 
learning efficiency for the large-scale remote sensing 
images, while at the same time guaranteeing classification 
accuracy, and promote the machine interpretation of ground 
objects information extracted from the large-scale remote 
sensing images to be conducted intelligently. 
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