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Abstract:

Background:

Various natural molecules have been studied for the enhancement of physical endurance. Glucan has been found to improve various stress-related
conditions and to improve fatigue and endurance.

Objective:

In this study, we evaluation of glucan effects on some reactions involved in chronic fatigue has been focused.

Methods:

Phagocytosis of neutrophils, the production of IL-2, IL-4, and IL-10 by spleen cells, and levels of antioxidant glutathione and oxidative stress
marker superoxide dismutase in brain were measured. In addition, the effects of glucan on water immersion and on rotarod were also measured.

Results:

The glucan supplementation strongly improved the suppressed phagocytosis and changes in cytokine and levels of oxidative stress markers caused
by fatigue. In addition, glucan supplementation also increased the motor functioning of tested animals.

Conclusion:

Our data suggested that anti-fatigue properties of glucan are related to its well-established effects as stimulator of immune reactions.
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1. INTRODUCTION

β-Glucans  are  polymers  of  glucose  extracted  from  yeast
cell walls, bacteria, fungi and cereals such as oats and barley
[1]. β-Glucans from yeast and fungi consist of a backbone of
glycopyranosyl  molecules  joined  by  1,3-β-links;  from  this
backbone, side chains can be joined by 1,6-β-links, producing a
branched  molecular  structure.  Fungal  β-glucans  have  short
branches while they are long in yeast. Cereal cell wall consists
of  not  branched  β-glucans  with  glucopyranose  molecules
linked by 1,3-β and 1,4-β linkages. On the other hand, bacterial
β-glucans are unbranched with only 1,3-β-linkages between the
glycopyranosyl  molecules;  similarly,  barley  and  most  cereal
grains contain unbranched ß-glucan  chains [2]. Until  recently,
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biologically efficient β-glucans were supposed to have similar
structures—a main chain of β-(1→3) bound D-glucopyranose
molecules (for better perspective, imagine beads on the string)
to which some D-glucopyranoses are randomly connected by
β-(1→6)  linkages  causing  a  different  degree  of  branching  in
different  glucans.  The  detailed  structure  of  β-glucans  from
dissimilar sources differs as well as their biological activity. In
native  β-glucans,  their  fibrils  are  composed  from  organized
parts in which the main chain is coiled to a triple helix. These
regions  are  combined  with  single  or  double  filaments  of  β-
(1→3)-D-glucopyranoses.  The  triple  helix,  formed  by  three
hydrogen  bonds  and  stabilized  by  side  chains,  is  probably
present  only  in  high-molecular  β-glucans  with  molecular
weight  over  90  kDa  [3].  Diverse  data  on  comparison  of
structure, molecular size, and biological effects can be found in
literature.
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β-Glucans are groups of dietary fibers and form the major
structure found in the cell wall of yeast, fungi, algae, and cereal
grains  [4].  β-Glucans  have  been  shown  to  stimulate  the
proliferation of white blood cells, which in turn stimulates the
immune  system.  The  β-glucans  are  transported  to  the  small
intestine,  then  passed  through  the  Peyer’s  patches  in  the
GALT,  and  subsequently  moved  around  the  body.  The
presence  of  β-glucan  is  followed  by  its  binding  to  specific
receptors such as CR3 and Dectin-1 and results in stimulation
of macrophages, higher formation of antibodies and increasing
the  activity  of  natural  killer  cells.  In  addition  to  direct
stimulation of both specific and non-specific immunity, glucan
can  also  influence  expression  of  immune-related  genes  and
proteins.  The  stimulation  in  immune  functioning  serves  to
combat  the  negative  effects  of  enteric  infection  or  immune
suppression  due  to  high  stress  rearing  conditions.  Health
benefits of β-glucans have been exclusively documented over
the  past  three  decades  with  established  effects  on  anti-
inflammatory,  anti-infectious  and  anti-cancer  immunity  (for
review  [5]).  These  effects  are  mediated  via  changes  in
numerous immunological mechanisms [6] including production
of  TNF-α  [7,  8].  The  role  of  TNF-α  might  be  particularly
important, as shown by a different model of fatigue [9]. These
data resulted in recommendation of adding glucan to food [10,
11]. In addition, use of glucan as nanoparticles for vaccines is
extensively studied [12].

Besides  effects  on  the  immune  system  and  other  direct
biological effects, glucans were found to improve the negative
effects  of  stress  by  reducing  the  level  of  corticosterone  [13,
14], and to have positive effects following exercise stress [15].
In  addition,  β-glucan  supplementations  were  found  to  play
positive  role  in  modulating  exercise-induced  changes  in
intensively training athletes [16], improve the cellular immune
response, respiratory tract infections and mood in athletes [17,
18]  and  generally  improve  the  exercise-induced  problems  of
immune functions after heavy physical stress [19].

Various  natural  molecules  have  been  studied  for  the
enhancement  of  physical  endurance.  Gintonin,  an  active
ingredient  of  ginseng,  was  recently  shown  to  enhance
performance  of  mice  in  rotarod  test  [20].  In  mouse  model,
glucan attenuated chronic  fatigue syndrome [21],  whereas  in
human  clinical  trials,  glucan  supplementation  resulted  in
improved  endurance  of  children  with  chronic  respiratory
problems  [22].  Glucan  also  has  positive  effects  in  cancer-
related fatigue [23], probably via its anti-inflammatory action.

As prolonged and exhausting physical  activity can cause
immunosuppression [24], therefore, it was decided to evaluate
the  effects  of  β-glucan  supplementation  of  various
physiological  and  immunological  parameters  after  severe
physical  stress.

2. MATERIAL AND METHODS

2.1. Animals

Female, 8 week old BALB/c mice were purchased from the
Jackson Laboratory (Bar  Harbor,  ME).  All  animal  work was
done  according  to  the  University  of  Louisville  IACUC
protocol. Animals were sacrificed by CO2 asphyxiation. Nine
mice/group were used.

2.2. Material

Yeast-derived insoluble Glucan #300 was purchased from
Transfer Point (Columbia, SC). The purity is over 85%.

2.3. Experimental Groups

A control group of nine mice was administered PBS. The
glucan-supplemented groups received different daily doses of
glucan (50, 100 and 200 μg/mouse) orally from day 0 for 15
days after the start of swimming.

2.4. Cytokines

After being cultured in a humidified incubator (37o C, 5%
CO2)  for  72  hrs,  levels  of  cytokines  IL-2,  IL-4  and  IL-10
secreted by splenocytes  in  the presence of  5  μg Con A were
determined  by  ELISA:  Supernatants  were  collected,  filtered
through  0.45  μm  filters,  and  IL-2  and  IL-4  measured  using
Quantikine mouse kits (R&D Systems, Minneapolis, MN).

2.5. Biochemical Parameters

On the various points of the study, animals were sacrificed.
The brains were removed, rinsed in isotonic saline solution and
weighed. A 10% w/v tissue homogenates were prepared in 0.1
M phosphate buffer pH 7.4. The homogenates were centrifuged
at  12 000 g for  60 minutes at  4oC. Glutathione (GSH) levels
were  estimated  as  described  earlier  [25].  Briefly,  0.75  ml  of
homogenate  was  precipitated  with  the  same  volume  of  4%
sulfosalicylic  acid,  centrifuged  and  mixed  with  0.01  M  5,5-
dithiobis-(2-nitrobenzoic)  acid  at  ration  1:9.  The  color  was
immediately  measured  using  at  412  nm.  Results  were
expressed as nanomoles of GSH/mg protein. Superoxide SOD
activity was tested as described [26]. In summary, the reaction
was  initiated  by  the  addition  of  hydroxylamine  HCl  to  the
mixture containing nitroblue tetrazolium and the homogenate.
The  reduction  was  measured  at  560  nm.  The  results  were
expressed  as  units/mg  of  protein  [27].

2.6. Organs Weight

All the mice were sacrificed at the end of experiments and
the weight of individual organs were evaluated.

2.7. Water-immersion Stress

Mice were forced to swim individually in a glass jar (30
cm x  12  cm x  30  cm)  containing  18  cm-deep  water  at  room
temperature.  After  an initial  period of  vigorous activity each
animal  assumed a  typical  immobile  posture.  The  mouse  was
considered to be immobile when it ceased to struggle and made
minimal  movements  to  keep  its  head  above  the  water.  This
period of observation was 10 minutes.

2.8. Rotarod

The protocol is based on a study [28]. Mice were tested on
the  rotarod  before  the  glucan  treatment  and  after  1,  3  and  6
weeks  into  the  trial.  Mice  were  placed  on  the  rotarod  (755
Rotarod; IITC Life Sciences,  Wooland Hills,  GA, USA) at  a
speed starting at  3 rpm and gradually accelerating to 40 rpm
over a 5 min period. The maximum trial length was 5 minutes
and  there  was  a  45  min  recovery  period  between  trials.  An
individual



β-Glucan Improves Conditions of Chronic Fatigue The Open Biochemistry Journal, 2020, Volume 14   3

Table 1. Effect of glucan on body weight and organ weight.

Group Body Spleen Thymus Heart Lungs
Control 20.7 ± 1.8 601 ± 80 46 ± 10 118 ± 14 146 ± 17
PBS 19.3 ± 2.2 329 ± 54 47 ± 12 126 ± 11 129 ± 14
Glucan 50 mg 20.7 ± 1.7 479 ± 44* 47 ± 9 101 ± 12 133 ± 15
Glucan 100 mg 21.0 ± 1.8 572 ± 33* 48 ± 11 120 ± 13 140 ± 10
Glucan 200 mg 22.1 ± 1.8 602 ± 45* 46 ± 12 118 ± 11 145 ± 9
Weight of body is given in g, weight of organs in mg. Control group shows results before any treatment, PBS and Glucan groups shows results after exercise. Significant
difference between PBS group and treated group at P 0.05 level.

average over the three trials was first calculated before finding
a total group average.

2.9. Statistics

Student’s t-test was used to statistically analyze the data.
Data at p<0.05 were considered significantly different.

3. RESULTS

Forced  exercise  did  not  result  in  significant  changes  of
total  body  weight  or  weight  of  individual  organs,  with  the
exception  of  spleen  weight.  The  strong  reduction  of  spleen
weight was restored by all doses of glucan (Table 1). Induction
of  fatigue  by  forced  swimming  for  6  minutes  for  15  days
increased the immobility period in animals supplemented with
PBS  (control  group)  and  this  immobility  was  observed  in
subsequent  30  days.  All  three  doses  of  glucan  significantly
reduced the immobility periods, with the 50 μg dose being the
least  active  (Fig.  1).  The  mice  were  subjected  to  daily
swimming  during  all  45  days.

Levels of GSH and SOD were measured 15 days after start
of the supplementation (30 days after start of the swimming).
In  both  cases,  glucan  supplementation  reversed  the  fatigue-
caused decrease of these levels. The levels of GSH before the
start of the experiment were 105 ± 1.9 and the levels of SOD
were 97 ± 5.8.  The effects  of  glucan were  significant  at  100
and 200 μg dose (Fig. 2).

Glucans are known to significantly affect various facets of
the immune response. To find out the possible effects of glucan
supplementation  in  our  model,  the  changes  in  phagocytic
activity were tested. Data summarized in Fig. (3) showed that
all three doses of glucan significantly improved the suppressed
phagocytic  activity  of  peripheral  blood  neutrophils  (control
values were 30.3 ± 1.4).

In  addition  to  these  effects  on  cellular  immunity,  the
effects  on  production  of  several  important  cytokines  were
studied. The depression of IL-2 formation (control level 255.5
± 20.6 pg/ml) and elevation of IL-10 secretion (control level
21.4 ± 2.2 pg/ml) were found. In case of IL-4 formation, the
control  levels  were  7.2  ± 0.6  pg/ml),  therefore,  the  exercise-
induced  changes  were  not  strong.  In  all  cases,  glucan
supplementation returned the cytokines levels to normal values
(Fig. 4).

In the last part of our study, the possible effects of glucan
supplementation on motor functioning were focused. Using a
rotarod  test,  we  measured  the  average  time  to  fall  of  mice
subjected to a gradually accelerating rotarod before treatment,

and  after  1,  3  and  67  weeks  of  glucan  supplementation.  All
glucan-supplemented groups showed significant improvements
of motor functioning (Fig. 5).

4. DISCUSSION

β-Glucans belong to dietary fibers composed of D-glucose
monomers  linked  by  glycosidic  bonds.  They  are  commonly
found in the cell walls of bacteria, algae, fungi and yeast. Their
physiological,  biological  and  physicochemical  properties
strongly differ depending on the source and isolation methods
[29].  Health  benefits  of  β-glucans  have  been  extensively
documented  over  last  decades,  resulting  in  its  use  both  as  a
natural food supplements and, in some countries, as a drug [5,
30].  Among  various  biological  effects  of  β-glucan
supplementation,  stimulation  of  immunity  is  the  most
pronounced.  However,  additional  effects  include  lowering
blood cholesterol [31], antioxidative effects [32], anti-allergic
effects [33] and reduction of blood sugar levels [34]. So far, no
adverse human effects have been reported.

Lately,  β-glucans  are  being  evaluated  as  a  nutritional
booster in various types of fatigue. In athletes, severe physical
activity is known to negatively influence the immune functions
and  to  increase  the  incidence  of  some  infections.  β-Glucan
supplementation was documented to have positive effects  on
these  problems,  probably  due  to  the  changes  in  cytokine
production  [19].

Fatigue  is  one  of  the  most  common  syndromes
accompanying cancer disease. It can be caused by physical or
mental  stress  and  lead  to  a  diagnosis  of  chronic  fatigue
syndrome. Over 50% of cancer patients  describe that  fatigue
lasts for more than 12 months after the end of the treatment.
This  problem  represents  a  multifactorial  process  involving
several physiological and psychosocial factors [35]. Persisting
fatigue  is  often  connected  with  various  immune  processes
including  IL-6  production  [36]  and  interferon  and  TNF-α
release [35]. Glucan effects on TNF-α secretion is one of the
anti-inflammatory effects  of  glucan [36 -  38].  In our  clinical
trial,  significant  anti-inflammatory  effects  of  glucan
supplementation in cancer-related fatigue were observed. [39].
In  addition,  numerous  studies  published  lately  showed  that
glucan  improved  exercise  performance  [40],  improved
syndromes of chronic fatigue syndrome via improved levels of
GSH and SOD in the brain [41] and enhanced the endurance
capacity while improving the fatigue-related recovery [41, 42].
The  possible  mechanisms  suggested  by  these  studies  are
improvements  in  oxidation  and  regulation  of  energy
metabolism  by  glucan.
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In  this  study,  it  has  been  identified  that  fatigued  mice
treated  with  glucan  (50,  100,  and  200  μg/day)  orally  had
improved immune reactions depressed by fatigue. In addition,
swimming times were improved by glucan treatment similarly
to rotarod performance test. In our previous study, it has been
found that short term supplementation help to improve fatigue-
related  problems  [21].  In  this  study  optimal  dose  and  longer
intervals of supplementation were focused. It was observed that

even a relatively low 50 μg helped to improve tested reactions;
the higher dose was found to be more active. In some reactions,
the  improvement  was  clearly  dose-dependent.  In  addition  to
deregulated balance of Th1/Th2 related cytokines, significant
changes in levels  of  SOD and GSH in the brain were found,
indicating  changes  in  oxidative  stress  in  the  glucan  effects.
Long-term treatment with glucan resulted in return to normal
values.

Fig. (1). Effect of glucan supplementation on mean immobility time. Mice were subjected to forced swimming for 45 days, the evaluation and glucan
feeding started on day 15. PBS – control mice without supplementation.

Fig. (2). Effects of glucan supplementation on depletion of GSH and SOD in mice with CFS. Results represent mean from three experiments ± SD.
*Represents significant differences between the PBS and glucan-treated mice at P≤ 0.05 level. PBS – control mice without supplementation.
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Fig. (3). Effects of glucan supplementation on phagocytic activity of peritoneal blood neutrophils. Results represent mean from three experiments ±
SD.  *Represents  significant  differences  between  the  PBS  and  glucan-treated  mice  at  P≤  0.05  level.  Negative  control  -  control  mice  without
supplementation. Control values (mice without any exercise) were 30.3 ± 1.4.

Fig. (4). Effects of glucan on secretion of IL-2, IL-4, and IL-10 by spleen cells. Results represent mean from three experiments ± SD. *Represents
significant differences between the PBS and glucan-treated mice at P≤ 0.05 level.
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Fig. (5). Effects of glucan supplementation of decreased motor functioning in fatigued mice shown as average time to fall in rotarod test. Results
represent mean from three experiments ± SD. *Represents significant differences between the PBS and glucan-treated mice at P≤ 0.05 level.

CONCLUSION

Although fatigue and possible use of natural molecules has
received  considerable  attention  lately  [39],  underlying
mechanisms  are  still  unclear.  Our  data  suggested  that  anti-
fatigue properties of glucan are related to its well-established
effects  as  stimulator  of  immune  reactions  [37]  and  that  this
supplementation might offer an effective and safe treatment of
problems associated with chronic fatigue. We believe that these
results should encourage further studies into the potential use
of glucan for the treatment of physical and/or mental fatigue.
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