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Abstract: Age-associated rises in oxidative damage are assumed to be a central phenomenon of aging. Their attenuation 

is an aim for both healthy aging and life extension. This review intends to critically discuss the potential of anti-oxidant 

actions, but even more to direct the attention to the modes of radical avoidance and to regulatory networks involved. 

Mitochondria seem to play a decisive role in radical formation and cellular decline. Avoidance and repair of disruptions in 

the electron transport chain reduce electron leakage and, thus, oxidative damage. Several low molecular weight 

compounds, such as melatonin, its metabolite N
1
-acetyl-5-methoxykynuramine, resveratrol, -lipoic acid, and various 

mitochondrially targeted nitrones are capable of supporting mitochondrial electron flux. Some of them have been 

successfully used for extending the lifespan of experimental animals. Importantly, chemopreventive effects of these 

substances against cancer development should not be confused with a slowing of the aging process. We also focus on 

connections between these compounds and mitochondrial biogenesis, including the roles of sirtuins and signaling via 

peroxisome proliferator-activated receptor-  coactivator-1 , the participation of the circadian oscillator system in radical 

avoidance, as well as the potentially beneficial or detrimental effects of NO, as either a regulator or a source of 

mitochondrial dysfunction. Especially in the central nervous system, anti-excitatory actions by melatonin, kynurenic acid 

and theanine are discussed, which seem to prevent calcium overload that results in mitochondrial dysfunction. New 

findings on direct binding of melatonin to the amphipathic ramp of Complex I may indicate an additional regulatory role 

in the avoidance of electron leakage. 
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INTRODUCTION 

 Aging is a complex phenomenon, in which slow, linger-
ing processes of steady declines in metabolism and physio-
logical functions are superimposed by single events of 
deterioration, which are caused by diseases and followed by 
secondary impairments. In the worst case, infarction, stroke, 
renal failure or cancer, and sometimes also the medicinal 
treatment, represent profound individual catastrophies, which 
impair the function of organs and cells and, thereby, 
contribute to the acceleration of the more continual processes 
of aging, even if the primary treatment is per se successful. 
However, less severe diseases may also affect the health 
state in a way to make aging more rapidly progressing. Much 
of theoretical work has been published on the mechanisms of 
aging. Although the increase of age-related morbidity has 
some explanatory plausibility for the consequences of the 
step-wise events of impairment, it does not seem to fully 
comprise the causes and mechanisms of the more steady 
functional declines. This aspect is multi-faceted. It includes 
the maintenance of immunological functions for safeguar-
ding the individual’s resistance to germs and viruses [1,2], 
the preservation of healthy endothelial surfaces and also 
efficiently working mitochondria. In part, the organismal 
decline seems to be associated with reduced capacities for  
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cell division because of telomer shortening, but even more 
with progressing losses of adult stem cells, which leads to a 
reduced capacity for tissue repair. However, this cannot be 
equally valid for every organ, because of enormous 
differences in the replacement of cells and the survival of 
partially dysfunctional cells. Despite this obvious diversity, 
the key to the slow processes of impairment has to be sought 
in the metabolism of an organism. This view is supported by 
the existence of aging-suppressor genes, such as those for 
sirtuins [3-8] and klothos [9-14], which act as cellular energy 
sensors and regulators of cellular and organellar functions.  

 A common theme to many of the age-related dysfunc-
tions is the damage by reactive oxygen and nitrogen species 
(ROS and RNS). Different sources of these potentially 
damaging intermediates are of relevance. Oxidants induced 
especially by UV light are important to the skin. Macro-
phages and other oxidant-producing leukocytes can contri-
bute to the damage of epithelial surfaces, and atherosclerotic 
incrustations lead to further damage by nitric oxide ( NO) 
derived free radicals, especially radical pairs formed from 
peroxynitrous acid (ONOOH  NO2 and OH, i.e., nitrogen 
dioxide and hydroxyl radical) or from the peroxynitrite-CO2 
adduct (ONOOCO2

–
  NO2 and CO3

–
, i.e., nitrogen 

dioxide and carbonate radical) [15,16]. In this scenario, 
superoxide anions (O2

–
) required for peroxynitrite formation 

are generated at high rates in cells compromised by 
insufficient oxygen supply, whereas NO is produced in the 
partially unsuccessful attempts of causing vasodilation, and 
CO2 is present in supranormal concentrations because of the 
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reduced blood flow [16]. If not formed in the oxidative burst 
of an activated leukocyte, the major sources of O2

–
 are 

usually mitochondria. Electrons are leaking, mostly at Com-
plexes I and III, when secondary bottlenecks transiently 
impede electron flux, e.g., at Complex IV under conditions 
of insufficient oxygen supply [17,18]. Also in other scena-
rios, electron leakage from mitochondria is a main cause of 
oxidant formation. O2

–
 is converted to more destructive 

radicals, either via peroxynitrite or dismutation to O2 and 
H2O2, this latter compound being another source of the 
devastating OH. Moreover, CO2 is abundantly available in 
the mitochondrial matrix, where it is produced. Therefore, 
elevated mitochondrial generation of O2

–
 by electron 

leakage from the electron transport chain is likely to result in 
high rates of ONOOCO2

–
 formation and the radicals formed 

by its decay.  

 Mitochondrial dysfunction obviously occurs during nor-
mal aging, but seems to be cell type- or tissue-specific. It can 
even vary within a cell, as observed in cardiomyocytes, in 
which subsarcolemmal mitochondria did not show profound 
signs of dysfunction in the course of aging, whereas 
interfibrillary mitochondria exhibited severe decreases in 
Complex III and IV activities and increased electron leakage, 
mainly from the Qo site of Complex III. However, anti-
oxidative protection especially of cardiolipin, which is 
required for the function of Complexes III and IV, largely 

restored interfibrillary mitochondrial activities [19-25]. 

 The involvement of mitochondria in the aging processes 
has already been assumed in the earlier free radical theory of 
aging [26,27]. In its more recent versions, it has developed 
towards a model centered on mitochondrial damage and 
dysfunction [28-30]. The paradigm has meanwhile changed 
from the premises that these organelles are both major source 
and target of destructing radicals to the new perspectives of 
metabolism modification and avoidance of electron leakage. 
Therefore, the new questions to be answered are those of 
how mitochondrial function can be supported and maintained 
in the long run, how electron dissipation can be avoided, and 
which molecules may be suitable for this purpose. 

OXIDATIVE DAMAGE DURING AGING AND ITS 

RELATIONSHIPS TO CHRONOBIOLOGY 

 Enhanced oxidative damage of membrane lipids and 
biological macromolecules during aging, including the con-
sequences for cell death, are amply documented [31-48]. In 
the absence of experimentally induced radical formation, 
e.g., for testing the rises in vulnerability, it is frequently 
difficult to distinguish between damage as a cause, a co-
phenomenon and a consequence of aging processes. Pre-
sumably, all of these possibilities have to be equally consi-
dered. Diseases may not only weaken the body’s resistance, 
but also lead to enhanced radical generation. The causes may 
be either cell damage and death or oxidants formed in the 
organism’s defense responses. Rises in oxidant formation, as 
occurring in the course of aging, may increase the 
dysfunction of structures relevant to free-radical generation, 
in particular, mitochondria, so that a vicious cycle between 
cause and consequence is initiated. 

 It is not the aim of this review to repeat discussions on 
the numerous findings concerning progressive oxidative 
damage during aging, nor to refer to the countless attempts 
of pharmacological interventions. However, some aspects 
shall come into focus which are, in the broadest sense, 
bridging chronobiology and oxidant generation. 

 Damage to mitochondria, a major source of oxidants, 
during aging is a long-known phenomenon [19-28,44,49]. 
This damage has been found to progress more rapidly in 
senescence-accelerated mice [50]. However, caution is due 
with regard to interpretations based on the original free-
radical theory of aging, including the classic assumptions of 
a purely mitochondrial vicious cycle. It has been criticized 
with good reason that many of such conclusions are derived 
from pharmacological experiments, which are far from real 
life during normal aging [51]. Moreover, investigations in 
mitochondrial DNA (mtDNA) mutator mice revealed that, 
despite amplified mitochondrial mutations in the course of 
aging, no increased ROS production was demonstrable [52]. 
This should mean that the original assumption of mitochon-
drial mutations as a source of enhanced ROS generation is 
not supported. Moreover, it seems important to dismiss the 
idea that mtDNA were particularly vulnerable because of a 
lacking chromatin structure. In fact, mtDNA is densely loa-
ded with proteins, in particular, the mitochondrial trans-
cription factor A (TFAM), a high mobility group (HMG) 
related molecule, which also fulfills functions in nucleoid 
structure, damage sensing and mitochondrial replication [53-
56]. Several other proteins, including anti-oxidant enzymes, 
are bound to the mtDNA as well [56]. Nevertheless, the lack 
of a clearly demonstrable relationship between mitochondrial 
mutations and radical generation does not immediately imply 
that a vicious cycle between mitochondrial dysfunction and 
free radical production does not exist. It only does not 
include the damage to mtDNA as a necessary component. It 
rather seems that enhanced radical formation causes damage 
to the electron transport chain (ETC). This leads, in turn, to 
enhanced electron leakage and, thus, oxidants affecting both 
the ETC and, upon dissipation into other compartments, the 
rest of the cell. Therefore, the vicious cycle should be 
understood as a self-enhancing, in the cybernetic sense 
“positive”, feedback loop between electron leakage and the 
causes of further leakage from the damaged ETC. 

 The relationship between radical formation to chrono-
biology has several aspects, (i) age-associated declines in the 
amplitude of circadian oscillations, (ii) dysphasing, as 
occurring by progressive shortening of the spontaneous 
circadian period and leading to age-related advances of the 
clock, and (iii) the steady decline in the nocturnal rhythmic 
secretion of melatonin. 

 The importance of circadian rhythms in aging may not be 
a matter of general awaress. Nevertheless, the evidence for 
its relevance is convincing. An important, but frequently 
overlooked finding was obtained in aged Syrian hamsters, 
which received transplants of suprachiasmatic nuclei (SCN) 
[57], the hypothalamic structures which represent the circa-
dian pacemaker. Although such a transplant cannot form a 
structure fully equivalent to the recipient’s own SCN, it did 
not only restore the circadian time pattern of locomotor 
activity, which had previously become irregular and partially 
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disrupted in the aged animals, but it also extended the 

lifespan of the recipients [57]. 

 Relationships between circadian rhythms, oxidants and 
anti-oxidative protection are obvious under various aspects. 
Oxidant formation is rhythmic, already as a result of rhythms 
in metabolism, in light-exposed species also as a conse-
quence of radiation. Organisms have adapted to this periodic 
challenge by generating circadian oscillations of anti-oxidant 
enzymes and concentrations of low molecular weight anti-
oxidants (LMWAs), findings that were obtained in many 
different species from phylogenetically distant taxa, inclu-
ding unicellular algae, invertebrate and vertebrate animals 
[58]. In Drosophila melanogaster, a rosy mutant (ry

506
) 

unable to synthesize the endogenous LMWA urate showed 
strongly elevated levels, enhanced circadian amplitudes and 
alterations in the temporal pattern of protein carbonyl, an 
oxidative protein modification [59]. The relevance of 
circadian rhythms for attenuating oxidative damage became 
even more evident in animals carrying mutations in clock 
genes of the circadian core oscillator. In the arrythmic per

0
 

mutants of D. melanogaster, protein carbonyl did not only 
show the absence of a circadian pattern, but was, addi-
tionally, markedly elevated [59]. Moreover, per

0
 flies 

exhibited an elevated susceptibility to exogenously induced 
oxidative stress [60]. Interestingly, increased oxidative 
damage to proteins was also observed in the short period 
mutant per

S
, when the animals were maintained under a 

light/dark cycle of 12:12 hours, i.e., a Zeitgeber period 
substantially deviating from the spontaneous period of the 
per

S
 animals [59]. A corresponding observation was made in 

another short period mutant of a different organism, the tau 
mutant of the Syrian hamster. In this case, both protein 
carbonyl and lipid peroxidation were strongly elevated in the 
Harderian gland [61], an organ that is particularly vulnerable 
to oxidative damage [62]. Collectively, these findings indi-
cate that not only the mere existence of a circadian rhythm is 
decisive for avoiding damage by oxidants, but also an 
appropriate phasing that allows detoxification of free radicals 
in those circadian phases when enhanced anti-oxidative 
protection is required, e.g., in conjunction with elevated 
metabolism. Moreover, findings in tau hamsters revealed a 
relationship to lifespan. Again, the aspect of appropriate 
rhythmic coordination comes into focus: Homozygous tau 
hamsters showed only a moderate statistical tendency of 
reduced lifetime (mean survival 15.8 vs. 17.5 months in 
wild-type], but heterozygous tau animals had a substantially 
shortened life span (10.9 months) [57]. This may be taken as 
a sign of internal malcoordination, due to differently acting 
oscillators. 

 Enhanced oxidative damage because of dysphased 
rhythms may not only occur in clock mutants, but also result 
from circadian phase shifts, as occurring in shift work or 
after transmeridian flights. In fact, repeated phase shifts were 
already shown decades ago to reduce the lifespan of flies 
[63]. Similar results were obtained in cardiomyopathic 
hamsters [64]. Shift work as a source of health problems is 
beyond any doubt [65-70] and may also affect longevity, at 
least in a subpopulation of individuals. However, this 
statement should not be misunderstood in terms of an 
oversimplification, since the impairment by shift work  

 

cannot be reduced to oxidative stress. Many other factors, 
such as sleep difficulties, associated problems of working 
conditions, and the role of circadian clock genes in pre-
venting cancer contribute to statistically demonstrable health 
problems. The relationship between circadian dysregulation 
and cancer has received substantial support during the last 
years, After the original discovery that mice carrying a 
mutation in the per2 gene are cancer-prone [71,72], nume-
rous studies have now shown that several core oscillator 
proteins, including their variants, such as PER1, PER2, 
PER3, CRY1, CRY2, CLK, BMAL1 and CK1  are down-
regulated in various forms of cancer, and/or act as cancer 
suppressor genes and sensors of DNA damage [73-82]. 
Although it is far from being clear to what extent oxidative 
stress may be involved in this phenomenology, and although 
down-regulation of clock genes may be largely due to 
hypermethylation in the respective promoters [73,83,84], the 
consequence of the circadian dysregulation is unavoidably an 
insufficient management of redox control, resulting in 
increased oxidative damage and higher probability of 

mutations. 

 Another aspect of circadian rhythmicity in relation to 
redox balance concerns melatonin. When thoroughly ana-
lyzed, this turns out to be a highly multi-faceted host of 
actions. In its role as a hormone of the pineal gland, mela-
tonin acts as a regulator of numerous circadian functions. In 
its multiple roles as hormone, tissue factor, paracoid and 
autocoid [85], it also acts as an agent protecting against 
oxidative damage [86-95]. Various modes of action have 
been identified at different levels, from anti-excitatory/anti-
excitotoxic and anti-inflammatory effects to regulation of 
anti- and pro-oxidative enzymes and direct radical detoxi-
fication, as summarized elsewhere [91,96]. Moreover, mela-
tonin has profound actions on mitochondria and, thereby, 
strongly influences electron flux and leakage [17,18,58,97-
105]. Importantly, such findings were not only obtained 
under experimental conditions designed to challenge mito-
chondrial functions, but also in otherwise untreated animals. 
Beneficial effects on mitochondrial electron flux, respiratory 
efficacy and avoidance of damage to the ETC were 

especially observed in aged animals [99-101,106-112]. 

 In the relationship between melatonin and aging, a 
crucial observation is the age-dependent decline in the 
nocturnal peak of melatonin secretion by the pineal gland. 
Although this is not equally pronounced in every individual, 
it is clearly demonstrable on a statistical basis and can be 
described as a dramatic change occurring in the majority of 
subjects [113-123]. The waning nocturnal melatonin peak 
has been interpreted as a consequence of general circadian 
deterioration, largely caused by progressing dysfunction of 
the pacemaker [124]. This may not be the only possible 
reason, since the onset of the decrease is already observed in 
middle-aged subjects [118,119,121], in which deteriorations 
of pacemaker function are not yet obvious. Nevertheless, the 
changes in melatonin may strongly contribute to a 
weakening of the intra-organismal circadian organization 
and to losses in the efficacy of protective functions, at the 
levels of anti-oxidative defense, the immune system and 
mitochondria as well.  
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RADICAL DETOXIFICATION, RADICAL AVOI-

DANCE AND RESISTANCE TO OXIDATIVE STRESS 

 The classic view of anti-oxidative protection is based on 
the assumption that radicals already formed have to be 
detoxified as efficiently as possible. This concept was 
supported by numerous pharmacological investigations, in 
which oxidants or oxidant-generating compounds were 
administered and their deleterious effects antagonized by 
usually unphysiologically high quantities of radical sca-
vengers. Although such approaches are not without value, 
they may tell little about the processes underlying the aging 
process. They may be, in part, helpful in the combat against 
chronic inflammation associated with aging, but the aging 
process per se, in terms of a steady, lingering decline may 
remain unaccessible. In fact, the idea of prolonging life by 
overexpression of anti-oxidant enzymes has been only of 
limited success, and some of the initial reports on efficacy 
were later corrected or withdrawn. Moreover, knockout mice 
for major anti-oxidant enzymes, including those located in 
mitochondria, frequently failed to substantially decrease 
longevity, although oxidative damage to DNA and the inci-
dence of cancer were enhanced [125-128]. Radical detoxi-
fication by scavengers and anti-oxidant enzymes is certainly 
a necessity, and a deficiency of anti-oxidants, e.g., by 
malnutrition, will cause the development of diseases, but, in 
relation to aging, this does not seem to touch the core of the 
problem. A possible access to unveiling the relevant 
processes may be sought in the comparison between long-
lived and short-lived species of approximately same size. In 
the past, differences in the efficacy of the radical-detoxifying 
enzymes have been in the focus and several reports have, in 
fact, pointed into this direction. Although this may contribute 
to longevity, it does not necessarily identify the crucial 
differences. In a recent study, muroid species of similar size, 
but differing considerably in lifespan were compared, the 
white-footed mouse (Peromyscus leucopus) and deer mouse 
(Peromyscus maniculatus) with a maximal lifespan of up to 
8 years and the house mouse (Mus musculus) having a 
maximal lifespan of 3.5 years [129]. Although Peromyscus 
was shown to possess a more efficient anti-oxidant defense 
than Mus, two additional features became evident, namely, a 
superior DNA repair system, and a lower rate of mito-
chondrial oxidant formation. A more pronounced oxidative 
stress resistance was also reported for two other small, long-
lived mammals, the naked mole rat (Heterocephalus glaber) 
and the little brown bat (Myotis lucifugus) [130]. 

 The triad of anti-oxidative defense, radical avoidance and 
oxidative stress resistance may be a key to especially healthy 
aging, but the relative contribution to lifetime remains to be 
clarified. In the cases of anti-oxidative protection and stress 
resistance, it is of utmost importance to distinguish between 
chemopreventive effects of anti-oxidants and changes in the 
aging process itself. This is of particular relevance in the use 
of inbred laboratory mouse strains, in which mortality from 
cancer prevails and, therefore, apparent changes in average 
lifespan are often caused by a reduction or delay of car-
cinogenesis [131]. However, in conjunction with the 
chemopreventive effects, a more youthful appearence of 
aging mice has been observed when compounds such as 
melatonin [29,132] or resveratrol [133] were administered, 
even in those investigations in which no significant effects 

on lifespan were demonstrated. Therefore, natural com-
pounds or drugs that reduce oxidative damage can be of 
value for healthy aging, even in the absence of life extension. 

 However, these considerations clearly indicate the 
premier importance of selecting a suitable object for aging 
studies. In organisms or strains in which cancer is not a 
major cause of death and, therefore, chemoprevention not 
decisive, effects on lifespan may be entirely different. This is 
of particular relevance in the case of the highly pleiotropic 
agent melatonin, which is not only a pineal hormone but also 
present in various tissues, often at much higher quantities 
than in the pineal gland [85,93,96,132,134]. The selection of 
senescence-accelerated mice, SAMP8, which can be also 
compared with SAMR1, a normally aging strain carrying the 
same genetic background [135], can lead to results subs-
tantially different from those obtained in other strains. In 
SAMP8 mice, melatonin caused a clearly demonstrable 
prolongation of life [111]. A main question raised by the 
studies on SAMP8 is that of the reasons for the more rapid 
aging. These may not be identical with the normal causes of 
aging, although such an idea is highly attractive. As an 
example, one should remember progerias caused by 
mutations in lamin genes [136,137]. No one would assume 
that breakdown of the nuclear lamina could be a major cause 
of normal aging, despite the enormous acceleration of aging 
in these laminopathies. In SAMP8, a higher sensitivity 
towards oxidative damage was demonstrated [138]. There-
fore, anti-oxidant treatment should be effective, including the 
possibility of reducing oxidative damage by radical 
avoidance, but the question remains whether it counteracts 
the normal aging process or “only“ a cause of accelerated 
aging. Nevertheless, as long as this question has not been 
decided, studies on senescence-prone mice remain of high 
gerontological interest.  

 SAMP8 mice may also provide substantial information to 
a more comprehensive understanding of aging since they 
exhibit more rapidly developing changes in mitochondrial 
metabolism, which are clearly reduced by melatonin. This 
aspect will not be discussed here in any detail, because of a 
parallel publication by another group on this issue. As 
outlined in other reviews dealing with mitochondrial func-
tion and melatonin [17,18,58], numerous results collectively 
show that changes observed at advanced age of the 
senescence-accelerated animals are reverted or attenuated by 
this indoleamine, such as, reductions in the respiratory con-
trol index (RCI); in state 3 respiration; in dinitrophenol-
uncoupled respiration, which reflects to some extent the 
respiratory capacity; in the ADP/oxygen ratio; in the ATP 
level; in the activities of Complexes I and IV. However, it is 
necessary to distinguish in studies on SAMP8 mice between 
processes occurring during aging in otherwise unchallenged 
animals and those intending to identify alterations in 
vulnerability, inducibility of apoptosis, and effects of inflam-
mation. Though all these latter changes may be relevant in a 
specific context, they may not properly reflect the aging 
process per se. 

 Although caution is due concerning the very meaning of 
experimental interventions in senescence-accelerated mice, 
these animals provide valuable hints on radical avoidance, 
since they show age-related mitochondrial malfunctions in 
electron flux and energy efficiency, which are associated 



New Vistas on Oxidative Damage and Aging The Open Biology Journal, 2010, Volume 3     43 

with enhanced electron dissipation and, thus, free radical 
formation [17,18]. In this context, it seems worth-while to 
look at the changes which naturally occur during aging in the 
absence of pharmacological treatments. As already outlined 
in the Introduction, rises in mitochondrial free-radical for-
mation are observed during aging, which are related to 
impairments of electron flux and lead to electron dissipation. 
The causes for transient, local blockades of the ETC (Fig. 1) 
may  be  mainly  sought  in (i) more frequent  interactions  of  
elevated NO with irons in the ETC complexes; (ii) destruc-
tive actions of peroxynitrite-derived radicals, again a 
consequence of elevated NO; (iii) oxidative or nitrosative 
modifications at the major sites of electron leakage, i.e., (a) 
the especially vulnerable amphipathic ramp of Complex I 
and (b) Complex III, in which the interruption of the intra-
monomer electron transfer between the two bL hemes at the 
Qo site seems to be decisive; (iv) cardiolipin peroxidation 
leading to dysfunction of Complexes III and IV; and (v) 
relative O2 deficiency that may result from atherosclerosis 
and which causes a secondary bottleneck of electron flux at 
Complex IV [17,18]. All these changes can occur con-
comitantly. A realistic picture of electron dissipation is only 
possible by considering its dynamics. Electron flux is by no 
means a steady and uniform homeostatic process occurring 
at more or less constant rates in a given metabolic situation. 
Recent investigations have shown that electron leakage 
happens in a flash-like fashion [139]. Therefore, bursts of 
superoxide anions, a source of H2O2- and peroxynitrite-
derived radicals, can be expected to be much stronger at 
reduced electron flux capacity, whereas basal rates should be 

less affected. The lesson from these considerations should be 
that maintenance of electron flux capacity is decisive for 
reducing electron dissipation and, thus, radical formation. 
With some likelihood, the management of radical avoidance 
by safeguarding electron flux may be much more efficient 
than the detoxification of radicals already formed 
[17,18,58,91]. 

MECHANISMS OF RADICAL AVOIDANCE AND 

POSSIBLE INTERVENTIONS 

 Numerous causes of enhanced radical generation can be 
identified, also beyond toxicological and inflammation-
related effects. Already within the frame of physiological, 
lifestyle-dependent, genetically or age-related pathophysio-
logical processes, elevated radical formation is possible. The 
chronobiological influence on oxidative damage has already 
been discussed. Correspondingly, the avoidance of unneces-
sary phase shifts and a chronohygiene in favor of sustained 
circadian amplitudes should be of advantage. The frequently 
observed age-related declines in SCN function and in 
nocturnal melatonin secretion may be seen as a possibility 
for interventions that could lead to reduced radical 
formation. Circadian amplitudes may be enhanced by 
repeated exposures to strong Zeitgeber signals, such as bright 
light in the morning, and/or melatonin, alternately other 
melatoninergic agonists, at fixed times in the evening. 
Additionally, these treatments favor appropriate circadian 
phasing relative to external time and, in the case of 

 

Fig. (1). The vulnerable sites of the mitochondrial electron transport chain (ETC) and the main sites of electron leakage. Arrows in pink 

color: electron flux through the ETC; red arrows: superoxide formation by electron donation to O2; flashes and text in violet color: effects 

leading to interruption of the electron transport and enhanced electron dissipation. The amphipathic ramp of Complex I is particularly 

vulnerable to modifications because of its exposure to reactive intermediates arriving from the aqueous matrix. Abbreviations: Com = 

Complex; CoQ = coenzyme Q; Cyt C = cytochrome c.  
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melatoninergic agonists, promote sleep onset in humans, 
which may be also of advantage for aged individuals [140]. 
As far as a substitution therapy is intended in cases of 
strongly reduced nocturnal melatonin, the natural hormone 
may be given daily, provided that no contraindications exist. 
If only enhancements of the circadian amplitude are 
required, melatonin or one of its synthetic analogs may be 
used for a few days, a procedure which should be repeated at 

intervals as individually required. In the relation to anti-
oxidative protection, the use of melatonin instead of its 
analogs may be recommendable because of its additional 
beneficial effects, but this has to be distinguished from the 
chronobiotic actions concerning radical avoidance. 

 Reduced damage by free radicals is especially desirable 
in the central nervous system and may contribute to the 

 

Fig. (2). Radical avoidance: multiple sites of intervention by several protective compounds. A simplified overview of a complex network. : 

Stimulation or chemical reaction; : inhibition. Colors of text and arrows, black: processes leading to enhanced formation of free radicals; 

brown: actions of resveratrol; green: actions of melatonin and its metabolite AMK; blue: main action of kynurenic acid; olive: main action of 

L-theanine; pink: responses to metabolic sensing; red: pathways influenced by multiple factors. Abbreviations: AMK = N
1
-acetyl-5-

methoxykynuramine; AMPK = adenosine 5‘-monophosphate-activated protein kinase; Com = complex (of respiratory chain); ETC = 

electron transport chain; FenR = Fenton reaction; GSH = reduced glutathione; PGC-1  = peroxisome proliferator-activated receptor-  

coactivator-1 ; PPAR  = peroxisome proliferator-activated receptor- ; SIRT1 = sirtuin-1; SODs = superoxide dismutases. 
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prevention or delay of neurodegeneration. In this context, the 
avoidance of neuronal overexcitation, in the worst case 
excitotoxicity, is of particular importance (Fig. 2). Long-
lasting neuronal excitation is usually associated with 
elevated calcium influx, leads to extended periods of high 
NO levels and, thus, peroxynitrite-induced damage. It may 
cause mitochondrial calcium overload, with the possible 
consequence of breakdown of the mitochondrial membrane 
potential and apoptosis. All these effects described are 
antagonized by melatonin [91,93,102-107]. Another com-
pound highly efficient in suppressing neuronal overexci-
tation is kynurenic acid [141,142], which acts in multiple 
ways, by binding to the glycineB site of the NMDA receptor 
[143,144] and by decreasing extracellular glutamate levels 
by blocking presynaptic 7 nicotinic receptors ( 7nAChRs) 
at glutamatergic nerve endings [145,146]. An obstacle for 
the direct application of kynurenic acid is its poor pene-
tration of the blood-brain barrier. However, this can be 
overcome by using indole-3-pyruvic acid, which is 
sufficiently taken up by the aromatic amino acid transporter 
and readily forms kynurenic acid via free-radical reactions 
[147-149]. In fact, administration of indole-3-pyruvic acid 
leads to rises in brain kynurenic acid [150]. The precursor 
has been clinically tested and was found to be suitable in 
reducing signs of chronic stress and mild anxiety, in 
accordance with the assumed anti-excitatory action of the 
product, kynurenic acid [151,152]. From the antagonism to 
overexcitation one might also deduce decreases in radical 
formation and, thus, a mitigation of oxidative stress. 

 While the above-mentioned mechanisms are widely 
related to intercellular signaling, direct effects on mitochon-
dria may be expected to be even more effective in reducing 
radical formation. Again, melatonin is a compound of 
premier interest because of its actions as a mitochondrial 

metabolism modifier [58]. The indoleamine, previously 
mainly regarded as a radical scavenger and regulator of 
redox-active enzymes, exerts several additional actions at the 
mitochondrial level that exceed the earlier findings (Fig. 2). 
Due to its amphilicity melatonin easily crosses membranes, 
but is also water-soluble and, therefore, available in any 
compartment and in the lipid environment as well. 
Moreover, it has been shown to accumulate in mitochondria 
[153,154]. Again, melatonin acts in multiple ways, which 
collectively contribute to radical avoidance. First, melatonin 
interferes with NO metabolism by down-regulating the 
inducible nitric oxide synthase (iNOS), especially a 
mitochondrially targeted iNOS subform [154-159], by 
inhibiting neuronal NOS (nNOS) [107,160-164], scavenging 
of NO and peroxynitrite-derived radicals [89,107,165,166] 
(Fig. 3). Moreover, melatonin’s metabolite, N

1
-acetyl-5-

methoxykynuramine (AMK) acts as a potent scavenger of 
NO [167-170], of ROS formed from peroxynitrite [167], and 
as a highly efficient inhibitor of nNOS [171]. Therefore, any 
NO-related partial ETC blockade is antagonized by 
melatonin and its product. Second, melatonin supports the 
function of the ETC by preventing lipid peroxidation in 
mitochondrial membranes, in particular that of cardiolipin, 
which is crucial for the appropriate function of Complexes 
III and IV [17,18,112,172,173] (Fig. 2). Lipids, in particular, 
cardiolipin, are additionally protected by melatonin because 
of its influences on glutathione metabolism and the up-
regulation of mitochondrial glutathione peroxidase (GPx) 
[105-109,111,174-176]. This has been also demonstrated in 
SAMP8 mice, in which melatonin antagonized the age-
related decreases in GPx [99,109,111]. Although these 
studies did not specifically relate the effects observed to the 
isoform GPx4, this enzyme should have been involved. 
Moreover, cytochrome c release was shown to be strongly 
affected by GPx4 levels, and cardiolipin was protected in 

 

Fig. (3). Some aspects of NO metabolism, which are related to mitochondrial effects and counteractions by melatonin (Mel) and its 

metabolite N
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-acetyl-5-methoxykynuramine (AMK). Red arrows and symbols: down-regulation or inhibition; violet symbols: scavenging. 
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transgenic mice overexpressing this isoenzyme, whereas, in 
heterozygous knockouts, cardiolipin peroxidation was exa-
cerbated [177]. Third, melatonin modulates mitochondrial 
metabolism by directly interacting with the ETC [17,18].  

 The direct effects of melatonin at the ETC have remained 
unclear for quite some time, and more specific data were 
obtained not before recently. One of the ideas for explaining 
the reduction in electron leakage caused by melatonin had 
been that of an electron shuttle, in which the indole acts as an 
electron donor to the ETC and the resulting melatonyl radical 
as an electron acceptor [58,91,93]. A corresponding action 
was assumed for AMK [58,91]. Electron donation to the 
ETC was, in fact, observed at cytochrome c, but the 
oxidation process studied led to AFMK, at least under the 
experimental conditions used [178]. Therefore, the idea of an 
electron shuttle bridging electron acceptor sites and those of 
electron dissipation would still require experimental support. 
However, this concept had not been entirely speculative, 
because it was designed on the basis of experience with 
nitrones [58]. These compounds are known as spin traps, but, 
compared to melatonin, they are relatively poor radical 
scavengers. Nevertheless, they are effective in supporting the 
electron flux through the ETC, thereby reducing oxidative 
stress [179-181], findings which may be interpreted in terms 
of decreased electron leakage and improved radical 
avoidance. Since the compound used in earlier studies, -
phenyl-tert-butylnitrone (PBN), had some unfavorable 
properties with regard to mitochondrial entrance and 
decomposition, derivatives were developed which were 
specifically designed for mitochondrial targeting, e.g., by 
making the compounds more amphiphilic [181-185]. Several 
of these newly developed nitrones were much more potent 
scavengers than PBN, but, more importantly, they protected 
from H2O2, peroxynitrite and doxorubicin toxicity with high 
efficiency [182-185]. In a gerontological model organism, 
the rotifer Philodina acuticornis odiosa, some of these 
compounds exerted remarkable effects of life extension. The 
amphiphilic nitrone LPBNAH was capable of more than 
doubling mean and maximal lifespan [182]. This effect was 
obviously not caused by slowing metabolic processes, as 
known from life-extending, ETC-related mutants of 
Caenorhabditis elegans [17,186,187], since the longer-lived 
rotifers grew to much larger sizes than the normal-lived 
animals [182]. Unfortunately, corresponding experiments in 
mice were not successful, presumably because of 
decomposition of these nitrones in the murine metabolism 
differing from that of rotifers, and formation of harmful 
products. However, the nitrone effects in Philodina may be 
taken as a proof of principle for the efficacy of mitochondrial 
metabolism modifiers. 

 The distinction between mitochondrial metabolism 
modification and free-radical scavenging seems to be of 
particular importance, although several of the protective 
compounds combine the two properties, foremost melatonin 
and its metabolite AMK. Experiments with L-theanine, a 
substance present in green tea leaves, but being almost 
devoid of radical scavenging properties, was found to 
efficiently prolong life in outbred mice not prematurely 
dying from cancer, in Fischer 344 rats and in Philodina. L-
Theanine also supported healthy aging of mice, restored 
brain ATP levels to normal in 24 months old rats, prevented 
neurodegeneration in the hippocampal areas CA1 and CA3 

and restored the hippocampal density of serotoninergic 
innervation [B Poeggeler, pers commun]. These data by MA 
Pappolla and B Poeggeler, which are not yet published in 
detail, but were briefly cited elsewhere [132], could be 
related to the modification of mitochodrial metabolism in the 
central nervous system. The efficacy of the compound is 
obviously of indirect nature, due to the modulation of 
glutamatergic neurotransmission, and presumably includes 
the prevention of overexcitation [188] (Fig. 2). 

 The mitochondrial effects of melatonin may be partially 
independent of redox reactions. In addition to the previously 
known low-affinity binding site related to the inhibition of 
the mitochondrial permeability transition pore [189], a 
different, high-affinity mitochondrial binding site exists. 
Earlier studies in pigeon brain had shown that 39% of 2-
iodomelatonin was bound to mitochondria [190]. More 
recently, the high-affinity site (Kd = 150 pM) was found to 
be localized at the amphipathic ramp of Complex I and 
seems to be associated with melatonin-dependent rises in the 
activity of the iron-sulfur cluster N2 [17,18,96,132,134,191]. 
These data by MA Pappolla, B Poeggeler and B Pucci have 
not yet been published in detail, but some characteristics 
have been reported [191]. Displacement experiments with 
specific ligands indicated binding near the N2 cluster. These 
results strongly favor the idea that melatonin may directly 
control electron flux at Complex I and, thereby, reduce 
electron dissipation at this site, an action of radical 
avoidance.  

CONNECTIONS BETWEEN REDOX, SENSING 

MECHANISMS AND AGING-SUPPRESSOR GENES? 

 The conclusion that anti-oxidative protection is much 
more than radical scavenging and regulation of anti- and pro-
oxidant enzymes, but rather has to consider the attenuation 
of free-radical generation, necessarily leads to the question 
of how mitochondrial function is controlled and dysfunction 
avoided. This complex of problems remains to be elucidated 
in many details. Nevertheless, various indications for future 
studies exist. The processes of aging have been shown to be 
influenced by mechanisms of both redox and nutrient 
sensing [192]. Since nutrients are also related to the energy 
balance and, thus, mitochondrial function, interconnections 
between redox- and nutrient-regulated pathways have to be 
expected. Their terminal actions seem to control electron 
flux and dissipation, but also mitochondrial biogenesis. 

 Calorie restriction has been frequently used as a means 
for prolonging life [4,192-195]. Nutrient sensing had been 
related to the signaling pathway of growth hormone (GH) 
and insulin-like growth factor-1 (IGF-1), whose disruption 
robustly favored longevity [193]. However, an additional 
relationship between caloric restriction and the aging 
suppressor SIRT1 became apparent [4,193,194]. Sirtuins are 
known to promote longevity in numerous organisms, from 
yeast to insects and vertebrates. The seven mammalian 
subforms, SIRT1 to SIRT7, are multiply involved in 
mitochondrial function. At least SIRT3, SIRT4 and SIRT5 
are mitochondrially localized [196]. Like another aging 
suppressor, klotho, SIRT3 modulates the FoxO signaling 
pathway by interacting with the mitochondrial FoxO3a 
homolog, daf-16 [197]. Due to its function as an NAD

+
-



New Vistas on Oxidative Damage and Aging The Open Biology Journal, 2010, Volume 3     47 

dependent lysine deacetylase [198], SIRT3 prevents 
mitochondrial lysine hyperacetylation [196]. In fibroblasts, it 
was shown to physically interact with the Complex I subunit, 
the 39-kDa protein NDUFA9, to enhance Complex I activity 
and ATP levels [199]. The functional relationship of sirtuins 
to mitochondria goes beyond their presence within these 
organelles, comprises additional regulatory effects and also 
mitochondrial biogenesis [4] (Fig. 2). The subform SIRT1, 
which is not mitochondrially localized, also modulates NO 
formation, the insulin/IGF-1 pathway, activates FoxO sub-
forms and, thereby, anti-oxidant enzyme expression [4,200]. 
A connection to free radical metabolism is, therefore, 
evident. The requirement of SIRT1 for mitochondrial 
activity becomes obvious by its dependence on the AMP 
level, an indicator of ATP deficiency. Normally, SIRT1 as 
well as AMP-activated protein kinase (AMPK) simulta-
neously respond to elevated AMP, but these two important 
regulators also act concordantly in situations of stress, 
starvation or calorie restriction [201] (Fig. 2). SIRT1 seems 
to have additional effects on mitochondrial electron transport 
capacity, including the amount of mitochondrial volume per 
cell [4,200]. Increased mitochondrial biogenesis was found 
to be associated with rises in AMPK, in NO – which, at 
moderate concentrations not leading to detrimental per-
oxynitrite levels, should not be generally harmful – and, 
more in particular, with the up-regulation of the peroxisome 
proliferator-activated receptor-  coactivator-1  (PGC-1 ) 
[202,203] (Fig. 2). A further connection exists with regard to 
circadian rhythmicity, which we had discussed in its 
relevance to radical avoidance. SIRT1 was shown to 
modulate chromatin remodeling via the clock gene protein 
CLK and seems to directly influence at least peripheral 
oscillators by interacting with the CLK/BMAL1 complex 
[204,205]. These actions should lead, for fundamental 
reasons, to numerous secondary effects, also beyond 
chromatin structure. 

 It seems that the relationships between mitochondrial 
regulators and the anti-oxidative defense are more complex 
than previously thought. AMPK was shown to be up-
regulated by peroxynitrite, so that the activation of this 
enzyme was concluded to represent an early warning signal 
of oxidative stress [206]. Resveratrol, which is, among other 
properties, a radical scavenger, anti-oxidant and anti-inflam-
matory agent [207-209], has also been identified as a dietary 
modulator and ligand of SIRT1 [4,210] (Fig. 2). Resveratrol, 
being the most potent natural SIRT1 activator [8], loses its 
chemopreventive efficacy in SIRT1 knockouts, so that the 
most potent pertinent actions are obviously mediated via this 
sirtuin isoform [211]. Stimulation of mitochondrial bio-
genesis via SIRT1 signaling involves PGC-1  [193,195, 
212]. In endothelial cells, resveratrol increased mitochon-
drial mass and mtDNA content via SIRT1 and up-regulation 
of eNOS. Knockdown experiments showed that the blockade 
of either SIRT1 expression or NO formation prevented these 
effects [212]. Although the involvement of NO may be cell-
type specific, it demonstrates again that moderate levels of 
this gaseous mediator are not detrimental per se. Another 
anti-oxidant, -lipoic acid, also acts via PGC-1  [203]. 
However, it remains to be clarified whether the protective 
effects of this compound are mainly exerted through this 
signaling pathway or through lipoylation of mitochondrial 
proteins, which is also required for the normal functioning of 

the ETC, especially Complex I [213]. With regard to 
mitochondrial actions of sirtuins and their common 
endpoints with mela-tonin, we had suggested to investigate 
their connection to the indoleamine [191]. Thereafter, first 
indications were obtained for such a relationship: in SAMP8 
mice, melatonin was reported to up-regulate SIRT1 [214]. 
Recently, more detailed studies have supported the influence 
of melatonin on SIRT1. In a model using sleep-deprived rats 
[215], mela-tonin was shown to favor the hippocampal 
expression of SIRT1. In another investigation, neuronal 
cultures from young and aged rats were compared with 
regard to effects of melatonin [216]. In neurons from aged 
rats, melatonin up-regulated SIRT1 expression and also 
enhanced the deacety-lation of various SIRT1 substrates, 
such as PGC-1 , FoxO1, NF B, and p53, effects which were 
largely reverted by the SIRT1 inhibitor sirtinol [216]. The 
melatonin-induced deacetylation of PGC-1  indicates that 
mitochondrial biogenesis might be stimulated by the 
indoleamine in vivo. 

CONCLUSION 

 Multiple connections exist between oxidative damage 
and aging. However, it seems important to avoid simpli-
fications. Although the supply with anti-oxidants may favor 
a healthy aging, one should not expect to arrive at substantial 
extensions of lifespan by only detoxifying free-radicals and 
other oxidants formed, even not when this comprises up-
regulations of anti-oxidant enzymes. With regard to the 
crucial roles of mitochondria in the generation of free 
radicals and other oxidants, as well as in the aging-related 
metabolic decline, the support of mitochondrial function 
turns out to be of highest relevance. A well-operating ETC 
does not only provide sufficient amounts of ATP, but, at the 
same time, avoids electron dissipation and thereby radical 
formation. A compromised ETC may be regarded as a source 
of further damage and cellular decline, but this should not be 
interpreted in terms of the original version of the free radical 
theory of aging. If a vicious cycle exists, it is not that one 
between the radical producing ETC and the mtDNA, but 
rather another one within the ETC itself. Damage to the ETC 
causes oxidant formation, which leads to further impairment 
of electron flux. Radical avoidance as an aim of anti-
oxidative protection intends to safeguard electron flux. 
Several low molecular weight molecules, such as resveratrol, 

-lipoic acid, melatonin and its metabolite AMK may be 
suitable for helping sustain the electron transport through the 
ETC and for reducing radical formation. Although these 
compounds have been regarded in the beginning mainly as 
direct anti-oxidants and, later, also as regulators of anti- and 
pro-oxidant enzymes, their role in the control of ETC 
components and mitochondrial biogenesis may be decisive. 
It remains fascinating to see evidence accumulating, which 
reveals how some of these chemically entirely different 
compounds merge at same pathways to promote mito-
chondrial growth. The earlier findings indicating an impor-
tant role of the circadian oscillator system in avoiding 
oxidative damage now receives further support by the 
demonstration that PGC-1 , a central regulator of mitochon-
drial biogenesis, is, at the same time, involved in the 
circadian control. Melatonin, which does not only regulate 
anti- and pro-oxidant enzymes, combines properties of a 



48     The Open Biology Journal, 2010, Volume 3 Hardeland and Coto-Montes 

major circadian regulator and a mitochondrial metabolism 
modifier. It may now be seen in this larger context of a 
regulatory network centered at the support of mitochondrial 
function.  
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