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Abstract:

Object:

Bubbly flows, as present in bubble column reactors, can be simulated using a variety of simulation techniques. It is presented, how
Computational Fluid Dynamics (CFD) methods are used to simulate a pseudo 2D bubble column using Euler-Lagrange (EL) and
Euler-Euler (EE) techniques.

Method:

The presented EL method uses the open access software OpenFOAM to solve bubble dynamics with bubble interactions computed
via Monte Carlo methods. The estimated bubble size distribution and the predicted hold-up are compared with experimental data and
other simulative EE work with a reasonable consensus for both. Benchmarks with state of the art EE simulations shows that the EL
approach shows good performance if the bubble number stays at a certain level, as the EL approach scales linearly with the number
of bubbles simulated. Therefore, different computational meshes have been used to account for influence of the resolution quality.

Conclusion:

The EL approach indicated faster solution for all realistic cases, only deliberate decrease of coalescence rates could push CPU time to
the limits. Critical bubble number - when EE becomes superior to the EL approach - was estimated to be 40.000 in this particular
case.

Keywords: Bubble size distribution, Euler-Lagrange, Euler-Euler, Bubble column, Method of moments.

1. INTRODUCTION

Bubble columns can be found in a various set of operations in chemical and biological applications. In order to
reach  reliable  operation,  an  optimal  Bubble  Size  Distribution  (BSD)  in  any  reactor  type  has  to  be  achieved.  This
markedly depends on the local hydrodynamics [1]. Computational Fluid Dynamics (CFD) simulation is one possibility
to obtain time and space resolved information in respect to complex bubbly flows. In general, they can be simulated in
various ways, from detailed resolved single bubble behavior up to large-scale averaging methods with reactors with
billions of bubbles inside. Special classes are based on Particle Population Balances (PPB) relying on different Break-
up  and  Coalescence  kernels  (B&C),  that  have  been  developed  in  the  last  few  years  to  characterize  the  particle
interactions [2 - 4].

This work focuses on the comparison of Euler-lagrange (EL) and the Euler-euler (EE) approach. The EL approach
yields a high level of detailed information on the bubble scale. In contrast to EE simulations, where the dispersed phase
is considered as pseudo-continuous, every single bubble is resolved and can be tracked on its way through the domain.
The EE approach is less dependent on the bubble number and can  outperform  the EL  approach  when  large  industrial
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scale reactors are simulated.

Although both simulation techniques build on fundamentally different assumptions, they still try to resolve the same
issue, namely a transient bubble population. Be it a faster computation or a higher level of detail, each approach has its
advantages over the other. This is why numerous references mention both different approaches and their application
area [5 - 8]. A consensus of scientific work is that the principles of EL and EE simulations lead to a point, where one of
the methods should be preferred in terms of computational time. This point is mostly dependent on the problem size, or
rather on the bubble number and hold-up. Fact is that the simulation cost scales stronger with the bubble number in the
EL than in EE approach. This is well known in literature, many authors state that the EL approach is faster than EE
simulations until a certain number of bubbles is exceeded [9]. However, one important question is not answered: What
is this certain number of bubbles? Is it of order hundred, ten thousand or even a million bubbles?

This work tries to give an answer to this question by comparing state of the art EE simulations with an EL approach.
Our EL approach makes use of stochastic modeling and improved collision algorithms to compete against the other
simulation techniques. All results are compared with solutions coming from different Method of Moment (MoM) based
EE simulations. We investigate the solution quality and computational cost for both (EL & EE) and identify critical
computation steps.

2. EL MODELING

The EL approach for simulation of bubbly flows can be ranked between the direct numerical simulation (DNS) and
the EE approach. While the EE model resembles the bubbles as a density distribution, in the EL model every single
bubble is calculated as a point volume acting under Newtonian dynamics, while the movement of the surrounding fluid
is solved via Navier-Stokes equations on an Eulerian grid. The internal coordinates of each bubble (size, concentration,
etc.)  are  calculated  using  macroscopic  models,  which  is  the  main  difference  to  DNS  simulations.  However,  the
combination of this Eulerian grid and Lagrangian points yields a higher level of detail  with a moderate increase in
computational cost.

Note, that this detail is achieved by resolving each single bubble. Thus, information of each individual bubble can
be tracked. Bubble coordinates are not bound to the Eulerian mesh; trajectories are calculated with double precision
floating-point manner. However, the underlying eulerian mesh does not contribute any more details than it would do in
EE simulations. The opposite is rather the case, since a lower mesh resolution has to be chosen for the EL approach.

The original Open FOAM solver sprayFoam provided the basis for the bubbly flow simulation shown in this work.
sprayFoam uses an EL approach to simulate liquid or solid particles inside a continuous phase, e.g. a spray injected
through a nozzle. The simulation of bubbles – gaseous particles – require a rework of this original solver to account for
the additional physical effects.

2.1. Continuous Phase Hydrodynamics

Continuous  phase  and  dispersed  bubbles  can  be  calculated  predominantly  independent  from  each  other,  which
allows a solution in two steps. To achieve coupling of phases, the exchange of momentum and energy from the bubbles
is calculated and condensed into the Navier-stokes source term . With the continuous phase velocity , the pressure , the
density and the viscosity , the modified Navier-Stokes equation reads as:

(1)

Turbulence is computed with Reynolds-averaged Navier-stokes (RANS) modeling, which requires significantly less
computational effort than solving for a Large Eddy Simulation (LES) approach. In the RANS model, only the averaged
turbulence properties, like turbulent energy and dissipation, are calculated, while the LES approach will give a more
detailed shape and movement of the actual turbulent eddies in the domain. A single phase k – epsilon turbulence model
was chosen to calculate for the turbulence in the continuous phase and in addition to the original functionality, Bubble
Induced  Turbulence  (BIT)  models  have  been  added.  The  drag  force,  FD,  of  a  rising  bubble  with  velocity  induces
turbulent energy and dissipation into the surrounding phase. This can be calculated using a source term for the turbulent
and dissipative energy equations:

(2)

𝜌 (
𝜕𝑢𝑐

𝜕𝑡
+ (𝑢𝑐∇)𝑢𝑐) = −∇𝑝 + 𝜇Δ𝑢𝑐 + 𝑓 

𝑆𝑘 = ∑ 𝐹𝐷  |𝑢𝑐  − 𝑢𝑏| 
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(3)

The open literature reveals different constants, Cg, and turbulent time scales, τ, according to specific physical effects
in the bubbly flow [10 - 12]. In the presented EL simulation, the model of [11] was used.

(4)

2.2. Bubble Dynamics

Since the continuous phase solution has been vastly modified, the dispersed phase hydrodynamics yield a much
larger rework of the original OpenFOAM solver. Nevertheless, the basic model of Lagrangian particle tracking persists.
The  bubbles  are  assumed  to  be  points  of  mass  at  the  position  X.b.  Local  mass  can  change  due  to  break-up  and
coalescence events. The new position of any specific bubble is calculated discretely with the velocity .

(5)

Forces acting on the bubble will change its velocity. Here mb resembles the bubble’s mass and ΣF stands for the sum
of all acting forces on a single bubble.

(6)

The sum of forces ΣF consists of the buoyancy and weight force FB, the drag force FD, the lift force FL, the virtual
mass force FVM, the wall lubrication force FW and the dispersion force FTD. Here the subscripts b and C stand for the
bubble  and  the  continuous  phase  accordingly,  the  subscript  identifies  the  relative  differences  between  them.
Furthermore, g denotes the gravitational acceleration, p stands for densities, u for velocity, db for the bubble’s diameter,
k for the turbulent kinetic energy and α for the phase fraction. Adjustable model parameters are denoted with Ci- .

(7)

These forces are in particular:

(8)

(9)

(10)

(11)

(12)

(13)

In (11), Vb stands for the bubble’s volume and Di/Dt denotes the material derivative, meaning that the derivative is
made while following the bubble. In (12) the wall force parameter CW is dependent on the distance and relative velocity
of the bubble to the next wall, stands for the normal vector on the wall. In prior validation simulations [13] several
models for the drag and lift force coefficients CD, CL have been tested. Based on this, the models of [14] were chosen.
The virtual mass coefficient is set to CVM = 0.5 according to [15], the coefficient for the dispersion force is set to CTD =
0.1 [16].

Besides  movement  and position,  each  bubble  is  carrying  information  of  further  properties.  This  is  in  particular
information that cannot be obtained in EE simulations, e.g. shape, orientation, age and thermophysical properties. Of
course, these properties react to surrounding conditions, e.g. the bubble density depends on the surrounding pressure
and  bubble  temperature.  Species  concentration  and  chemical  reactions  can  also  be  simulated.  However,  in  this
simulations  chemical  reactions  and  mass  transfer  are  neglected  (no  solute),  which  is  a  topic  for  further  studies.
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2.2.1. Stochastic Modeling

Many aspects of bubble behavior are simulated using stochastic Monte Carlo (MC) models [17 - 21]. On the one
hand, it resembles the actual random character of bubble movement or other unpredictable interactions, and on the other
hand  it  yields  an  immense  benefit  in  computational  effort.  The  procedure  is  similar  in  all  situations;  a  calculated
probability  is  compared  to  a  random  number  which  will  trigger  the  event  or  neglect  it.  Through  the  law  of  large
numbers,  this  algorithm will  converge to  the  expectation value step by step.  This  seems a  bit  oversimplified but  it
represents  a  reliable  method  to  calculate  very  complex  systems,  without  the  need  of  high  dimensional  differential
equations.

2.2.1.1. Bubble Collision

The first bubble interaction, which is described through a stochastic model, is the collision between bubbles. Here
the collision probability by [22] is used. The actual position of bubbles is not considered, but rather the relative velocity
and sizes of the bubbles are taken into account:

(14)

Note, that the volume of the computational cell Ccell  is also a parameter in this equation. This implies, that only
bubbles belonging to the same cell can actually collide. Also, this has to be evaluated for every possible pair of bubbles
in the interesting volume. For each pair, a random number  will be drawn. The constraint for collision
will therefore be:

(15)

Compared to deterministic models, where the precise trajectory of every bubble has to be predicted, this stochastic
approach is much faster. Because the collision step is one of the largest computational efforts in the code, it is crucial to
use an efficient algorithm. One promising approach shown by [23] was customized to work also with the stochastic
collision algorithm gaining a major speed-up in comparison to the original code. The algorithm first creates a list of
bubbles per each computational cell. In the second step, all combinations of bubble pairs for each cell are evaluated.
Thereby, only bubbles in relative proximity will be observed. Moreover, the optimal cell size for this algorithm has
been identified as the maximum bubble diameter. Smaller cells would presume a bubble that has more volume than the
enclosing cell, leading to numerical instabilities. However, a larger cell leads to more possible bubble pair combinations
necessary to be calculated and slows down the process.

2.2.1.2. Bubble Coalescence

After a successful collision, the next step is to calculate the coalescence probability. Previous validation simulations
[13] have shown that the model of Coulalouglou and Tavlarides [24] is an appropriate choice. Basis of the calculus is
the combination of bubble contact time tcontact and film drainage time tcontact. The drainage time can be seen as the time it
takes  for  a  thin  liquid  film between  two bubbles  to  flow out.  Only  when  bubbles  are  in  long  enough contact  their
surfaces can merge and coalescence happens. The time for contact is evaluated based on turbulence energy, . A normal
distributed turbulent energy is assumed, which gives the average time that the bubble gets hit by a turbulent eddy, thus
pushing them away from each other again. Analog to the collision, a new random number will be used for the constraint
of coalescence:

(16)

(17)

(18)

Here σ represents the surface tension, hf and hi are critical and initial film thicknesses, respectively, and deq is the
equivalent diameter defined as:
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If  no  coalescence  happens,  the  bubbles  will  bounce  of  each  other  and  continue  their  movement.  Successful
coalescence will lead to the deletion of one bubble, while its mass is added to the other one.

2.2.1.3. Bubble Break-Up

When a turbulent eddy with enough energy hits a bubble, it is deformed and eventually splits into smaller bubbles.
The smaller a bubble is the more energy is necessary to deform it. Thus, the break-up frequency of small bubbles is low.
This has also been modeled by [24] into a break-up frequency, ωb, and probability, Pbreak. Again, a random number will
be drawn and compared in each time step for each bubble.

(19)

(20)

When a break-up event has been evaluated as positive, a new bubble has to be created. This new daughter bubble
has the same inner dimensions like its mother bubble. Only volume, diameter and mass will be changed on a basis of
the volume ratio f of the two bubbles. This is a controversial point in break-up modeling, since many researchers claim
that f should follow various different distributions. The model assumption of [24] is a normal distribution of f, where
the ratio f = 0.5 has the greatest probability. To sustain numerical stability, the creation of bubbles with an extremely
small diameter is excluded by restricting 0.01 < f < 0.99.

2.2.1.4. Turbulent Bubble Movement

In  order  to  achieve  chaotic  bubble  movement  trough  turbulent  eddies,  the  bubble  velocity  is  overlaid  with  a
Brownian motion. The magnitude of this turbulent velocity is capped by the current turbulent energy. The direction is
chosen uniformly random.

(21)

This will lead to a trembling movement of bubbles positioned in a high turbulence area representing a diffusional
movement. The higher the turbulence, the faster the bubbles will spread. Note that this additional velocity is not coupled
to the forces and will not affect the creation of turbulent energy or the probability of collision.

3. EE MODELING

The common approach to simulate bubbly flows is  the usage of multiphase system solvers.  Here,  the dispersed
phase is also modeled as a continuum and no explicit bubble positions will be evaluated anymore. Thereby, it is not
possible  to  track  single  pathways  of  bubbles  or  to  even  assign  precise  diameters  to  bubbles  in  a  certain  volume.
Anyhow,  when incorporating a  suitable  model  for  coalescence and break-up,  EE simulation can still  give  valuable
information about the mean diameter, surface area and phase hold-up of the gas phase inside a bubble column. The EE
simulation is also capable of simulating a much higher dispersed phase hold-up like it would be possible in the EL
approach [25].

There are many subcategories of EE solvers, while this work will concentrate on the comparison of EL simulations
to  EE  simulations,  which  are  combined  with  different  moment  based  PPB  models.  The  method  of  moments  [26]
describes the dispersed phase based on the characteristic moments of the BSD: number,  diameter,  surface area and
volume. In principle,  the moments movement is  solved like an incompressible isothermal fluid,  also respecting the
conservation of mass and impulse. Further improvements of this basic method have led to the Quadrature Method of
Moments (QMoM) [27] and Direct Quadrature Method of Moments (DQMoM) [28], where closure problems have been
overcome. Those two models are solved with a multiple equation system. In contrast to that, the One Primary One
Secondary Particle Method (OPOSPM) [29] and Interfacial Area Transport Equation (IATE) [30] are based on only
one equation to be solved, which improves the CPU speed even further.
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For the comparison, the simulations of [25] and [31] will be used.

3.1. Bubble Dynamics

In contrast to EL simulations, no explicit bubble position or velocity is calculated in the EE approach. Instead of
that, the dispersed phase moments are used and their velocity is supposed to be equal in a computational cell. Transport
of the moments is similar to a scalar transport, no interface tracking/sharpening steps are used. Nevertheless, the bubble
forces  are  included by using volumetric  equivalents  of  the  explicit  equations.  With the mean bubble  diameter  d3x  -
calculated via the tracked moments - the phase hold-up ac & ab and the mean relative bubble velocity urel the resulting
forces can be calculated for each computational cell. For the drag force, the following equation is used.

(22)

Same procedure is done for the buoyancy force. Other forces were neglected in the given simulations by [25] and
[31]. For the drag coefficient CD, [25] used the model of [14], [31] used the model of [32]. Bubble induced turbulence
and turbulent dispersion were neglected in the EE simulations, the standard mixture k-epsilon RANS model was used.
The coupling of phases was realized with a source term similar to eq. (1).

3.2. Bubble Interaction

In general, the interaction of bubbles can be calculated using the same model equations like in the EL simulation.
The  difference  is  a  conversion  from explicit  Monte  Carlo  simulation  of  a  single  or  a  pair  of  bubbles  to  a  discrete
application on the moments. The calculated event probability is no longer compared to random numbers but will be
converted to an event frequency instead. This implies that it is possible to get fractional values (e.g. 0.5 bubbles per
computational cell), which is impossible in the EL approach. While bubble volume stays constant the combined loss
and gain in bubble number, size and surface area is recalculated during the bubble interaction step. The source term for
the population balance can thereby be written as:

(23)

Where  B  stands  for  birth  and  D  for  death  of  bubbles,  exponents  C  and  B  stand  for  coalescence  and  break-up
respectively. While the coalescence model in [25] is adopted from [24], the break-up model originates from [33] which
uses a similar approach based on the turbulent energy dissipation. Break-up of bubbles is supposed to be always binary
and resulting daughter bubbles are supposed to be equal in size. Models for break-up and coalescence used by [31] are
both  adopted  from [33].  Here,  the  daughter  bubbles  created  by  break-up  are  supposed  to  follow a  beta  distributed
volume ratio .

While in the EL approach every single bubble diameter is inserted into the MC simulation, the EE approaches use
representative diameters for all bubbles in the considered computational cell. This can either be the Sauter diameter , the
mean diameter or nodes of the quadrature points when using multi equation MoM models. This simplification enables
EE simulation to be less dependent on the bubble number, making it a feasible calculation even with high gas hold-up.

4. SIMULATION CASE

There exist experimental data [34 - 36] and simulations ([25], [31]) for a set-up described in [36] consisting of a
rectangular bubble column depicted in Fig. (1): An optimized mesh is used (Fig. 2).

In the original experiment, the column is filled with tap water at room temperature while air is injected trough a
sparger plate at the bottom. The sparger consists of eight holes with 1 mm diameter. They are arranged in two rows with
a distance of 6 mm between holes.

In order to compare the two types (EE vs. EL) of simulation, the original EE mesh [25] has been used for the EL
approach in a first simulation. To improve simulation time and solution quality further, an optimized mesh is used. The
EE mesh consists of 24640 hexahedral cells with a length between 4 and 6.7 mm. Cells around the gas inlet zone are
finer to account for a better solution. Since the EL simulation does not compute the free surface, the mesh is shortened
to  the  filling  height.  The  mesh  refinement  in  the  inlet  area  was  turned  off  to  achieve  a  more  isotropic  mesh.  The
resulting fine EL mesh consists of 11745 cells with a length between 6 and 7.5 mm.
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A mesh resolution study showed that the B&C kernels need to be fitted to the specific mesh resolution. Lowering
the cell size led to a reduction of the mean bubble diameter. Thus, B&C model parameters and recommended mesh
resolution have been adopted from literature [18]. A detailed grid convergence analysis and B&C parameter fitting was
therefore  disregarded  for  our  EL simulation.  The  optimized  coarse  EL simulation  case  resembles  the  experimental
volume within 20x4x45 computational cells, which gives uniformly sized cells of 1x1x1 cm. Note, that this coarse grid
is inevitable in order to maintain a suitable ratio of maximum bubble size (db,max ≈ 1 cm) and the grid cell length Lc. This
ensures that bubbles are always smaller in volume than the surrounding computational cell and that the collision of
bubbles within a cell performs well. Other simulative work was built on a comparable coarse mesh, mostly following
the theory of [37] that tells db/Lc < 0.67, while [36] even detected a numerical deviation when using a finer mesh. We
followed a similar regulation with db,max/Lc ≈ 1 and with the resulting Sauter diameter between 5.5 mm and 7 mm, the
theory of [37] is also fulfilled. Unlike EE simulations, there is no need to define an inlet patch. The bubbles are injected
on predefined points, depicting the eight sparger holes at the bottom.

Fig. (1). Simulation case set-up

Fig. (2). Different meshes in comparison: left – original EE mesh; middle – simplified EE mesh; right – optimized coarse EL mesh.

In  experiment  and  simulation,  different  gas  flow  rates  have  been  tested.  Corresponding  velocities  and  bubble
injection sizes have been calculated with equations from [38] and can be found in Table (1). Additionally, the max+

45 cm

4 cm

20 cm
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case was simulated for the most promising models, although no experimental data exists for this case.

Note, that the numerical tolerances for the calculation of the eulerian fields (e.g. velocity, pressure etc.) were chosen
identical in the EL and EE simulations. All simulations have been carried out using the OpenFOAM framework with
the  same  numerical  solver  properties,  wherever  applicable.  Unfortunately,  there  are  field  values,  which  are  only
calculated in some of the methods (e.g. moments) and can therefore not be compared in terms of numerical tolerance. In
addition, the lagrangian velocities and positions are calculated using Newtonian dynamics, where there is no need for
iterative  matrix  solving.  Thus,  a  definition  of  a  numerical  tolerance  is  not  possible;  all  lagrangian  variables  are
calculated in double precision floating-point manner. Furthermore, particles are solved with a lagrangian time step that
is smaller than the eulerian time step. Thus, even with the same tolerance levels no equivalent solution convergence
could be defined.

Table 1. Bubble sizes and number of bubbles to be injected for the different gas velocities.

case Name Min Med Max Max+
superficial gas velocity 2.4 mm/s 11.9 mm/s 21.3 mm/s 35.5 mm/s
bubble inlet diameter 6.3 mm 8.3 mm 10 mm 10 mm
bubbles per second 147 318 325 540

5. RESULTS AND DISCUSSION

Experimental and simulation results (s. Table 2) for Sauter diameter and hold-up are taken from [25], [31] and [36].
Note  that  in  all  cases,  the  hold-up  is  slightly  under  predicted  in  the  EL in  comparison  to  the  EE simulations.  The
predicted  Sauter  diameter  fits  to  the  experimental  values,  except  for  the  ‘max’  case,  where  it  is  markedly  under
predicted.  The  overall  results  of  the  EL  simulation  can  be  considered  accurate  enough  in  comparison  with  the
experimental data and the other simulations. Values for the max+ case are not listed, because no experimental results
exist. The results from the EL simulation presented here are mere characteristic values calculated through averaging of
the whole bubble size distribution to enable comparability to EE simulations. In general, the explicit simulation of each
bubble will always yield higher detailed results than it is possible in any EE simulation.

Table 2. Resulting Sauter diameter, hold-up and plume oscillation time in comparison. 1d30

case Model / Ref. Experiment / Diaz DQMOM / Marchisio OPOSPM / Hlawitschka EL / own sim.
(coarse mesh)

min
d32 6.83 mm 6.22 mm 5.1 mm1 6.17 mm

hold-up 0.62% 0.62% 1.28% 0.52%

med
d32 6.5 mm 6.69 mm 5.9 mm1 6.93 mm

hold-up 2.63% 2.27% 2.86% 1.8%

max
d32 7.73 mm 8.21 mm 6.8 mm1 5.52 mm

hold-up 4.1% 4.06% 3.92% 4.2%

All simulations have been computed on the same machine (Core i7 4790, 16 GiB RAM, Ubuntu 14.04) to ensure
equal conditions. Also, the simulations were done in single core mode, due to issues with some of the solvers in parallel
mode. For all models, a total of 120 s experimental time has been simulated. Table (3) shows the resulting CPU time (in
hours)  in  direct  comparison.  As  expected,  the  more  complex  two  equation  models  QMOM  and  DQMOM  need
significantly more time, while the one equation models IATE and OPOSPM yield a faster solution. The EL approach
could easily beat the two equation EE models,  while the one equation models were faster at  lower gas throughput.
When switching to the coarse mesh, the EL simulation could achieve solution in an even shorter duration, beating the
simulation time of all EE simulations.

Table 3. Direct comparison of CPU time [h]

Simulation type EE EL
model QMOM DQMOM IATE OPOSPM Fine coarse

min 10.99 4.95 3.03 3.27 4.22 0.47
case med 33.10 33.82 14.72 15.52 7.82 2.78

max 43.91 33.57 19.79 14.56 11.26 3.33
max+ - - 20.3 14.09 - 5.18
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Note  the  strong  increase  in  computational  time  for  the  EE simulations  from the  min  to  the  med  case  while  the
increase from med to max is not that significant. Simulations for the max+ case showed no further significant increase
in the computational time for higher gas velocities. Still, the EL simulation could achieve a faster solution for all listed
cases and it does not seem useful to compare the models based on superficial velocity vs. CPU time.

A better approach (at least for the EL simulation) is the comparison of average bubble number and computational
cost. It turns out that the computational time scales almost linearly to the average number of bubbles in the domain for
the original coarse EL mesh (s. Fig. 3). Additional simulations were performed to prove this behavior even for a larger
mesh. Therefore, the mesh dimensions have been doubled in every direction while resolution stayed the same, which
gives a mesh with eight times more cells mesh x 8 in Fig. (3). The superficial gas velocity has been further increased
from 21.3 mm/s to 42.6 mm/s and 85.2 mm/s for this larger mesh. Resulting hold-up for this setup was 6.3%, 6.7% and
14%,  respectively.  Note,  that  high  hold-up  values  are  not  realistic  anymore,  since  the  EL method  presented  is  not
designated for a hold-up larger than 10%.

Fig. (3). Simulation CPU time for different numbers of bubbles in the domain.

To find the critical number of bubbles, where the EE simulation finally becomes faster than the EL simulation, the
coalescence efficiency was successively lowered. This leads to smaller bubbles and thus a higher number of bubbles.
With an average bubble number of 36.000, the achieved computational time for the EL simulation reached a value of
about 14 h (s. Fig. 4), grey dashed line), which is the time that the OPOSPM solver needed. A further increase to a
bubble number of about 50.000 led to a simulation time of 23 h, which is even slower than the IATE solver. Thus, at
least for this case geometry, the critical bubble number can be pinned to 40.000.

As mentioned above, a major speed up for the EL approach was achieved by using an efficient collision algorithm.
According to literature [23], the optimal collision algorithm would need n log (n) steps to calculate for collisions of n
particles.  Since  this  can never  be  reached,  the  quality  of  an  algorithm has  to  be  quantified  in  terms of  exponential
notation na, where a smaller value for a qualifies a better algorithm. Fig. (4) compares the computational time of the
original (old) and improved algorithm (new) that has been used.

Lowering the complexity from n23 to n1.5 is a large step: doubling the bubble number would have meant a five times
higher CPU time but will now take only about 2.8 times higher effort with the new algorithm. The new algorithm shows
a slower solution for bubble numbers under 100 due to memory preallocation but its order for higher numbers shows a
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significantly faster calculation. Taking into account that in a bubble column are usually more than 100 bubbles, it is
clear that the new approach is advantageous.

Fig. (4). CPU time for colliding bubbles.

CONCLUSION

The EE and EL simulations are  capable of  solving the flow inside a  bubble column,  showing similar  results  in
comparison with the experimental data. The computational time needed differs a lot from approximately one hour up to
40 hours, where a higher gas throughput corresponds to higher computational time. This dependency is existent even for
the EE simulations but much more observable in the EL simulation. The EL algorithm is almost linear dependent on the
number of bubbles and tends to be very slow, when the number increases to higher ranges (>40, 0000 bubbles). Here it
is clearly advantageous to use an EE approach for an efficient simulation in cases, when the gas hold-up is high (> 5%)
or when the bubble size is small (d32 < 4 mm). Still, there are many applications with a medium bubble size and/or low
gas hold-up. In this case, the EL simulation technique can easily outperform the EE simulations in CPU time and level
of detail. This is due to the scaling of the EL simulation to the number of bubbles, which is almost linear, while the EE
technique has already high computational cost even at a relatively low hold-up. Computational cells with no bubbles
present  have  almost  no  impact  on  CPU time  in  the  EL approach.  In  the  EE approach,  even  those  cells  have  to  be
computed concerning transport and interaction of moments.

Further advantage of the EL approach is the easy visualization of trajectories and positioning of single bubbles on
their way through the reactor. The EE simulation results are treated in post processing to reproduce such a meaningful
visual representation although no “real” path of single bubbles were calculated. When concerning chemical reactions,
detailed information about its temperature and concentration progress can also be combined with particle residence
time, path length and other explicit single bubble properties within the EL approach.

NOMENCLATURE

d = (Bubble) diameter

d23 = Sauter diameter

f = Volume ratio

F = Force

g = Gravity
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h = Layer thickness

k = Turbulent energy

m = mass

= Number; normal vector

P = Probability

u = Velocity

rel = Relative

t = Time

p = Pressure

V = Volume

x = Position Greek letters

α = phase fraction

x = Random number

ε = Turbulent energy dissipation

σ = Interface tension

ω = Frequency

p = Density

µ = Viscosity

t = Turbulent time scale Subscripts, superscripts, symbols

b = bubble

B = Buoyancy; break-up

C = Continuous phase; coalescence

D = Drag

eq = Equivalent

L = Lift

VM = Virtual mass

W = Wall

TD = Turbulent dispersion

turb = Turbulent

k = Turbulent energy

rel = Relative

ε = Turbulent energy dissipation

= Material derivative

= Normal distribution
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