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Abstract:
Objective:
In this work, we obtained the analytical and approximate solutions of the population balance equations (PBEs) involving the breakup process in
batch and continuous flow by applying the Adomian decomposition method and piecewise continuous basis functions, respectively.

Methods:
The  key  to  the  advanced  numerical  method  is  to  represent  the  number  distribution  function  of  the  dispersed  phase  through  the  orthogonal
Chebyshev basis polynomials. It is a straightforward and effective method that has the advantage of simultaneously giving the distribution and the
different  required  moments.  Therefore,  it  does  not  require  the  construction  of  the  distribution  from moments  computations  obtained  by  the
transformation of the initial problem and the lost information.

Results:
The performance of this numerical approach is evaluated by solving breakup equation and comparison against analytical solutions obtained from
the Adomian decomposition method, which generally allows the analysis of this approach.

Conclusion:
The numerical results obtained by the present numerical method were compared with the new analytical solutions of the PBE. It was found that
both piecewise continuous basis functions and analytical solutions have comparable results.
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1. INTRODUCTION
Population balance models of dispersed phases find many

scientific and engineering applications including liquid-liquid,
liquid-vapor and solid-liquid dispersions, nanoparticle physics,
pharmaceutical  industries,  polymerization   and  bioreactors
[1 - 11].

The complex structure of the PBE allows for an analytical
solution only for some simple breakup kernels [8 - 10]. Several
approximate resolution methods, such as weighted residuals [1
- 7], successive approximations [12], finite elements techniques
[9, 13 - 16], finite volume scheme [17 - 22], fixed and moving
pivot  approaches  [23],  Monte  Carlo  methods  [24  -  26]  and
method  of  moments  with  these  several  extensions  such  as
QMOM, DQMOM, SQMOM and EQMOM [6, 27 - 29] have
been widely studied.
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For  these  moment  methods,  only  a  few  moments  are
obtained. Therefore, after having computed these moments, it
is necessary to reconstruct the distribution corresponding to the
resulting  droplet  size  distributions.  Since  the  droplet  size
distributions  generally  constitute  the  key  result  to  clearly
evaluate the quality of the process, and the importance of the
reconstruction procedure.

The key disadvantage of the MOM and its basic variants
[5, 6, 30] is its incapacity to reconstruct the density function.
Contrary to these numerical approaches, piecewise continuous
solutions approach proposed in this work effectively and simul-
taneously provides the distribution and the different required
moments without having to express the PBE in using moments.

Consequently, the different moments can be obtained by a
simple integration of the solution. It should be noted that the
present numerical method shows significant enhancement that
avoids  expressing  population  balance  equation  in  terms  of
moments.
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The aim of the present work is to show the advantage of
this  new  proposed  numerical  method  compared  to  the  new
analytical solutions of the (PBEs) using the Adomian decom-
position method by considering the particle breakup process in
batch  and  continuous  flow.  The  term  ‘particles’  might  be
referred to droplets, bubbles, crystals or grains, and may have
several  properties  like  size,  composition,  porosity,  and
enthalpy. The population balance equation model and the finite
element method with the expansion coefficients approach for
solving  the  breakup  process  will  be  described.  Finally,  the
proposed numerical approach is compared with the analytical
results  for  different  assumed  breakup  kernels  and  physically
relevant problems.

This  paper  is  arranged  as  follows.  In  section  two,  we
briefly introduce the population balance equation model. Then,
in  section  3,  the  finite  element  method  with  the  expansion
coefficients approach for solving the breakup process is des-
cribed.  Finally,  the  numerical  approach  is  tested  using  ana-
lytical results obtained in this work.

1.1. Population Balance Equation for the Breakup Process
in Continuous Flow:

The PBE that describes the evolution of the droplet number
density,   in  a  continuous  well-stirred  vessel,  with
droplet  formation  and  loss  terms  due  to  breakup,  can  be
expressed  as  [1].

(1)

where   is  the  diameter  density  distribution  of
daughter droplets and  is the droplet breakup frequency.
The overall input flow determines the residence time τ of the
dispersion.  Thus,  assuming a  perfect  mixer,  where  the  outlet

droplet  volume  distribution  is  always  identical  to  the
distribution inside of the vessel, , the resulting droplet

entry  and  exit  frequencies  become  
respectively.  The  two  parts  in  the  source  term  represent  the
droplet  birth  due  to  the  generation  of  new  droplets  and  the
second term describes droplet death due to the breakup process.

In this work, the required breakup kernels to close Eq. (1)
are shown in Table 1.

1.2. The Piecewise Continuous Solution Scheme

We  consider  the  solution  of  the  PBE  for  the  droplet
breakup  in  batch  and  continuous  flow.  As  discussed  in  the
introduction  part,  one  of  the  most  applied  approaches  for
solving  the  PBE  is  the  moment  method.  Alternatively,  we
present in this section, piecewise continuous solution scheme.

The  principal  idea  of  this  method  is  to  represent  the
distribution  function  as  a  Chebyshev  truncated  series  as.

(2)

where  are the Chebyshev polynomials of the first
kind  of  degree  i  which  are  orthogonal  with  respect  to  the
weight function  on the interval [-1, 1]
and satisfy the following recursive formula:

(3)

and the unknown Chebyshev coefficients  remain to
be computed.

Inserting  into the PBE (1) and multiplying both
sides of the breakup equation by a test function  and
integrating from v=0 to ∞lead to

Table 1. Summary of the test cases used in the PBE to validate the finite element expansion scheme.

Case Process g(d) β(d/u) Feed Distribution Initial Condition

 𝑛(𝑣,𝑡)

𝜕𝑛(𝑣,𝑡)

𝜕𝑡
+

𝑛(𝑣,𝑡)

𝜏
−

𝑛𝑓𝑒𝑒𝑑(𝑣)

𝜏
=

∫ 𝛽(𝑣, 𝑢)𝑔(𝑢)𝑛(𝑢, 𝑡)
∞

𝑣
𝑑𝑢 − 𝑔(𝑣)𝑛(𝑣, 𝑡),

𝛽(𝑣/𝑢)
𝑔(𝑣)

 𝑛(𝑣, 𝑡)

 and  
,𝑛𝑓𝑒𝑒𝑑(𝑣)

𝜏
 

𝑛(𝑣,𝑡)

𝜏
 

𝑛(𝑣, 𝑡) = ∑ 𝑎𝑖(𝑡)𝑁
𝑖=1 𝑇𝑖(𝑣),

 ,𝑇𝑖(𝑣)

𝜔(𝑣) = 1/√1 − 𝑣2 

 𝑇0(𝑣) = 1, 𝑇1(𝑣) = 𝑣,  𝑇𝑛+1(𝑣) =

2𝑣𝑇𝑛(𝑣) − 𝑇𝑛−1(𝑣), n=1,2....,                                       

𝑎𝑖(𝑡)

  𝑛(𝑣, 𝑡) 

 𝜙𝑖(𝑣)

1 Batch
0

2 Batch
0

3 Continuous
0

3 Continuous
0

3 Continuous
0

𝑣

  𝑣2 

  𝑣2 

𝑣

𝐶1𝜀𝑚
1/3

𝑣−2/9𝑒
−𝐶2

𝜎

𝜌𝑑𝜀𝑚
2/3

𝑣5/9

2

𝑣
 

2

𝑣
 

2

𝑣
 

2

𝑣
 

2.402

𝑣
𝑒

−
4.5(2𝑣′−𝑣)2

𝑣2  

1

𝜎√2𝜋
𝑒

−
1
2

(
𝑣−𝜇

𝜎
)

2

 

1

𝜎√2𝜋
𝑒

−
1
2

(
𝑣−𝜇

𝜎
)

2

1

𝜎√2𝜋
𝑒

−
1
2

(
𝑣−𝜇

𝜎
)

2

 

1

𝜎√2𝜋
𝑒

−
1
2

(
𝑣−𝜇

𝜎
)

2

1

𝜎√2𝜋
𝑒

−
1
2

(
𝑣−𝜇

𝜎
)

2
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and the mass matrix integral coefficients Ai,j can be written
as.

(7)

The initial values of  are obtained up to order 3
as

2. THE DECOMPOSITION METHOD

To  illustrate  the  basic  concepts  of  the  Adomian
decomposition  method,  we  consider  the  following  nonlinear
differential equation:

(13)

where L is the linear operator chosen as the highest-order
derivative, which must be easily invertible. The remainder of
the linear operator is R and the nonlinear term is represented by

 is an inhomogeneous term.

Since
 

L  is  invertible  and  using  the  initial  condition,  we
have the canonical form:

(14)

by  considering  only  the  linear  term,  the  Adomian
decomposition  method  [31,  32]  for  the  unknown  function

 can be written as

(15)

The solution of the linear partial differential equation in the
form (14) with the initial value

(16)

can  be  obtained  by  the  series  (15)  with  the  following
recursion  scheme

(17)

(4)

Eq. (4) is then approached by:

(5)

with

(6)

∑
𝜕𝑛𝑖(𝑡)

𝜕𝑡

𝑁
𝑖=1 ∫ 𝑇𝑖(𝑣)

∞

0
𝜙𝑗  d𝑣 =

∫ 𝑛𝑓𝑒𝑒𝑑(𝑣)𝜙𝑗(𝑣)d𝑑
∞

0

𝜏
−

∑ 𝑛𝑖(𝑡) ∫   𝑇𝑖(𝑑)𝜙𝑗(𝑣)d𝑣
∞

0
𝑁
𝑖=1

𝜏
+

∑ 𝑛𝑖(𝑡) ∫ (∫ (𝛽(𝑣, 𝑢)𝑔(𝑢)𝑇𝑖(𝑢)𝑑𝑢)
𝑣𝑚𝑎𝑥

𝑣
)

∞

0
𝑁
𝑖=1 𝜙𝑗(𝑣)d𝑣 −

∑ 𝑛𝑖(𝑡) ∫ 𝑔(𝑣)
∞

0
𝑁
𝑖=1 𝑇𝑖(𝑣)𝜙𝑗(𝑣)d𝑣,              

∑
𝜕𝑛𝑖(𝑡)

𝜕𝑡

𝑁
𝑖=1 𝐴𝑖,𝑗 = ∑ 𝑛𝑖(𝑡)𝐻𝑖,𝑗, 𝑗 = 1, … … … … … … … . , 𝑁𝑁

𝑖=1

𝐻𝑖,𝑗= ∫ (∫ 𝛽(𝑣, 𝑢)𝑔(𝑢)𝑇𝑖(𝑢)𝑑𝑢 − (𝑔(𝑣) +
𝑇𝑖(𝑣)

𝜏
)

𝑣𝑚𝑎𝑥

𝑣
+

𝑛𝑓𝑒𝑒𝑑(𝑣)

𝜏
) 𝜙𝑗(𝑣)d𝑣

∞

0

𝐴𝑖,𝑗 = ∫ 𝑇𝑖(𝑣)𝜙𝑗(𝑣)d𝑣
∞

0
, 𝑖, 𝑗 = 1, … … . , 𝑁

It  should  be  noted  in  the  case  of  the  pure  Galerkin
approximation   and  for  the  collocation
approach  where the shifted Dirac delta
functions are with Vj collocation points.

𝜙𝑗(𝑣) = 𝑇𝑗(𝑣) 
𝜙𝑗(𝑣) = 𝛿(𝑣 − 𝑣𝑗), 

In  the  case  in  which  the  spatial  domain  is  chosen  as

 The  points   and  are  𝐼𝑗 = [ 𝑉𝑗
𝐵, 𝑉𝑗+1

𝐵 ], j=1,..., 𝑁𝑗.  𝑉𝑗
𝐵  𝑉𝑗+1

𝐵   
the boundary points for each interval. Let  be
the width of an element and define the center of the interval Ij

by Vj and the approximate solution is piecewise a polynomial
of degree k then

∆𝑗= 𝑣𝑗+1 − 𝑣𝑗  

,  where 
and Tl is the lth Chebyshev orthogonal polynomial.

𝑛𝑗(𝑣, 𝑡) = ∑ 𝑎𝑗
𝑙(𝑡) 𝜑𝑗

𝑙(𝑣) 𝑘
𝑙 𝜑𝑗

𝑙(𝑣) = 𝑇𝑙(
2(𝑣−𝑣𝑗)

∆𝑗
) 

(8)

(9)

(10)

(11)

For  each  interval  Ij  and  each  l  =  0,...,  k,  the  expansion

coefficients  are the degrees of freedom.

𝑎𝑗
0(𝑡 = 0)    =

2

𝜋∆𝑗
∫

𝑛(𝑣,𝑡=0)𝜑𝑗
0(𝑣)

√1−𝑣2
𝑑𝑣,

𝐼𝑗

𝑎𝑗
1(𝑡 = 0)    =

4

𝜋∆𝑗
∫

𝑛(𝑣,𝑡=0)𝜑𝑗
1(𝑣)

√1−𝑣2
𝑑𝑣,

𝐼𝑗

𝑎𝑗
2(𝑡 = 0)    =

4

𝜋∆𝑗
∫

𝑛(𝑣,𝑡=0)𝜑𝑗
2(𝑣)

√1−𝑣2
𝑑𝑣,

𝐼𝑗
  

𝑎𝑗
3(𝑡 = 0)    =

4

𝜋∆𝑗
∫

𝑛(𝑣,𝑡=0)𝜑𝑗
3(𝑣)

√1−𝑣2
𝑑𝑣.

𝐼𝑗

𝑎𝑗
𝑙(𝑡)

When  the  solution  is  obtained  for  the  expansion
coefficients, the kth moment  of the number density function
is then computed easily as

(12)

𝜇𝑘 

𝜇𝑘(𝑡) = ∑ ∫ 𝑣𝑘𝑛𝑗(𝑣, 𝑡)𝑑𝑣.
𝐼𝑗

𝑛𝑑𝑜𝑓
𝑗=1

𝐿𝑛 + 𝑅𝑛 + 𝑁𝑛 = 𝑓(𝑣),

Nn, and 𝑓(𝑣)

𝑛 = 𝑛0 − 𝐿−1(𝑅𝑛 + 𝑁𝑛),

𝑛(𝑣, 𝑡)

  𝑛 = ∑ 𝑛𝑖
∞
𝑖=0 .      

𝑛0(𝑣) = 𝑓(𝑣),

𝑛𝑘+1(𝑣, 𝑡) = −𝐿−1𝑅𝑛𝑘 , 𝑘 ≥ 0.
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2.1. Illustrative Tests Cases

The numerical solution using the finite element expansion
coefficients  of  the  breakup  equation  outlined  above  in  batch
and  continuous  systems  will  be  compared  to  the  following
analytical solutions obtained by the decomposition method for
the following cases 1, 2, 3 and 4:

Case 1: Breakup in a batch stirred vessel with a uniform
daughter  droplets  distribution  and  linear  breakup  frequency
with respect to the droplet volume.

Consider the breakup equation in the batch system given
as:

(18)

by selecting the initial solution 

the ADM uses the following recursion relation to generate
components of the solution as:

(19)

Consequently, we can write

(20)

(21)

(22)

Then, we find the solution by the general term as:

(23)

with the following closed solution

(24)

Case 2: Breakup in a batch stirred vessel with a uniform
daughter droplets distribution and parabolic breakup frequency
with respect to the droplet volume.

By using the same algorithm which was used in Case 1 we
get

(25)

(26)

The solution for this case is:

(27)

Case  3:  Breakup  in  a  continuous  flow  with  a  uniform
daughter  droplets  distribution  and  linear  breakup  frequency

with respect to the droplet volume.

Starting with

(28)

Then we have with

(29)

𝑛(𝑣,𝑡)

𝜕𝑡
= ∫ 𝛽(𝑣, 𝑢)𝑔(𝑢)𝑛(𝑢, 𝑡)

∞

𝑣
𝑑𝑢 − 𝑔(𝑣)𝑛(𝑣, 𝑡),

𝑛(𝑣, 0) =
ⅇ

−
(𝑣−𝑚)2

2𝜎2

√2𝜋𝜎
, 

𝑛(𝑣, 𝑡) = ∑ (−
(−𝑡𝑣)𝑛+1(2𝐴−3𝐴(𝑛+1)+𝐴(𝑛+1)2+2𝑣2)𝑥

2𝐵𝑡𝑣3Pochhammer[1,−1+𝑛+1]
+

Infinity
𝑛=0

√𝐴√𝜋𝑡(−𝑡𝑣)(𝑛−1)(−𝑚(𝑛−1)+2𝑣+(𝑛−1)𝑣)𝑦

2𝐵𝑣Pochhammer[2,𝑛−2]
), 

𝑛(𝑣, 𝑡) =
ⅇ−𝑡𝑣(2𝑥+𝐴𝑡2𝑥+2√𝐴√𝜋𝑡𝑦+√𝐴𝑚√𝜋𝑡2𝑦−√𝐴√𝜋𝑡2𝑣𝑦)

2𝐵
.             

𝑛(𝑣, 𝑡) = ∑ (−
(−𝑡𝑣2)𝑛+1𝑥Pochhammer[1−

𝑣2

𝐴
,𝑛]

𝐵𝑡𝑣2Pochhammer[1,𝑛]Pochhammer[1−
𝐴+𝑣2

𝐴
,𝑛]

−
√𝐴𝑚√𝜋(−𝑡𝑣2)𝑛𝑦

𝐵𝑣2Pochhammer[1,−1+𝑛]
)

Infinity
𝑛=0 =

ⅇ−𝑡𝑣2
(𝑥+𝐴𝑡𝑥+√𝐴𝑚√𝜋𝑡𝑦)

𝐵
.          

𝑛𝑖+1(𝑣, 𝑡) = ∫ (∫ 𝛽(𝑣, 𝑢)𝑔(𝑢)𝑛𝑖(𝑢, 𝑡)
∞

𝑣
𝑑𝑢 − (𝑔(𝑣) + 𝑎 𝑛𝑖(𝑣, 𝑡))) 𝑑𝑡

𝑡

0
.

𝑛0(𝑣, 𝑡) = 𝑎
ⅇ

−
(𝑣−𝑚)2

2𝜎2

 √2𝜋𝜎
𝑡.

𝑛𝑖+1(𝑣, 𝑡) = ∫ (∫ 𝛽(𝑣, 𝑢)𝑔(𝑢)𝑛𝑖(𝑢, 𝑡)
∞

𝑣
𝑑𝑢 − 𝑔(𝑣)𝑛𝑖(𝑣, 𝑡)) 𝑑𝑡

𝑡

0
.

𝑛0(𝑣, 0) =
ⅇ

−
(𝑣−𝑚)2

2𝜎2

√2𝜋𝜎
,

𝑛1(𝑣, 𝑡) = −
𝑡𝑣𝑥

𝐵
+

√𝐴√𝜋𝑡𝑦

𝐵
,

𝑛2(𝑣, 𝑡) =
𝑡2(𝐴+𝑣2)𝑥

2𝐵
−

√𝐴√𝜋𝑡2(−𝑚+3𝑣)𝑦

2𝐵
.

𝑛1(𝑣, 𝑡) =
𝑡((𝐴−𝑣2)𝑥)

𝐵
+

𝑡(√𝐴𝑚√𝜋𝑦)

𝐵
,                

𝑛2(𝑣, 𝑡) = −
𝑡2𝑣2((𝐴−

𝑣2

2
)𝑥)

𝐵
−

𝑡2𝑣2(√𝐴𝑚√𝜋𝑦)

𝐵
.
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(30)

(31)

(32)

Case  4:  Breakup  in  a  continuous  flow  with  a  uniform
daughter droplets distribution and parabolic breakup frequency

with respect to the droplet volume.

With the same algorithm in Case1 we obtain

(33)

(34)

(35)

deviation and the residence time for all cases, respectively.

Case  5:  Breakup  in  a  continuous  flow  with  a  physically
relevant problem.

The  inlet  feed  distribution,  initial  condition,  daughter
droplets distribution and breakup frequency are given in Table
1.

In Fig. (1), the complete droplets size distribution and the
corresponding  zeroth  and  third  order  moments,  that  are  the

total number and the total  mass of droplets,  respectively, are
shown for the uniform daughter droplets distribution and linear
breakup  frequency  in  batch  process  with  an  initial  condition
supposed normal (Gaussian) distribution with mean m=3 and
standard deviation σ=0.3. It is clearly shown from this figure
that the zeroth moment increases, since more and more droplets
are produced and the third moment is constant as expected by
mass  conservation.  The  prediction  of  the  droplets  size
distribution  as  well  as  its  related  moments  is  very  good
accurate  by  both  the  finite  element  method  with  expansion
coefficients  based  on  the  Chebyshev  polynomials  and  the
obtained  analytical  solution  by  the  decomposition  method.

Fig. (2) presents the complete droplet size distribution and
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the  corresponding  zeroth  and  third-order  moments  for  the
uniform daughter droplets distribution and parabolic breakup
frequency in a  batch process with an a  Gaussian distribution
initial  condition  with  of  the  same  mean  and  a  standard
deviation  as  in  Case  1.  The  prediction  of  the  droplet  size
distribution  as  well  as  its  related  moments  is  very  good
accurate  by  both  the  finite  element  method  with  expansion
coefficients  based  on  the  Chebyshev  polynomials  and  the
analytical  solution.

3. RESULTS

The numerical results presented in this article show that the
present  numerical  method  conserves  the  zeroth  and  third
moments  well  enough.

In  Fig.  (3),  both  analytical  and  numerical  determined
droplet size distribution and its corresponding moments for the
initial  distribution  condition  equal  zero  and  the  feed
distribution are assumed a normal Gauss distribution with m =
3  and  σ  =  0.3  in  a  continuous  flow with  a  uniform daughter
droplets distribution and linear breakup frequency have been
plotted.  This  figure  includes  the  both  the  solutions  for  the
variation of the zeroth and third-order moments.  Once more,
the agreement is excellent by the finite element method with
expansion coefficients  based on Chebyshev polynomials  and
the analytical solution.

Fig.  (4)  Once  again,  with  m=3  and  σ=0.3  for  the  Gauss
feed distribution, the results for the droplet size distribution by
the finite element method with the expansion coefficients based
on the Chebyshev polynomials and the analytical solution for
the Case 4 are accurate.

Fig.  (5)  presents  numerical  results  corresponding  to  the
physically relevant example as indicated in Table 1, with mean
droplet  volume  μ  =  0.5  10-9m3  and  σ  =  0.625  10-10m3  for  the
water-toluene  system,  and  the  agitation  energy  input  εm  =
0.15W/kg. In case 5, the analytical results are not available. We
have therefore plotted only numerical results computed by the
finite element method. The excellent agreement found between
the present results and the previous predictions of [33] clearly
illustrates the physical and numerical consistency of the present
numerical method.

Fig.  (6)  shows  the  comparison  of  the  relative  merits  of
different  discretization  orders.  We  first  present  the  solutions
obtained with the number of degrees of freedom Ndof=96. There
are 96 bins for  the polynomial  of  order  zero,  48 bins for  the
polynomial of order 1, 32 bins for the polynomial of order 3,
and 24 bins for the polynomial of order 3.

Therefore, the consistency of the numerical results can be
improved by expanding the order of the polynomial.

Fig. (1). A comparison of numerical and analytical results in Case 1.
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Fig. (2). A comparison of numerical and analytical results in Case 2.

Fig. (3). A comparison of numerical and analytical results in Case 3.
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Fig. (4). A comparison of numerical and analytical results in Case 4.

Fig. (5). Time evolution of drop volume distribution density at 1200 s for Case 5.
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Fig. (6). The solutions for the Case 1 obtained with Ndof = 96 degrees of freedom.

The accuracy of the numerical solutions at the final time
using  these  four  polynomials  of  order  zero,  1,  2,  and  3  is
obtained  against  the  analytical  solution  by  the  root-mean-
square error norm whose errors are 0.2478, 0.2240, 0.0318 and
0.0011, respectively.

CONCLUSION

The  droplet  breakup  in  batch  and  continuous  flow  is
described  by  the  population  balance  equation  (PBE),  which
represents  the  particle  size  distributions  in  a  particulate  pro-
cess. The PBE is solved analytically and numerically. The pro-
posed  numerical  method  of  the  finite  element  method  with
expansion  coefficients  approach  based  on  Chebyshev
polynomials  is  employed  to  solve  such  equations  with
effectiveness  and  accuracy  when  compared  to  the  exact
solutions obtained by the Adomian decomposition method. The
advantage of this present numerical method is that it does not
require  the  reconstruction  of  the  distribution  from  moments,
unlike  the  original  quadrature  method  of  moments  and  its
numerous  extensions.  With  the  proposed  method,  the
construction  of  the  distribution  function  and  the  moments  is
obtained straightforward.

The  extension  of  the  present  numerical  method  to  more
complex  systems,  such  as  bubbly  flows,  requires  further
extension.
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