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Abstract: Though still in use today, the method of the effective shearing force to evaluate the maximum shear stress in 

variable depth beams does not stand close scrutiny. It can lead to overestimating the shearing strength of these beams, al-

though it is suggested as a viable procedure by many otherwise excellent codes of practice worldwide. This paper should 

help to put the record straight. It should warn the practitioner against the general inadequacy of such a method and prompt 

the drafters of structural concrete codes of practice into acting to eliminate this erroneous though persisting designing pro-

cedure.  
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INTRODUCTION 

 The three simply supported beams shown in Fig. (1) all 
have the same span and carry the same load. Their shape is 
different, though. Beam (a) is a constant depth beam, while 
beams (b) and (c) are just two different instances of a vari-
able depth beam. All three beams share the same bending 
moment and shearing force diagrams (also shown in the pic-
ture). This is so, because in the present case these diagrams 
are determined from equilibrium conditions only.  

 At any cross section of any beam, bending moment M 
and shearing force V must always be related to each other by 
the well known equation 

 

 

dM

dz
= V     …        (1) 

where z denotes the coordinate along the beam axis. This 
means that the shearing force and bending moment diagrams 
cannot be assigned independently of each other. Equation (1) 
is an equilibrium condition. As such it applies irrespectively 
of whether the beam is elastic, plastic, composite, fissured 
etc; be it made of steel, or reinforced concrete or any other 
material. To assume any shearing force V, different than the 
one given by eq. (1), would therefore be tantamount as vio-
lating the equilibrium of the beam. Yet, when it comes to 
evaluating the bearing capacity in shear of these three beams, 
the current procedure has it that we should refer to three dif-
ferent shearing force diagrams which depend on how the 
depth of the beam varies with z, in spite of the fact that the 
bending moment diagram, and hence the derivative dM/dz, is 
the same for all the three beams. 

 The standard argument to support this practice runs as 
follows. At any cross-section of a variable depth beam the 
flexural stresses in compression and in tension are respec-
tively assumed to result in a sloped force if they are relevant  
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to a sloped side of the beam. Accordingly, the component of 
such a force which is normal to the beam axis is supposed to 
increase or decrease the internal shear needed to equilibrate 
the shearing force acting at the considered cross section. This 
is what is stated, almost literally, in Sect. R 11.1.1.2 of the 
American Concrete Institute Code [1] and represents the 
accepted wisdom concerning this topic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Irrespectively of their shape, the three simply supported 

beams (a), (b) and (c) share the same bending moment and shearing 

force diagrams (shown beneath them). 

 In fact it will be proved presently that the above argu-
ments are not correct. Despite this, they have remained un-
challenged for well over seven decades till today, leaving 
their mark on generations of building codes all over the 
world, and finding their way into an incredible sequence of 
otherwise excellent textbooks, cf. e.g. Park and Pauley [2] or 
MacGregor [3] to quote just a pair of instances for the many 
available. The aim of the present paper is to put the record 
straight. We shall track the origin of such a fallacy and show 
how was it that it could firmly establish itself within the pri-
mary literature on the argument.  
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 Of course the topic is not merely academic. If the slope 
of the intrados at the built-in ends of a beam is steep enough, 
the current procedure can easily lead to the conclusion that 
no special shear reinforcement is needed. In fact, it is not 
difficult to envisage realistic cases where a more precise 
finite element analysis dictates that under the same condi-
tions the maximum shear stress by far exceeds the one calcu-
lated by the standard method.  

ORIGIN OF THE PROCEDURE AND FACT OF THE 
MATTER 

 Apparently, all began with the classical textbook by 
Bleich [4] dating back to 1932. In Ch.16 of that book, Bleich 
extended the well known Jourawski’s method, still in use 
today, to determine the mean value of the shear stress acting 
on any chord of any cross section of variable depth beams. 
Bleich’s analysis also included the effect of a normal force 
acting on the beam cross sections. It also covered the general 
case in which both the intrados and the extrados of the beam 
were sloped. For simplicity’s sake, we shall refer to the par-
ticular case in which the normal force vanishes and either the 
intrados or the extrados not both  is sloped. These restric-
tions are not crucial to the validity of the arguments that fol-
low, but make for formulae that are simpler and readily 
comparable with those in current use in the engineering lit-
erature on the argument. 

 In his paper Bleich uses the notation “max m” to indicate 
the value of the shear stress  at the centroid C of the beam 
cross sections. The index m appended to  stands for mit-
telwert or average value. This is consistent with the fact that, 
generally speaking, the value of  that is obtained from 
Jourawski’s method is in fact the average value over the 
chord through C, parallel to the neutral axis. Through a very 
accurate analysis, Bleich ended up with a formula (cf. eq. 
(20), Ch. 16, of Bleich [4]) giving the average shear stress on 
that chord. Bleich’s formula has appeared over and over 
again ever since in the engineering literature on the argu-
ment. Quite correctly, it accounts for the shear stress that, in 
a variable depth beam, is also produced by the bending mo-
ment M and by the axial force N, in addition to that pro-
duced by V. The case in which the axial force can be ne-
glected does often occur in the engineering practice. In this 
case Bleich’s formula can be –and most frequently is– re-
written in the simple form:  

 max m = 

 

V
*

b
n

 D
   …        (2) 

(cf. e.g. Park and Pauley
 
[2], eqs (7.6)-(7.6a), for N=0). The 

notation here is the following. The quantity D is the so-
called internal lever arm, given by 

 D = 

 

Jx

Smax

    …        (3) 

where Jx is the inertia moment of the beam cross section with 

respect to the neutral axis, while Smax is the first moment of 

area of the section above the neutral axis, calculated with 

respect to the neutral axis itself. The quantity V* appearing 

in eq. (2) is usually referred to as the equivalent or effective 

shearing force and is defined as 

 V* = V  

 

1

a
M   …        (4) 

where 1/a is given by:  

 
1 1 dD

 
a D dz

=     …        (5) 

 Finally, in eq. (2) the quantity bn denotes the length of the 
chord through C, parallel to the neutral axis.  

 Fig. (2) shows a segment of a beam and its cross section. 
It provides an illustration of all the quantities related to this 
problem. For simplicity’s sake, a beam of rectangular cross 
section is considered. The gist of the arguments to be pre-
sented applies, however, to cross sections of any shape. 

 

 

 

 

 

 

Fig. (2). A segment of a variable depth beam, illustrating the main 

symbols adopted.  

 From eqs (3)-(5) and (1) it can be verified that the ampli-
tude of the effective shearing force V* turns out to be 
smaller than that of the true shearing force V whenever the 
depth of the beam increases in the same direction in which 
the amplitude of the bending moment increases. Otherwise, 
V* is greater than V.  

 The case of constant slope occurs frequently in the appli-
cations. In this case we have that  

 

 

dD

dz
 =  tg '     …        (6) 

where ' is the slope of the so called line of thrust, joining 
the points of application of the resultant of the normal 
stresses on the part of the beam cross section that lies  
between the neutral axis and the sloped side of the beam,  
cf. Fig. (2). Of course for small enough slopes we have that 

'  , the angle  being the angle that the sloped side of the 
beam forms with the level one.  

 So far so good, but for one small detail. It concerns the 
prefix “max” preceding m in eq. (2). It is all right for con-
stant depth beams (provided of course that their thickness is 
constant, or nearly so, about the centroid of the cross section 
and that, moreover, the latter is not too weird). For variable 
depth beams, however, m does not reach its maximum value 
at C (not even in the case in which the beam cross sections is 
rectangular!). In other words, although eq. (2) does indeed 
provide the right value of the shear stress at the centroid of 
the cross section, that value is not the maximum shear stress 
of the considered cross section if the depth of the beam is 
variable. As a consequence, the prefix “max” attached to m 
in eq. (2) is not right if referred to such beams.  

 To prove this claim we simply have to give a look at the 
rigorous solution of the shear stress problem in variable 
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depth beams. This solution has been known for a long time 
and is available in several textbooks on elasticity theory. The 
reader is referred to Oden [5] for a clear exposition of this 
topic. Further references include the classical textbooks by 
Timoshenko [6] (Ch. 3), by Timoshenko and Goodier [7] 
(Sects 35 and 41) and by L’Hermite [8] (Ch. 3, Sect. 16). Of 
course the rigorous solution depends on a number of factors, 
ranging from the shape of the beam, to the shape of its cross 
section and the load distribution pattern. This makes the re-
sulting formulae rather cumbrous. Simpler formulae are ob-
tained when the rate of change of the beam depth is not too 
rapid. In this case, the bending stress at each cross section is 
to a good approximation given by the standard flexure for-
mula z = M y/Jx . Even in this case, though, a general ex-
pression of the shear stress distribution on the beam cross 
sections is hardly practical. Reference to particular instances 
is enough, however, to show how strongly the shear stress 
distribution in the cross sections of a variable depth beam 
can differ from the familiar one of constant depth beams.  

 Consider for instance the case of the cantilever beam of a 

rectangular cross section of variable depth, shown in Fig. (3). 

The intrados of the beam has a non vanishing constant slope, 

so that the depth of the beam varies linearly with the distance 

z from its free end. Denoting by h=h(z) this depth, we shall 

have, therefore, 

 h(z) = 

 
h

0
+

h
L

h
0

L
z = h

0
(1+

L
z)    …        (7) 

 Here h0, hL and L have the meaning illustrated in Fig. (3), 
while 

 

 

=
h

L
h

0

h
0

    …        (8) 

 In the case considered in Fig. (3), we have hL=2h0, which 

makes =1. The shearing force is constant along the beam 

axis and given by V=P=const. The correct shear stress at 

each cross section of the beam can accordingly be expressed 

as:  

 

yz
=

6 V 

b h
0

2
h(z)/h

0

4
1

h(z) h
0

2

h
0

2
h

0

1 2
h(z) h

0

h
0

      …                    (9) 

 

which rewrites in the present notation a formula by Oden, cf. 
[5], Sect. 5.4, eq. (d). Here, the quantity  is defined by: 

  = (z,y) = h(z)/2 + y   …      (10) 

 It should be noted that, as in any boundary-value problem 
of the elasticity theory, the solution of the stress field de-
pends on the boundary conditions. Equation (9) refers to the 
case in which the shear stress applied to the cross section 
z=0 is distributed according to the standard theory of shear 
stress in rectangular cross section beams of constant depth, 
see formula (11) below. This does not introduce any serious 
restriction since, if the slope of the intrados of the beam is 
not too steep, the stress distribution at the end of the beam 
has little influence on the stress distribution at the beam 
cross sections which are sufficiently far from that end.  

 The diagrams in Fig. (3) show how zy varies along the 

beam depth of the cross sections at z=L/2 and z=L, respec-

tively. In these diagrams, the correct values of zy as obtained 

from eq. (9) are shown in continuous lines. Dashed lines 

represent the value of the shear stress as calculated from the 

standard formula:  

 
yz

=
yz

(y) =
V S

x

b J
x

 

   …      (11) 

which applies to constant depth beams. The quantity Sx ap-

pearing here is the first moment with respect to the neutral 

axis of that part of the area of the cross section which lies 

 

 

 

 

 

 

 

 

 

Fig. (3). Shear stress diagrams at selected cross sections of a beam of a variable depth. The correct diagrams are shown in solid lines. The 

dashed lines refer to the classical stress distribution of a constant depth beam acted upon by the true shearing force V. The dotted lines repre-

sent similar diagrams calculated for the effective shearing force V*, according to the standard method. 

max (0)τ   

max
* (L)τ   

max (L)τ   

max
* (L/2)τ   P

  

z 

x 

h0 

y 

C 
h(z) h(L/2) 

max max max
*(L/2) (L/2)4

3
2τ = τ = τ   

h(L)=2h0 

L/2 L/2 

h(z) 
ζ 

P 

L 

max max max
*(L) (L  2 4τ = τ = τ

  

max (L/2)τ   

b 



Variable Depth Beams The Open Civil Engineering Journal, 2009, Volume 3    31 

either above or below the chord y=const. As well-known, eq. 

(11) predicts that in a constant depth beam of rectangular 

cross section the maximum shear stress, say 
 max,  will be 

reached at its centroid. Therefore, if eq. (11) is applied to 

find the maximum shear stress of a variable depth beam with 

rectangular cross sections, the result would clearly depend 

on z and be given by 

  
max

=
max

(z) =
3

2

 V 

b h(z)
  …      (12) 

 As Fig. (3) shows, however, the true maximum value of 

the shear stress in the beam cross sections is generally differ-

ent from 
 max

 and is not reached at their centroid. The same 

conclusion holds true, of course, if the effective shearing 

force V* as defined by eq. (4) is substituted for V in eq. (12). 

This proves that the prefix “max” appearing in eq. (2) is not 

appropriate.  

 Let us consider the matter in a little more detail. Let c be 
the correct value of zy at the centroid C of a cross section of 
the beam. This value is readily calculated from eq. (9) upon 
setting  = h(z)/2 into it. Simple algebra then shows that c 
does indeed coincide with the value, say 

 
* , that is obtained 

eq. (11) (i.e. by setting y=0 in that equation), provided that in 
the same equation we substitute for V the value of V* as 
given by eq. (4). In particular, for rectangular cross sections 
this means that:  

 

 
c

= * =
3

2

 V
*
 

b h(z)
   …      (13) 

 Such a singular coincidence of 
 

*  with c, together with 
the regrettable oversight of assuming that also in a variable 
depth beam the shear stress reached the maximum value at 
the centroid of the cross sections, was the source of the mis-
take. It led to the erroneous conclusion that in a variable 
depth beam the bending stress at the sloped sides of the 
beam resulted in a shearing component that added vectorially 
to the shearing force due to the external loads.  

 In order to better appreciate the extent of the error that 
can be made by using the method of the effective shearing 
force V* to evaluate the maximum shear stress in a variable 
depth beam, let us refer again to the results shown in Fig. 
(3). In that case we have that D = 2 h0(1+z/L)/3, dD/dz = 
2 h0/(3L), a=L+z, V=P and M=P z. From eq. (4) we then get 
V*= 0.66 P at the cross section z=L/2. Similarly, we obtain 
V*=0.5 P at the built-in end of the beam (z=L). The dotted 
curves in Fig. (3) represent the shear stress that can be calcu-
lated from eq. (12) once the value of V* is substituted for V. 
Of course, these curves reach their maximum value at the 
centroid of the cross section. It is seen that for z=L/2 and 
z=L these maxima underestimate by a factor 2 and 4, respec-
tively, the true maximum shear calculated from formula (9) 
at the same cross sections. The method of the effective 
shearing force to evaluate the maximum shear stress in a 
variable depth beam is, therefore, untenable. It is certainly 
true that it provides the correct value of the shear stress at the 
centroid of the beam cross sections. However, that value is 

of little use because it can be quite different from the maxi-
mum shear stress at the same sections.  

FROM A LUCKY THEORETICAL COINCIDENCE 
TO AN UNTENABLE PRACTICE 

 The dubious notion of effective shearing force we have 
been discussing so far refers to homogeneous elastic beams. 
How is it then that the same notion ended up so firmly rooted 
in current practice when it comes to calculating the ultimate 
(i.e. post-elastic) shear strength of reinforced concrete beams 
of variable depth? Apparently, the answer lies in a combina-
tion of a lucky coincidence, an unfortunate mistake and a 
fallacious interpretation resulting from the two. We already 
spotted the lucky coincidence: The value of zy provided by 
the right-hand side of eq. (2) turns out to exactly coincide 
with the value of the shear stress at the centroid of the beam 
cross sections, as rigorously obtained from elasticity theory. 
This is so, at least, whenever the shape of the cross sections 
is such that the shear stress at the neutral axis is constant, 
which is the case for most of the cross sections of practical 
interest, including the rectangular ones. (For more general 
sections, the above coincidence applies to the average values 
of zy along the neutral axis).  

 The mistake was to assume that the shear stress at the 
centroid of a cross section of a variable depth beam reached 
a maximum. As already pointed out, this can only be valid 
for beams of constant depth. For variable depth beams, the 
theory of elasticity shows that the maximum shear stress is 
not attained at the centroid, but rather at a point that is dif-
ferent for different cross sections and can even reach the 
sloped side of the beam (cf. Fig. 3). The “culprit” here is that 
word “max” preceding m in Bleich’s formula (2).  

 The fallacious interpretation entered upon the stage when 
a physical explanation for the wrong formula (2) was sought. 
Misled by the deceptive simplicity of that formula, the ele-
mentary notion of action and reaction was forgotten. It was 
admitted that the tensile/compressive bending stress acting 
on the part of the beam cross section lying between the 
sloped side of the beam and the neutral axis resulted in a net 
non-vanishing component normal to the beam axis. The 
quantity -M/a appearing in eq. (4) was taken as the right 
value of this component. The fact that in doing so one could 
obtain the correct value of the shear stress at the centroid of 
the cross section was regarded as a proof of that conjecture. 
Thus, the effective shearing force V* appearing in eq. (2) 
was seen as resulting from the composition of V and the ver-
tical component V of a hypothetical sloped force resulting 
from the bending stresses at the sloped side(s) of the beam. 
Being relevant to the stress resultant, such a composition was 
independent of the details concerning the particular stress 
distribution along the considered cross section. This meant 
that it was also independent of the constitutive equations of 
the material making up the beam. Thus, the way to extending 
that interpretation beyond the elastic range into the realm of 
limit analysis was paved.  

 So cogent and intuitive the notion of effective shearing 
force must have appeared to be, that it was forgotten that the 
coincidence of the shear stress given by eq. (2) and the cor-
rect value of the shear stress at the centroid of the cross sec-
tion only applied to homogeneous elastic material. The con-
cept of effective shearing force was thus arbitrarily extended 
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beyond the elastic range. The consequence is that we now 
have a physically unsound, potentially harmful approach to 
the shear strength of reinforced concrete beams of variable 
depth, embodied in almost every building code of practice 
worldwide (cf., e.g., Sect. 11.1.1.2 of the already quoted 
American Concrete Institute [1] for the USA and Ch. 6.2 of 
Eurocode 2 [9] for all the countries belonging to the Euro-
pean Union).  

SOME FURTHER EVIDENCE AGAINST THE CUR-
RENT APPROACH 

 Lest tradition should prevail over reason, we shall now 
present four paradoxes resulting from the current approach to 
shear strength in variable depth beams.  

Paradox 1 

 By referring to the variable depth cantilever shown in 

Fig. 4(a), let Pu denote its ultimate load. We assume that, if 

this load is exceeded, failure in shear will take place at the 

built-in section of the beam. Let’s consider then the constant 

depth beam shown in Fig. 4(b), the depth of which equals 

the maximum depth of the previous beam. From eqs (2)-(5) 

it can be almost immediately inferred that the ultimate load 

 
P

u
 needed to produce shear failure in beam (b) is less than 

Pu. This beam, however, is obtained from that of Fig. 4(a) by 

adding the structural material that is shown as a dashed area 

in the figure, thus transforming beam (a) into a constant 

depth beam. The ultimate load of the beam thus transformed 

cannot be less than that of the variable depth beam from 

which it originated. This is both commonsense and also a 

well known consequence of a corollary of the Lower Bound 

Theorem of limit analysis, stating that: “The collapse load in 

a structure cannot be decreased by increasing the strength of 

any part” (cf., e.g., Horne
 
[10], Sect. 1.6). However, should 

we evaluate the shear strength of the beam by using the ef-

fective shearing force given by eq. (4), we would be lead to 

the wrong conclusion that the variable depth beam in Fig. 

4(a) is capable of sustaining a greater shearing force than the 

constant depth beam in Fig. 4(b). The reason for this would 

be that no reduction in the true shearing force can be applied 

to the latter beam, since factor 1/a vanishes in constant depth 

beams. Such a conclusion would clearly be untenable, how-

ever, in view of the above quoted corollary.  

 

 

 

 

 

 

Fig. (4). Adding structural material (shown shadowed) to beam (a) 

cannot reduce its strength.  

Paradox 2 

 Take the simply supported variable depth beam of Fig. 
(5). Its shearing force diagram is shown underneath the 
beam. The shearing force VS at midspan of the beam is VS= 
RA and remains constant across the midspan section. How-

ever, the effective shearing force V*, as calculated from eq. 
(2), would be greater or lesser than VS, depending on 
whether it is calculated by referring to the left or to the right 
half of the beam. Clearly, since no force is applied to the 
midspan section, these values of the effective shearing force 
would not be consistent with the equilibrium of the beam. 

 

 

 

 

 

 

 

 

Fig. (5). The true shearing force V is continuous across section S-S, 

whereas the effective shearing force V* is not, though no force is 

applied at that section. 

Paradox 3 

 Consider a generic cross section, say S-S, of the variable 
depth beam of Fig. (6). According to the traditional interpre-
tation of eq. (2), the vertical component of the sloped com-
pression force C  resulting from bending and applied to this 
section from the beam on its left, would reduce the shearing 
force acting at the same section by the amount V= C tan '. 
But, what about the vertical component of the opposite com-
pression force -C  applied to the same section from the right-
hand side part of the beam? Being downwardly directed, this 
vertical component equilibrates the upward component V 
mentioned above. No net reduction of the shearing force V 
acting on the section can therefore result from a sloped in-
trados, if the latter is rectilinear. (Clearly, this argument does 
not apply to the case in which the beam intrados is curved or 
at the points of the intrados where the slope is discontinuous. 
But then any effect of curvature or slope discontinuity falls 
outside of the standard approach. The latter only involves the 
angle that the sides of the beam form with the beam axis and 
is, therefore, independent of how this angle varies along the 
beam). 

 

 

 

 

 

 

 

Fig. (6). The “sloped” compression force C  acting from the left of 

section S-S is opposite to the one (-C ) that is acting from the right. 

Thus, no net vertical component can result from them. 

Paradox 4 

 This case is the dual of that leading to Paradox 1 dis-
cussed above. Consider the constant depth beam of Fig. 7(a) 
and assume that, under the triangular load shown there, the 
ultimate shear strength is reached at its built-in end. Should 
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eq. (2) be valid, we could improve the load bearing capacity 
of the beam by reshaping it as indicated in Fig. 7(b). In this 
way, we could increase the ultimate strength of the beam by 
decreasing the strength of some of its parts. This is clearly 
unrealistic and, above all, in contrast with the corollary of 
the Lower Bound Theorem of limit analysis, already quoted 
when discussing Paradox 1. 

 

 

 

 

 

 

Fig. (7). Removing structural material from beam (a) cannot 
lead to a beam (b) of a greater strength. 

CONCLUSION 

 The standard procedure to calculate the maximum shear 
stress in a variable depth beam replaces the true shearing 
force with an effective shearing force which is different than 
the former. For elastic, homogeneous beams such a proce-
dure gives the correct value of the shear stress at the centroid 
of the beam cross sections. The point is, however, that the 
shear stress is not maximum at the centroid of the sections, if 
the beam is of a variable depth. This is a very well estab-
lished result of elasticity theory and is at variance with what 
applies to constant depth beams. Elasticity theory shows, 
moreover, that the maximum shear stress at a cross section 
of a variable depth beam can exceed by far the shear stress 
that is reached at its centroid. This makes the method of the 
effective shearing force incapable of determining the maxi-
mum shear stress of such a beam, even in the homogeneous 
elastic case. 

 Currently, the effective shearing force method is also 

used beyond the elastic range in order to calculate the shear 

strength of variable depth beams. This is even less admissi-

ble. Outside the elastic range, the value of the shear stress 

that is obtained by referring to the effective rather than the 

true  shearing force does not even coincide with the correct 

value of the shear stress at the centroid cross sections. This 

means that the notion of effective shearing force is of no 

value whatsoever when applied to the post-elastic behavior 
of a beam. 

 Failure to recognize these points has lead to a potentially 

dangerous, yet widespread practice in the design of variable 

depth beams, which can strongly overestimate their strength 

in shear. Yet this practice is so firmly established that is rec-
ommended by the best building codes worldwide. 
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