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Abstract: The isolation of the vibration due to a harmonic vertical load using pile rows embedded in a saturated poroelas-

tic half-space is investigated in this study. Using the fundamental solution for a circular patch load and Muki’s method, 

the second kind of Fredholm integral equations describing the dynamical interaction between the pile rows and the satu-

rated poroelastic half-space are obtained. Numerical solution of the integral equations yields the dynamic response of the 

pile-half-space system. The vibration isolation effect of the pile rows is investigated via the proposed semi-analytical 

model. Numerical results indicate that stiffer piles have better isolation vibration effect than flexible piles. Moreover, the 

pile length and the spacing between neighboring piles in one pile row have significant influence on the isolation vibration 

effect of pile rows, while the influence of the spacing between neighboring pile rows is relatively smaller.  

Keywords: Poroelastic half-space, Biot’s theory, Fredholm integral equation, Pile rows, Passive vibration isolation.  

1. INTRODUCTION  

 The vibration isolation methods can be classified into 

two categories: the active vibration isolation method and the 

passive isolation method. The active isolation method often 

is aimed to isolate the vibration source from its surrounding 

medium. Thus, the active vibration isolation facility is usu-

ally installed around the vibration source or at a very close 

distance from the source. The passive isolation facility, on 

the other hand, usually is far away from the source and sur-

rounds the protected structure.  

 Roughly, there are two passive vibration isolation ap-

proaches: the trench (open or in-filled) approach and the pile 

approach (pile rows or sheet piles). To date, many researches 

concerning vibration isolation by trenches or piles have been 

conducted. For example, Emad and Manolis [1] utilized the 

boundary element method (BEM) with constant elements to 

research the vibration reduction effect of rectangular and 

circular open trenches. Beskos et al. [2] employed BEM with 

constant element to discuss the vibration reduction effects of 

the open and in-filled trench. Dasgupta et al. [3] applied the 

3-D frequency domain BEM with the full space fundamental 

solution to investigate the isolation of the vibration due to a 

rigid surface foundation subjected to a harmonic loading via 

open and in-filled trenches. Avilles and Sanchez-Sesma [4]  
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developed a theoretical model to study the vibration isolation 

effect of a pile row with the incident SV and Rayleigh waves 

as the sources. Kattis et al. [5, 6] used the 3-D frequency 

domain BEM to calculate the vibration isolation effect of a 

pile row under the same assumption. Recently, by means of 

the frequency domain BEM, the vibration isolation effect of 

four types of circular piles was studied by Tsai [7].  

 It should be noticed that many previous researches con-

cerning vibration isolation treat the half-space as a single-

phase elastic medium. Nevertheless, it is well-known that for 

the saturated soil, the pore fluid plays a very important role 

in the liquefaction and the shear failure of the soil. Thus, it is 

inappropriate to treat the saturated soil as a single-phase elas-

tic medium. Although there have been many researches on 

the dynamic response of piles embedded in a poroelastic 

half-space, most of them are limited to the case of piles sub-

jected to top harmonic loads. For example, based on Biot’s 

theory [8-10], Zeng and Rajapakse [11] analyzed the steady-

state dynamic response of an axially loaded pile embedded 

in a poroelastic half-space. Wang et al. [12] extended the 

problem to the dynamic response of pile groups embedded in 

a poroelastic half-space. Jin et al. [13] studied the time-

harmonic response of a pile under lateral loadings embedded 

in a poroelastic half-space. Besides, the frequency domain 

dynamic response of a pile embedded in a half-space porous 

medium and subjected to P and SV waves was investigated 

by Lu & Jeng [14]. However, up to now, very little attention 

has been paid on the vibration isolation using pile rows  
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embedded in poroelastic soils. Based on Biot’s theory, the 

effect of a pile row on the displacement amplitude reduction 

of soil subjected to an incident S wave was investigated in 

[15]. Also, using the Fourier-Bessel series expansion method 

with the aid of the translational addition theorem, the dy-

namic response of the poroelastic medium behind a pile row 

when subjected to incident elastic waves was studied by Cai 

et al. [16]. Based on Biot’s theory and integral equation 

method, numerical simulations of the isolation of the moving 

loading induced vibration by pile rows embedded in a ho-

mogeneous or layered poroelastic half-space were conducted 

in [17, 18], respectively. 

 In this paper, based on Muki’s method for piles [19, 20] 

and the fundamental solution for a circular patch load, a 

semi-analytical model for analyzing the isolation of the vi-

bration due to a fixed vertical harmonic load using pile rows 

is developed. Compared with the researches in [17, 18], the 

most important contribution of this paper is that both the 

influence of the vertical and horizontal deformation of pile 

rows on the isolation effect is considered. As a result, three 

integral equations describing the vertical and horizontal pile-

half-space interaction are needed for each pile. The remain-

der of the paper is organized as follows. In the second Sec-

tion, Biot’s theory is outlined. In the third Section, the ap-

proach for establishing the fundamental solution for a verti-

cal and a horizontal circular patch load applied in the poroe-

lastic half-space is sketched. In the fourth Section, the Fred-

holm integral equations describing the vertical and horizon-

tal interaction between the piles and poroelastic half-space 

are established. In the fifth Section, the amplitude reduction 

ratio assessing the isolation vibration effect is defined. In the 

sixth Section, some numerical examples and corresponding 

analysis are presented. Finally, in the seventh Section, based 

on the research in this study, some conclusions are drawn.  

2. BIOT’S THEORY  

 In this study, the soil is considered as the porous me-

dium, which is described by Biot’s theory [8-10]. Equations 

of motion for the bulk material and the pore fluid are ex-

pressed in terms of the solid displacement ( iu ) and the infil-

tration displacement ( iw ) as follows [8-10]  

2

, , ,( )i jj j ji j jiu M u Mwμ � � μ �+ + + + =
b i f iu w� �+�� ��     (1) 

, ,j ji j jiMu Mw� + = f i i p iu mw b w� + +�� �� �          (2) 

where �  and μ  are Lame constants of the solid skeleton; 

b�  is the bulk density of the porous medium, which is de-

fined by 
fsb ����� +�= )1( , where 

s�  is the density of 

the solid skeleton, �  is the porosity of the porous medium 

and f� is the density of the pore fluid; �� /fam �= and 

�a  is the tortuosity of the porous medium; /pb k�= , �  

and k  represent the viscosity of the pore fluid and the per-

meability of the porous medium, respectively; the superim-

posed dot on a variable denotes the time derivative. 

 Based on Biot’s theory, the constitutive relation for  

a homogeneous porous medium has the following form [8-

10] 

fijijijij pe ����μ�� �+= 2           (3) 

�� MMep f +�=            (4) 

where � ij  is the total stress of bulk material; ij�  denotes the 

strain tensor of the solid skeleton; fp  is the excess pore 

fluid pressure and ij�  is the Kronecker delta; e and �  are 

the dilatation of the solid skeleton and the fluid volume  

increment for a unit volume porous medium.  

 To derive the general solutions for Biot’s equations,  

the Fourier transform with respect to time and frequency is 

involved [21], which is defined as follows  

( ) ( ) i tf f t e dt��

+�

�

��

= �            (5) 

1
( ) ( )

2

i tf t f e d�� �
�

+�

��

= �           (6) 

where ( )f t  represents a function in the time domain, 

( )f �  is the Fourier transform of ( )f t , t  and �  denote 

time and frequency, respectively, and a bar over a variable 

denotes the Fourier transform.  

 Based on the Helmholtz decomposition method, the solid 

displacement in the frequency domain has the following  

decomposition  

, , ,i f i s i ijk k ju e� � �= + +           (7) 

where f� , s�  and k�  ( k = 1, 2 , 3) are the scalar and  

vector potentials for the porous medium and ijke  is the  

Levi-Civita symbol. Moreover, in the Cartesian coordinate 

system, the vector potential k�  ( k = 1, 2, 3) satisfies the 

following condition 

, 0i i� =             (8) 

 According to the analysis of Bonnet [22], although two 

displacement vectors are used in Biot’s theory, four inde-

pendent variables exist in the porous medium. Consequently, 

the pore pressure has the following expression 

, ,f f f ii s s iip A A� �= +            (9) 

 The above equations for Biot’s theory can be reduced to 

the following Helmholtz equations [23] 

  
�

2�
f
+ k

f

2�
f
= 0          (10) 

  
�

2�
s
+ k

s

2�
s
= 0           (11) 

  
�

2� + k
t

2� = 0           (12) 
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 Note that the expressions for the two constants fA , 

sA in (9) and the three complex wave numbers ( fk , sk  and 

tk ) can be found in [23].  

 Once the potentials for the porous medium ( f� , s�  and 

� ) are determined, the frequency domain displacement and 

pore pressure are given by (7), (9), while the stress of the 

porous medium is determined by (3). 

3. THE FUNDAMENTAL SOLUTION FOR A 

POROELASTIC HALF-SPACE SUBJECTED TO A 

CIRCULAR PATCH LOAD IN THE FREQUENCY 

DOMAIN 

 As shown in the previous section, the governing equa-

tions of Biot’s theory can be reduced to three Helmholtz 

equations for two scalar potentials and one vector potential. 

Herein, based on the potential method, the fundamental solu-

tion for a poroelastic half-space subjected to a uniform patch 

load over a circular region with radius R (Fig. 2) will be es-

tablished. The resultant of the patch load is assumed to be 

unity. Since the half-space considered here is axisymmetric 

with respect to the axis z (Fig. 2), it is more convenient  

to consider the current problem in a cylindrical coordinate 

system ( , ,r z� ).  

 In the cylindrical coordinate system, the vector potential 

for the solid skeleton and the pore fluid displacements can be 

represented by two scalar potentials, �  and �  [23], which 

satisfy the condition (8) automatically. Thus, in the cylindri-

cal coordinate system, the Helmholtz equations (10)-(12) are 

reduced to  

2 2 2
2

2 2 2 2

1 1
( ) 0f f fk

r r r r z
� �

�

� � � �
+ + + + =

� � � �
       (13) 

2 2 2
2

2 2 2 2

1 1
( ) 0s s sk

r r r r z
� �

�

� � � �
+ + + + =

� � � �
       (14) 

2 2 2
2

2 2 2 2

1 1
( ) 0tk

r r r r z
� �

�

� � � �
+ + + + =

� � � �
       (15) 

2 2 2
2

2 2 2 2

1 1
( ) 0tk

r r r r z
� �

�

� � � �
+ + + + =

� � � �
       (16) 

 The displacements for the solid frame can be expressed 

in terms of the above potentials in the cylindrical coordinate 

system ( , , )r z�  as follows 

21f s
ru

r r r r z

� � � �

�

� � � �
= + + +

� � � � �
        (17) 

21 1 1f su
r r r r z

�

� � � �

� � �

� � � �
= + � +

� � � � �
       (18) 

2

2 2

1 1
( )

f s
zu r

z z r r r r

� � � �

�

� � � � �
= + � �

� � � � �
        (19) 

 For the poroelastic half-space subjected to a harmonic 

load, potentials 
f� , 

s� , �  and displacements 
ru , 

zu , 
rw , 

zw  and stresses 
rr� , 

��� , 
zz� , 

rz�  may be expanded into 

the series (20), while potentials �  and displacements u� , 

w�  and stress z��  are expanded into the series (21) [24] 

1 1

0

( , , , ) ( , , ) cos( )m

m

f r z f r z m� � � �
�

=

=�         (20) 

2 2

0

( , , , ) ( , , ) sin( )m

m

f r z f r z m� � � �
�

=

=�        (21) 

where subscript m denotes the order of the term in the series, 

and 1f , 2f  represent the corresponding potentials, dis-

placements, the pore pressure and the stresses, respectively. 

 To derive the fundamental solutions for the poroelastic 

half-space in the cylindrical coordinate system ( , , )r z� , the 

Hankel integral transform is employed [24]. The m-th order 

Hankel transform is defined by 

( )

0

ˆ ( ) ( ) ( )m

mf rf r J r dr� �

+�

= �         (22) 

( )

0

ˆ( ) ( ) ( )m

mf r f J r d� � � �

+�

= �         (23) 

where ( )mJ �  denotes the m-th order first kind of Bessel 

function and a caret above a variable denotes the Hankel 

transform, and �  denotes the horizontal wavenumber.  

 Substituting the m-th order component of the potentials 

f� , 
s� , � , �  in equation (20) and (21) into (13)-(16) and 

performing m-th order Hankel transform with respect to the 

radial coordinate r, the general solutions of the potential 

ˆ
fm� , ˆ

sm� , ˆ
m� , ˆ

m�  in the frequency-wavenumber domain are 

obtained as follows 

( )ˆ ( , , ) ( , ) ( , )f fz zm

fm m mz A e B e
� �

� � � � � � �
�

= +       (24) 

( )ˆ ( , , ) ( , ) ( , )s sz zm

sm m mz C e D e
� �

� � � � � � �
�

= +       (25) 

( )ˆ ( , , ) ( , ) ( , )t tz zm

m m mz E e F e
� �

� � � � � � �
�

= +       (26) 

( )ˆ ( , , ) ( , ) ( , )t tz zm

m m mz G e H e
� �

� � � � � � �
�

= +       (27) 

where the superscript m denotes the m-th order Hankel trans-

form, and ( ,  )mA � � ~ ( ,  )mH � �  are arbitrary constants to 

be determined by the boundary condition and the continuity 

condition at the patch load plane (Fig. 2). In (24)-(27), 
f� , 

s�  and 
t�  are complex numbers associated with the vertical 

wavenumbers of the P1, the P2 and the S wave of the porous 

medium and  
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2 2

f fk� �= � , 
2 2

s sk� �= � , 2 2

t tk� �= �       (28) 

 Note that the real part of ,  ,  ,  f s t�� � =  in (28) 

should be always non-negative to guarantee the bounded 

condition at infinity.  

 As mentioned above, when derive the integral equations 

for the pile rows, the fundamental solutions of the poroelas-

tic half-space subjected to a vertical and a horizontal patch 

load over a circular domain with the radius equal to that of 

the piles are needed. These kinds of fundamental solutions 

can be derived by means of the general solution (24)-(27) 

and the displacement-potential relation, the pore pressure-

potential relation and the stress-potential relation, the details 

of which are available in [14].  

4. THE FREDHOLM INTEGRAL EQUATIONS FOR 

THE PILE- HALF-SPACE SYSTEM  

4.1. The Piles and the Half-Space System 

 As shown in Fig. (1), the vibration source is a harmonic 

vertical patch load with frequency f ( / 2f � �= ) and ap-

plied to a circular surface domain with the diameter D . The 

passive vibration isolation system is multiple pile rows  

embedded in a poroelastic half-space. The total number of 

the piles is m . Each circular pile has the same diameter  

d ( 2d R= ), length L, modulus pE  and the same density 

p� . The spacing between two neighboring piles in one pile 

row is s and the separation between two adjacent pile rows is 

q. The distance between the first pile row and the center of 

the vibration source is sd  (Fig. 1).  

 Following Muki and Sternberg [19, 20] and Pak & 

Jennings [25], the pile-soil is decomposed into two sub-

problems: an extended poroelastic half-space and multiple 

fictitious piles. The response of the poroelastic half-space is 

governed by Biot’s theory, while the fictitious pile is de-

scribed by a 1-D bar and beam vibration theory. For simplic-

ity, the i-th pile is used to illustrate the establishment of the 

integral equations.  

 For the i-th fictitious pile, its Young’s modulus and the 

density are expressed as [19, 20],  

( ) ( )

*

i i

p p sE E E= � , ( ) ( )

*

i i

p p b� � �= �  ( 1, 2, ,i m= �� )      (29) 

where 
  
E

p

( i)  and 
sE  are Young’s modulus for the i-th pile and 

the poroelastic half-space with )/()23( μ�μ�μ ++=sE ; 

( )i

p� , b�  are the densities for the i-th pile and the poroelas-

tic half-space; 
( )

*

i

pE  and 
( )

*

i

p�  are Young’s modulus and the 

density for the i-th fictitious pile.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Multiple pile rows used as vibration isolation system for a saturated poroelastic half space subjected to a harmonic vertical load. 
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 As shown in Fig. (3), it is assumed that the axial force, 
the shear force and the bending moment of the i-th fictitious 
pile are denoted by 

( )

* ( )iN z , ( )

* ( )i

kQ z  and 
( )

* ( )i

kM z  
( , )k x y= , respectively. The i-th fictitious pile is subjected 
to the vertical and the horizontal distributed loads 

( ) ( )i

kq z  
( , , )k x y z=  along the length of the pile (Fig. 3). The top 
and the bottom of the i-th fictitious pile are subjected to ver-
tical loads ( )

* (0)iN , ( )

* ( )i

iN L , horizontal loads ( )

* (0)i

kQ , 
( )

* ( )i

kQ L  ( , )k x y=  and bending moments ( )

* (0)i

kM , ( )

* ( )i

kM L  

( , )k x y= , respectively. 

 The extended poroelastic half-space are subjected to the 

following loads (Fig. 3):
( ) ( )i

kq z ( , , )k x y z=  which are 

uniformly distributed over the domain occupied by the i-th 

pile; ( )

* (0)iN , ( )

* (0)i

kQ , ( )

* (0)i

kM  ( , )k x y=  and 
( )

* ( )iN L , 

( )

* ( )i

kQ L , 
( )

* ( )i

kM L  ( , )k x y=  which are applied over the 

circular domain 
( )

0

i
�  and 

( )i

L� , respectively. 
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Fig. (2). A uniform circular patch load applied in a saturated poroelastic half space: (a) a vertical uniform circular patch load; (b) a horizontal 

uniform circular patch load. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). The model for the i-th fictitious pile and the extended poroelastic half space. 
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 When the pile-half-space system is subjected to external 

loads, generally, the piles will undergo both vertical and 

horizontal deformation. As a result, the integral equations for 

the pile rows should account for the vertical and horizontal 

deformation of the piles. In this study, the compatibility con-

dition that the axial strain of the fictitious piles and the verti-

cal strain of the extended half-space along the piles’ axis are 

equal is used to construct the integral equation accounting 

for the vertical coupling of the pile-half-space system. On 

the other hand, the condition that the rotary angles of the axis 

of the fictitious piles and those of the extended half-space 

along the axis of the piles are equal is used to establish the 

Fredholm integral equations accounting for the horizontal 

interaction within the system. 

4.2. The Equations of Motion for the Piles  

 For the i-th fictitious pile, the vertical displacement 
( )

* ( )p i

zu z , the distributed vertical load 
( ) ( )
z

iq z  and the axial 

force 
( )

* ( )iN z  satisfy the following relations  

  
q

z

( i) (z) = �
dN

*

( i) (z)

dz
� �

p*

( i) A( i)� 2u
z*

p( i) (z)        (30) 

( ) ( ) ( )

* * *( ) ( )

* 0

1
( ) (0) ( )

z

p i p i i

z z i i

p

u z u N d
E A

� �= + �       (31) 

where 
( )iA  denotes the cross-section area of the i-th pile. 

 The horizontal displacement 
( )

* ( )p i

ku z , the distributed 

horizontal load 
( ) ( )i

kq z , the shear force ( )

* ( )i

kQ z  and the 

bending moment 
( )

* ( )i

kM z  ( , )k x y=  of the i-th fictitious 

pile satisfy the following relations  

( )
( ) ( ) ( ) ( ) 2*

* *

( )
( ) ( )

i
i i i p ik

k p k

dQ z
q z A u z

dz
� �= � + , ( , )k x y=     (32) 

( )
( )*
*

( )
( )

i
ik

k

dM z
Q z

dz
= , ( , )k x y=         (33) 

 Based on the beam theory, the bending moment 

(
( )

* ( )i

kM z , ( , )k x y= ), the rotary angle of the pile 

(
( )

* ( )p i

k z� , ( , )k x y= ) and the horizontal displacement 

(
( )

* ( )p i

ku z , ( , )k x y= ) have the following form 

( ) ( )

* *

0

( ) ( )

z

i i

k kM z Q d� �= � , ( , )k x y=        (34) 

( ) ( ) ( )

* * *( ) ( )

* 0

1
( ) ( ) ( ) (0)

z

p i i p i

k k ki i

p k

z z Q d
E I

� � � � �= � +� , 

( , )k x y=           (35) 

  

u
k*

p( i) (z) =
1

2E
p*

( i) I
k

( i)
(z �� )2Q

k*

( i) (� ) d�
0

z

� +�
k*

p( i) (0)z + u
k*

p( i) (0) , 

( , )k x y=           (36) 

where 
( )i

kI  ( , )k x y=  is the second moment of the pile 

cross section.  

4.3. The Fredholm Integral Equations for the Vertical 

Interaction Between the Piles and the Half-Space  

 As mentioned above, the vertical compatibility condition 

between the i-th pile and the extended half-space is fulfilled 

by requiring the axial strain of the i-th fictitious pile and the 

vertical strain of the extended half-space along the axis of 

the i-th pile to be equal 

( ) ( )

* ( ) ( ) ,  0p i s i

z zz z z L� �= � �  (  i = 1,2,......,m )      (37) 

where 
( )

* ( )p i

z z�  represents the axial strain of the i-th ficti-

tious pile, 
( ) ( )s i

z z�  is the vertical strain of the extended 

half-space along the axis of the i-th pile.  

 The vertical strain of the extended half-space along the 

axis of the piles is composed of two parts: the first part is 

due to the free wave field, while the second part is due to the 

loads applied to the half-space by all the fictitious piles. 

Thus, the vertical strain of the extended half-space along the 

axis of the i-th pile can be written as 

  

�
z

s(i) (z) = �
zf

(i) (z)+ [N
*

( j) (0)�
zz

(G) (r
ij

, z,0)
j=1

m

�  

� N
*

( j) (L)�
zz

(G) (r
ij

, z, L)� q
z

( j) (� )�
zz

(G) (r
ij

, z,� ) d� ]
0

L

�  

( ) ( ) ( )
* *

, 1

{ [ (0) ( , ,0)
m

j G j
ijk kz k

k x y j

Q r z Q�
= =

+ � +� �  

( ) ( ) ( )

0

( ) ( , , ) ( ) ( , , ) ]}
L

G j G
ij ijkz k kzL r z L q r z d� � � � �+ � ,  

(  i = 1,2,......,m )          (38) 

where 
( )

( )
i

zf z�  is the free field vertical strain due to the ver-

tical harmonic source and 
( ) ( , , )G

zz ijr z� � , 
( ) ( , , )G

kz ijr z� �  

(
  k = x,  y ) represents the vertical strain at the center of 

  
�

z

( i)  

due to a unit vertical and horizontal patch load at ( )j

�
� ,  

respectively (Fig. 3), ijr  is the horizontal distance between 

the axis of the i-th and j-th pile. Note that if i j= , 
 
r

ij
 will 

vanish. 

 Using (30)-(36) and (37), (38), the Fredholm integral 

equation describing the vertical interaction between the i-th 

pile and the extended half-space has the form 

N
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( ) ( ) ( ) ( )

* *

0

( ) ( , ) (0) ( )]

jL

j a p j b

ij z ijN z d u z� � � � �� ��
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*
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( , , )
{ [ ( ( )

G
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k x y j

r z
Q d

z

� �
� �

= =

�
� � � �
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( )( )

0

( ) ( , , )
L

Ga
ij ijkz r z d� � � � �+ �  

( ) ( ) ( ) ( ) ( )

* *(0) ( ) (0) ( )]} ( )p j b p j c i

k ij k ij zfz u z z� � � �+ + = , 

(  i = 1,2,......,m )          (39) 

where 
( ) ( ,  , )G

zz iir z z� �
, 

( ) ( ,  , )G

zz iir z z� +
 denote the vertical 

strain of the extended half-space at the center of ( )

z

i
� when 

the patch vertical load applied on 
( )i

�
�  approaches 

( )

z

i
�  

from up and down side, respectively, and  

( ) 2

*( ) ( )

( )

*

( , ) ( , , )

j L
pa G

ij zz ijj

p

z r z d
E

�

� �
� � � � �= �

      (40a) 

( ) ( ) ( ) 2 ( )

*

0

( ) ( , , )

L

b j j G

ij p zz ijz A r z d� � � � � �= �
       (40b) 
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*( ) 2 ( )
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* 0

( ) ( ) ( )
2

j
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ij ki i

p x

A
Q d

E I

�� �
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( ) ( ) ( ) 2 ( )

*

0

( ) ( , , )

L

b j j G

ij p kz ijz A r z d� � � �� � �= �
, (  k = x,  y )    (40d) 

( ) ( ) ( ) 2 ( )

*

0

( ) ( , , )

L

c j j G

ij p kz ijz A r z d� � � � � �= � , (  k = x,  y )    (40e) 

 Following the similar procedures, the surface vertical 

displacement ( , 0)zsu z
�

=x  for the poroelastic half space in 

the presence of pile rows can be calculated as follows  

( )
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where ( ,0)zfu
�

x  represents the free field vertical displace-

ment, ( ) ( ,0, )G

zz jU r �
�x

, ( ) ( ,0, )G

kz jU r �
�x

, (
  k = x,  y ) denotes 

the vertical displacement at the surface point 

 
x
�

( x y
�
= +x i j ) due to a unit patch vertical and horizontal 

load applied at ( )j

�
� , respectively, 

jr
�x

 is the horizontal dis-

tance between the surface point 
 
x
�

 and the axis of the j-th 

pile. 

 In equation (39), 
  
u

z*

p( i) (0) (  i = 1,2,......,m ) are also un-

known. Thus, additional equations for 
  
u

z*

p( i) (0)  

(  i = 1,2,......,m ) are needed for the closure of the system. 

The supplementary equations for 
( )

* (0)p i

zu  can be derived 

assuming that the vertical displacement of the i-th pile top 

and the vertical displacement of the extended half-space at 

the center of ( )

0

i
�  are equal, i.e., 

( ) ( )

* (0) (0)p i s i

z zu u= . Note 

that ( ) (0)s i

zu  can be obtained via (41) by setting �
x  coin-

cide with the center of the i-th pile top. Thus, using (30)-(36) 

and (41), the following supplementary equations for 
( )

* (0)p i

zu are derived 
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where ij�  is the Kronecker delta and  
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E

�

� �
� � � �= �

        (43a) 
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*

0
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L

d j j G
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, ( ,  k x y= )    (43c) 

( ) ( ) ( ) 2 ( )

*

0

( ) ( , , )

L

e j j G

ij p kz ijz A U r z d� � � � �= �
, ( ,  k x y= )    (43d) 

4.4. The Fredholm Integral Equations Accounting for the 

Horizontal Interaction the Piles and the Half-Space 

 The horizontal compatibility between the i-th pile and the 

extended half-space is realized by assuming the rotary angle 

of the i-th fictitious pile (
( )

* ( )p i

k z�  ( ,  )k x y= ) and the ro-

tary angle of the extended half-space along the axis of the 

pile (
( ) ( )s i

k z�  ( ,  )k x y= ) to be equal  
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( ) ( )

*( ) ( )s i p i

k kz z� �= , 0 z L< < , i = 1,2,......,m , ,  k x y=       (44) 

where 
( ) ( )s i

k z�  and ( )

* ( )p i

k z�  ( ,  k x y= ) denote the rotary 

angle of the extended half-space and the i-th fictitious pile in 

the xoz and the yoz plane, respectively.  

 Likewise, the rotary angle of the extended half-space 

along the axis the i-th pile consists of two parts: the first  

part is the contribution from the free wave field, while the 

second part is due to the loads applied to the half-space by 

the fictitious piles (Fig. 3). As a result, taking proper account 

of the discontinuity of the integrand, the rotary angle of the 

extended poroelastic half-space along the axis the i-th pile 

has the form  
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where ( ) ( )i

kf z�  ( ,  )k x y=  is the free field rotary angle along 

the axis of the i-th pile due to the harmonic vertical load, 
( )

' ( , , )
G

k k ijr z� � , 
( )

( , , )
G

zk ijr z� �  ( , ,  )k k x y�=  represents the 

rotary angle at the center of ( )

z

i
�  due to a unit patch horizon-

tal and vertical load applied on ( )j

�� , respectively; 

( ) ( , , )G

kk iir z z� � , ( ) ( , , )G

kk iir z z� +  ( ,  )k x y=  denote the rotary 

angle at the center of ( )

z

i
�  when the patch load applied on 

( )i

�
�  located at z�

and z+
, respectively.  

 Using equations (30)-(36) and (44), (45), the following 

second kind of Fredholm integral equations in the xoz and 

the yoz plane are obtained as follows 
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 For the extended half-space, the horizontal displacement 

at the surface point ( ,0)
�

x along k ( ,  k x y= ) direction has 

the following expression 
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where ( ,0)kfu
�

x ( ,  )k x y=  represents the free field horizon-

tal displacement, ( )

' ( ,0, )G

k k ijU r � , ( ) ( ,0, )G

zk ijU r �  

( , ,  )k k x y�= denotes the horizontal displacement at the sur-

face point 
 
x
�

( x y
�
= +x i j ) due to a unit patch horizontal 

and vertical load applied at ( )j

�
� , respectively. 

 For the close of the system, additional equations for 
( )

* (0)p i

ku
  (k = x,  y; i = 1,2,......,m)  are needed. Supposing 

that the horizontal displacement of the i-th fictitious pile top 

is equal to the horizontal displacement of the extended half-

space at the i-th pile top, supplementary equations for 
( )

* (0)p i

ku  
  (k = x,  y; i = 1,2,......,m)  in (46) can be obtained 

via (48) by setting 
 
x
�

 coincide with the center of the i-th 

pile top. Thus, using (30)-(36) and (48), the following sup-

plementary equations for 
( )

* (0)p i

ku are derived 
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5. DEFINITION OF THE AMPLITUDE REDUCTION 

RATIO  

 To assess the isolation vibration effect of pile rows, the 

amplitude reduction ratio rA , which is the ratio between the 

amplitude of the vertical displacement of the half-space in 

the presence of the pile rows and that of the free field solu-

tion, is defined as follows  
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( , 0)

( , 0)
z
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r f

u z
A

u z

�

�

=
=

=

x

x
         (51) 

where x y
�
= +x i j , ( , 0)zsu z

�
=x , 

( ) ( , 0)
z

fu z
�

=x  is 

the amplitude of the vertical displacement for the half-space 

with the pile rows and the amplitude of the vertical dis-

placement for the free field solution. The displacement 
( ) ( , 0)
z

fu z
�

=x  can be obtained by performing the inverse 

Hankel transform on the frequency-wavenumber domain 

solution of the vertical displacement in Section 3.  

 Woods [26] proposed an average amplitude reduction 

ratio 
rA  for assessing the isolation vibration effect. The av-

erage amplitude reduction ratio 
rA  is defined as follows: 

1
r r

A
A A dA

A
= �           (52) 

where A is a rectangle with its width and length determined 

by the wavelength of the Rayleigh wave and the width of 

pile rows. 

6. NUMERICAL RESULTS AND DISCUSSIONS 

 The integral equations accounting for the vertical and 

horizontal interaction between pile rows and the half-space 

can be solved numerically. The methodology for solving 

integral equations (39), (46) was detailed in [25]. To show 

the main idea for solving the second kind of Fredholm inte-

gral equations in this paper, the Fredholm integral equations 

in this paper is denoted by the following simple form  
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where ( )a z � ( )f z  are known functions and should be con-

tinuous within the interval 0 z L� � , ( )� � is the unknown 

function to be determined, ( , ) /z� � �� � is the kernel func-

tion for the integral equation. As in this study, ),( z��  takes 

different values at 
�

= z� and 
+

= z� , integral equation 

(53) is one kind of weakly singular integral equation. Due to 

the discontinuity of ( , ) /z� � �� �  at z, thus, it is appropriate 

to divide the integral in (53) into two parts at point z, which 

leads to 
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  (54) 

 To implement the quadrature approach, the interval 

0 z L� �  is divided into N segments evenly. And within 

each segment
1+�� jj zz �  of the N segments, ( )� �  is 

approximated by  

1 1( ) ( ( ) ( )) / 2 ,j j j jz z z z� � � � �+ += + � �       (55) 

 Substitution of (55) into the integration over the interval 
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 Using (56) to evaluate the integrations over the N sub-

intervals in (53), then, the integral equation (53) is reduced 

to the following discrete form 
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 It is worth stressing that when 1j +  in the above equation 

equal to i , then, 
1( , )j iz z� +

will assume the values 

),( ii zz �� , as the interval 
1j jz z� +� �  infinitely ap-

proaches the point iz  form the above; on the other hand, 

when j i= , then, ( , )j iz z�  should take the value 

),( ii zz +�  as the interval 
1j jz z� +� �  is infinitely close to 

the point iz  from the below.  

 Discrete formula (57) can be used to reduce the integral 

equations (39), (46) to linear algebraic equations. After the 

numerical solution of the linear algebraic equations, the  

vertical displacement of the half-space can be obtained via 

(41) and the amplitude reduction ratio can be evaluated by 

(51) and (52).  

 To verify the proposed method, a special case of our 

model will be compared with an existing result in Sec. 6.1. 

Also, some numerical examples and corresponding analysis 

are given in Sec. 6.2 and Sec. 6.3.  

6.1. Comparison of our Result with an Existing Result 

 As the first example, a special case of our solution is 

compared with an existing result. In our solution, a single 

pile row with eight piles embedded in the poroelastic half-

space is used as the passive vibration isolation system again 

a harmonic vertical patch load. The parameters for each pile 

assume the following values: 1.0 md = , 5.0 mL = , 
10 24.526 10  N/mpE = � , 3 32.35 10  kg/mp� = � . The net 

spacing between two neighboring piles is 0.5 ms = . The 

vibration source is a harmonic vertical uniform patch load 

with magnitude 
2200 kN/mFQ =  and applied over a circu-

lar area with the diameter 0.8 mD = . Its frequency is 

50 Hzf = . The distance between the pile row and the cen-

ter of the vibration source is 7.5 msd =  (see Fig. 1). To 

reduce the poroelastic half-space to a quasi-elastic half-

space, the parameters M , m ,� , pb , 
f�  are set to be 0.0001 

as in [27]. It should be noted that for an elastic medium there 

are singularities in the path of the integration when evaluat-

ing the fundamental solution, which makes the numerical 

evaluation of the integral a formidable task. However, some 

researchers tend to evaluate this kind of integrals by use  

of a special viscoelastic model. In the viscoelastic model,  

the material damping is taken into account by using complex 

Lame constants i.e. 0 (1 i )sμ μ �= +  and 0 (1 i )s� � �= + , 

where s�  denotes the damping ratio. In this paper, we  

use a damping ratio of 0.05s� =  for the half-space and 

8 2
0 1.32 10  N/mμ = � , 8 2

0 1.32 10  N/m� = � , 3 31.75 10  kg/ms� = � . 

According to [6], the reference Rayleigh wavelength for the 

quasi elastic half-space is 5.0 mR� = . 

 Fig. (4) shows the contour of the amplitude reduction 

ratio rA  for the single pile row embedded in the quasi elas-

tic half-space according to the present model. It can be  

observed that the amplitude reduction ratio rA  right behind 

the pile rows is much smaller than those at other areas. For 

further comparison, the average amplitude reduction ratio 

rA  for the quasi elastic half-space is calculated, which is 

0.718, while the result of Kattis [6] for the elastic half-space 

is 0.712. The difference between the present solution and 

that of Kattis’ [6] is only 0.842%.  

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). The contour of the amplitude reduction ratio rA  for 

a single pile row with eight piles used as the passive system. 

6.2. Numerical Simulation of the Vibration Isolation  

using a Single Pile Row  

 In this section, the passive isolation vibration system is a 

single pile row with nine piles embedded in a poroelastic 

half-space. The vibration source is a harmonic vertical uni-

form patch load with the magnitude FQ  and applied over a 

circular area with the diameter D  and its frequency is f . 

The reference Rayleigh wavelength for the half-space is 

5.0 mR� = . The parameters for the poroelastic half-space, 

pile rows and the vibration source are given in Table 1. 

 In the following, the influences of Biot’s parameter (M), 

Young’s modulus of the pile ( pE ), the pile length ( L ) and 

the net spacing between two neighboring piles in a pile row 

(s) on the vibration isolation effect will be discussed. Note 

that when the influence of one parameter is examined, all the 

other parameters will remain fixed and take the typical val-

ues as given in Table 1.  

6.2.1. The Effect of Biot’s Parameter (M) 

 To study the influence of Biot’s parameter (M) on the 

vibration isolation effect of the pile row, Biot’s parameter 

(M) takes the following three different values: 
82.0 10  PaM = � , 102.0 10  Pa�  and 122.0 10  Pa� , respec-

tively. The other parameters for the piles, the vibration 

source and the poroelastic half-space assume the values as 

given in Table 1.  

 Fig. 5(a)-(c) shows the amplitude reduction ratio rA   

on the surface for the poroelastic half-space for 
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82.0 10  PaM = � , 102.0 10  Pa�  and 122.0 10  Pa� , respec-

tively. Fig. (6) illustrates the amplitude reduction ratio rA  

within the range / 0 ~ 2Rx � =  and 0y =  when Biot’s pa-

rameter takes the above three values. The average amplitude 

reduction ratio rA  for the three cases of Biot’s parameter 

(M) are as follows: for 
82.0 10  PaM = � , 0.6586rA = ; 

for 102.0 10  PaM = � , 0.6176rA = ; for 122.0 10  PaM = � , 

0.6166rA = . One can see that the average amplitude re-

duction ratio rA  decreases slightly with the increasing M, 

which shows that Biot’s parameter M has a small effect on 

the vibration isolation effect of the pile row. 

6.2.2. The Effect of Young’s Modulus of the Piles ( pE )  

 Young’s modulus ( pE ) of the pile is an important pa-

rameter for the design of the pile row isolation system. 

Herein, the effect of Young’s modulus of the piles on the 

vibration isolation effect will be investigated. In this exam-

ple, Young’s modulus of the piles assumes the following 

four values: /p sE E =50, 100, 200 and 500, respectively, 

with sE  fixed and given in Table 1. 

 Fig. 7(a)-(c) shows the variation of the amplitude reduc-

tion ratio rA  on the surface of the poroelastic half-space for 

/p sE E =100, 200 and 500, respectively. Note that the result 

for the case of /p sE E =50 has already been presented in 

Sec.6.2.1 (see Fig. 5(a)). Fig. (8) illustrates the amplitude 

reduction ratio rA  within the range / 0 ~ 2Rx � =  and 

0y =  for the poroelastic half-space when /p sE E takes 50, 

100, 200 and 500, respectively. The average amplitude re-

duction ratio rA  for the four cases of modulus ratios are: for 

/ 50p sE E = , 0.6586rA = ; for / 100p sE E = , 

0.5926rA = ; for / 200p sE E = , 0.5644rA = ; for 

/ 500p sE E = , 0.5489rA = . One can be see clearly that 

the average amplitude reduction ratio rA  decreases with the 

increasing /p sE E . Moreover, when / 200p sE E � , rA  

only decreases slightly with the increasing /p sE E . As a 

result, it can be concluded that a stiffer pile row will produce 

a better isolation vibration effect.  

6.2.3. The Effect of the Pile Length  

 The influence of the pile length on the isolation vibration 

effect is examined in this section. The pile length takes three 

different values: L = 5.0 m, 10.0 m and 15.0 m, respec-

tively. 

Table 1. The Parameters for the Poroelastic Half-Space, Pile Rows and the Vibration Source in Sec. 6.2 

Parameters Values 

� (Pa) 2.6 X 107 

� (Pa) 2.6 X 107 

�s (kg/m3) 2.6 X 103 

�f  (kg/m3) 1.0 X 103 

� 0.3 

a
�

 2.0 

� 0.97 

M (N/m2) 2.8 X 108 

bp (kg/(m3 .s)) 1.0 X 1010 

D (the diameter of the circular area subjected to the vibration source) (m) 0.8 

f (the frequency of the vibration source) (Hz) 20.0 

QF (the magnitude of the harmonic vertical uniform load) (kN) 100 

ds (the distance between the center of the first pile row and the vibration 

source ) (m) 

7.5 

d (the diameter of the piles) (m) 0.8 

L (the pile length) (m) 10.0 

Ep/Es 50 

�p (the density of the piles) ( kg/m3) 3.9 X 103 

s (m) 0.8 

q (the spacing between the adjacent pile rows) (m) 0.4 
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Fig. (5). The contour of the amplitude reduction ratio rA  for a single pile row with nine piles embedded in the poroelastic half space for 

different values of Biot’s parameter M: (a) 82.0 10  PaM = � ; (b) 102.0 10  PaM = � ; (c) 122.0 10  PaM = � . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Variation of the amplitude reduction ratio rA  for a single pile row with nine piles embedded in the poroelastic half space within the 

range 0 / 2Rx �� �  and 0y =  when Biot’s parameter (M) takes the three different values. 
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Fig. (7). The contour of the amplitude reduction ratio Ar for a single pile row with nine piles embedded in the poroelastic half space for different 
values of the ratio of Young’s modulus between the piles and the poroelastic half space: (a) Ep / Es 100; (b) Ep / Es = 200; (c) Ep / Es 500.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). The amplitude reduction ratio A
r

 within the range 0 � x / �
R
� 2  and y = 0  when the ratio of Young’s modulus between the piles 

and the poroelastic half takes the values 50, 100, 200 and 500, respectively. 
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 Figs. 9(a), (b) show the variation of the amplitude reduc-

tion ratio rA  on the surface of the poroelastic half-space for 

L =5.0 m and 15.0 m, respectively. The result for the case of 

L =10.0 m is illustrated in Fig. 5(a). Fig. (10) illustrates that 

the amplitude reduction ratio rA  within / 0 ~ 2Rx � =  and 

0y =  for the poroelastic half-space when the pile length 

takes L = 5.0 m, 10.0 m and 15.0 m, respectively. The aver-

age amplitude reduction ratios rA  for L = 5.0 m, 10.0 m and 

15.0 m equal to 0.8653, 0.6586, 0.6884, respectively. It can 

be seen that the length of piles has a significant influence on 

the average amplitude reduction ratios rA  when 10.0 mL � . 

However, when L  is larger than 10.0 m, with increase of the 

pile length, 
rA  only change slightly, which agrees with the 

result in [7].  

6.2.4. The Effect of the Pile-Pile Net Spacing 

 The net spacing between two neighboring piles in a pile 

row is an important parameter for the design of pile rows for 

vibration isolation. In this section, the value of s takes  

the following three values: 0.8 m, 1.2 m and 1.6 m, respec-

tively. The other parameters for the pile, the poroelastic half-

space and the vibration source take the values as given in 

Table 1. 

 Fig. 11(a), (b) shows the variation of the amplitude re-

duction ratio rA  on the surface of the poroelastic half-space 

for s =1.2 m and 1.6 m, respectively. The result for the case 

of s =0.8 m is given in Fig. 5(a).  

 Fig. 5(a) and Fig. (11) clearly indicate the decay of the 

isolation vibration effect behind the pile row with the in-
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Fig. (9). The contour of the amplitude reduction ratio 
 
A

r
 for the single pile row with nine piles for different values of the pile length:  

(a)  L = 5.0 m; (b)  L = 15.0 m. 

 

 

 

 

 

 

 

 

 

 

Fig. (10). The amplitude reduction ratio 
 
A

r
 within the range 

  
0 � x / �

R
� 2  and 

  
y = 0  when the pile length takes the values L = 5.0 m, 

10.0 m and 15.0 m, respectively. 
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creasing pile net spacing s. The average amplitude reduction 

ratios for the three cases of net spacing are: for s = 0.8 m, 

rA =0.6586; for s = 1.2 m , 0.7133; for s = 1.6 m, 0.7486, 

which shows that the average amplitude reduction ratio rA  

has a considerable increase with the increasing net spacing s. 

Thus, it can be concluded that a better isolation vibration 

effect can be realized by smaller net pile spacing.  

6.3. Numerical Simulation of the Vibration Isolation  

using Multiple Pile Rows  

 In this section, the vibration isolation effect of multiple 

pile rows is investigated. The vibration source is a harmonic 

vertical uniform patch load with the magnitude 
FQ  and the 

frequency f . The patch load is applied over a circular do-

main with the diameter D . A single pile row with seven 

piles, two pile rows with seven and six piles and three pile 

rows with seven, six and seven piles, respectively are con-

sidered in this example (Fig. 12), respectively. The net spac-

ing between two neighboring piles in a pile row is 

0.2 ms = . The other parameters for the pile, the poroelastic 

half-space and the vibration source are given in Table 1 ex-

cept that 0.4 md =  and 9 21.735 10  N/mpE = � . The refer-

ence Rayleigh wavelength is assumed to be 5.0 mR� = . 

 In the following, the influences of the number of the pile 

rows, the net spacing between two neighboring piles and the 

spacing between neighboring pile rows on the vibration iso-

lation effect are discussed. It is noted that when the influence 

of one parameter is examined, all the other parameters will 

remain unchanged and take the typical values as given above 

and in Table 1.  
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Fig. (11). The contour of the amplitude reduction ratio 
 
A

r
 for the single pile row with nine piles for different values of the net spacing (s) 

between two neighboring piles: (a)  s = 1.2 m; (b)  s = 1.6 m. 

 

 

 

 

 

 

 

 

 

 

Fig. (12). Three kinds of pile rows used as vibration isolation system for the poroelastic half space subjected to a harmonic vertical load:  

(a) a single pile row with seven piles; (b) two pile rows with seven and six piles, respectively; (c) three piles rows with seven, six and seven 
piles, respectively. 
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6.3.1. The Effect of the Number of the Pile Rows 

 In this example, we consider the following three cases of 

pile rows embedded in the poroelastic half-space: a single 

pile row with seven piles; two pile rows with seven and 6 

piles, respectively; three pile rows with seven, six and seven 

piles, respectively (Fig. 12). All the parameters for the pile 

row, the poroelastic half-space and the circular patch load 

assume the values as given above and in Table 1.  

 Fig. 13(a)-(c) plot the variation of the amplitude reduc-

tion ratio rA  on the surface of the poroelastic half-space for 

the three different kinds of the pile rows. The variation of the 

amplitude reduction ratios rA  within / 0 ~ 2Rx � =  and 

0y =  for three cases of pile rows are also shown in Fig. 

(14). 

 As expected, it follows from Fig. (13) that the increase of 

the number of pile rows will enhance the isolation vibration 

effect of the pile rows. The average amplitude reduction  

ratios for the single pile row, the two piles rows, the three 

pile rows are rA =0.7118, 0.5408, 0.4466, respectively.  

6.3.2. The Effect of the Net Spacing Between Two Neigh-

boring Piles 

 In this section, we consider two pile rows embedded in 

the poroelastic half-space. The first and second pile row has 

seven and six piles, respectively (Fig. 12(b)). The net spac-

ing between two neighboring piles in a pile row takes the 

following three different values: s = 0.2 m, 0.4 m, 0.8 m, 

respectively, while the parameters for the poroelastic half-

space, the piles and the vibration source assume the typical 

values as given above and in Table 1.  

 Fig. 15 (a), (b) plot the amplitude reduction ratio rA  on 

the surface of the poroelastic half-space for s = 0.4 m and 

0.8 m, respectively. Note that the result of rA  for the two 

pile rows with s = 0.2 m is given in Fig. 13(b). For the two 

pile rows with s = 0.2 m, 0.4 m, 0.8 m, respectively, the 
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Fig. (13). The variation of the amplitude reduction ratio 
 
A

r
 on the surface for the poroelastic half space for three different piles rows: (a) the 

single pile row with seven piles; (b) two pile rows with seven and six piles, respectively; (c) three piles rows with seven, six and seven piles, 
respectively. 
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average amplitude reduction ratios are rA =0.5408, 0.6299, 

0.7583, respectively. One can see that the average amplitude 

reduction ratio rA  for multiple pile rows increase with the 

increasing net spacing s. Thus, it can be concluded that the 

pile rows with a smaller separation between neighboring 

piles is generally more efficient in vibration isolation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (14). The variation of the amplitude reduction ratio 
 
A

r
 within 

the range 
  
0 � x / �

R
� 2  and y = 0  for three kinds of pile rows. 

6.3.3. The Effect of the Spacing Between Two Adjacent 

Pile Rows 

 To examine the effect of the spacing between neighbor-

ing pile rows, only two pile rows with the number of piles 

seven, six in the first and the second row, respectively are 

considered in this section (see Fig. 12(b)). The value of q  

takes 0.4 m, 0.8 m and 1.2 m, respectively, while the  

parameters for the poroelastic half-space, the piles and the 

vibration source are given as above and in Table 1.  

 Fig. 16(a), (b) depicts the amplitude reduction ratio rA  

on the surface of the half-space for q = 0.8 m and 1.2 m 

respectively. The result of rA  for the case of q = 0.4 m is 

given in Fig. 13(b). For the two pile rows with q = 0.4 m, 

0.8 m and 1.2 m, the average amplitude reduction ratios are 

rA = 0.5408, 0.5482, 0.5568, respectively. From the result 

for the average amplitude reduction ratios and Fig. (16), one 

can observe that compared with other parameters, the space 

between two adjacent pile rows has a relatively smaller ef-

fect on the vibration isolation of the pile rows. 

7. CONCLUSIONS  

 The numerical simulation of the isolation of the vibration 

due to a harmonic vertical load applied on the surface of a 

poroelastic half-space by pile rows has been carried out in 

this study. The second kind of Fredholm integral equations 

describing the dynamic interaction between the piles and the 

half space are obtained using Muki’s method. The vibration 

isolation effect of pile rows is analyzed via the proposed 

semi-analytical model. As the semi-analytical model pro-

posed in this paper avoids the discretization of the whole 

calculation domain, thus, it can save CPU time substantially 

for the current full 3-D problem. To investigate the vibration 

isolation effect of pile rows, the influence of Biot’s parame-

ter (M), Young’s modulus of the pile ( pE ), the pile length 

(L), the spacing between two neighboring piles (s) in a pile 

row are investigated via the semi-analytical model. Also, the 

influence of the number of the pile rows (n) and the spacing 

(q) between two adjacent pile rows are examined.  

 From the numerical results of this study, the following 

conclusions can be drawn: 

1. The larger M corresponds to a slightly better vibration 

isolation effect than the smaller M.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a b 

Fig. (15). The variation of the amplitude reduction ratio rA  on the surface for the poroelastic half space for two pile rows with seven and six 

piles, respectively, for different values of the net spacing (s) between two neighboring piles: (a) s = 0.4 m; (b) s = 0.8 m. 
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2. The length of the piles is a most important factor for the 

vibration isolation effect. Usually, longer piles will pro-

duce a better vibration isolation effect. The recom-

mended optimal length of the piles for vibration isolation 

purpose ranges between 1.5 ~ 2.0 R� , in which 
R�  is the 

wavelength of the Rayleigh wave of the porous half-

space.  

3. Young’s modulus ( pE ) of the piles also has significant 

influence on the effect of vibration isolation. Generally, 

the vibration isolation effect can be improved by increas-

ing Young’s modulus of the piles ( pE ).  

4. The net spacing between two neighboring piles is also a 

key factor for the vibration isolation effect. Usually, 

smaller net pile spacing will result in a better vibration 

isolation effect. 

5. Multiple pile rows tend to produce a better vibration iso-

lation effect than a single pile row. Moreover, the spacing 

between the pile rows has a relatively smaller impact on 

the vibration isolation effect. 
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