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Abstract: The study of debonding is of importance in providing a good understanding of the bonded interfaces of dissimi-

lar materials. The problem of debonding of an arbitrarily shaped rigid inclusion in an infinite plate with a point dislocation 

of thin plate bending is investigated in this paper. Herein, the point dislocation is defined with respect to the difference  

of the plate deflection angle. An analytical solution is obtained by using the complex stress function approach and the  

rational mapping function technique. In the derivation, the fundamental solutions of the stress boundary value problem  

are taken as the principal parts of the corresponding stress functions, and through analytical continuation, the problem  

of obtaining the complementary stress function is reduced to a Riemann-Hilbert problem. Without loss of generality,  

numerical results are calculated for a square rigid inclusion with a debonding. It is noted that the stress components are 

singular at the dislocation point, and a stress concentration can be found in the vicinity of the inclusion corner. We also 

obtain the stress intensity of a debonding in terms of the stress functions. It can be found that when a debonding starts 

from a corner of the inclusion and extends to another corner progressively, the stress intensity of the debonding increases 

monotonously; once the debonding extends over the corner points, the value of the stress intensity of the debonding 

gradually decreases. The relationships between the stress intensity of the debonding and the direction and position of the 

dislocation are also presented in this paper. 
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1. INTRODUCTION 

 Investigation on the problem of imperfect bonding is 

important in providing a good understanding of debonding 

phenomenon and for the validity of the structural assess-

ments. Since Williams [1] first reported the oscillatory  

near-tip stress behavior of the elastic plane composed of  

two dissimilar materials, the problems of the interfacial crack 

and debonding have been discussed by many researchers. 

However, in most such studies the authors limited them-

selves to very simple configurations because of the mathe-

matical difficulties arising in analytical solutions. The  

latter have not, therefore received enough attention in  

the literature [2-4]. As known, Green’s functions that  

satisfy certain boundary conditions, are very useful in the 

analysis of the related problems by BEM procedures. The 

objective in this paper is to derive an analytical solution  

for the thin plate bending problem with a debonding of  

an arbitrarily shaped rigid inclusion in an infinite plate with  

a point dislocation. The formulations of the complex  

stress function approach given by Savin [5] for the thin plate 

bending together with the rational mapping function  

technique
6
 are used in this analysis. Without loss of generality, 

for the infinite plate with a square rigid inclusion, the stress 

distribution and the stress intensity of debonding tips are 

obtained. 
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2. THE RATIONAL MAPPING FUNCTION AND BASIC 
FORMULA 

 Hasebe and Inohara [6] introduced a rational mapping 

function for relatively complicated configurations. The map-

ping function is expressed as a finite sum of fractional ex-

pressions. It satisfies therefore the basic conditions for a 

closed form solution. In this study, we consider a square con-

figuration as shown in Fig. (1). With the following rational 

mapping function, 

z = ( ) = E0 +
Ek

k

+ E 1
k=1

2n

 

          (1) 

the exterior of the square inclusion in the z plane can be 

transformed onto exterior (S
+
) of the unit circle in the  plane. 

Here E0 , Ek  and E 1  are constants, poles k  are located in 

the unit circle in the  plane. The parameter n is chosen as 

24 in this study. 

 The complex stress function method
5
 for the elastic thin 

plate bending problem is employed herein. As it follows 

from Fig. (1), for the mixed boundary conditions around the 

rigid inclusion, we denote the bonded boundary by M, and 

the unbonded boundary by L. The stress boundary condition 

on L can be expressed as:  

( ) +
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where  is the Poisson ratio of the material, D is the flexural 

rigidity of the plate D = Eh3 / [12(1 2 )] .  denotes the 

point on the unit circle corresponding to the boundary point 

in the z plane,

 

= (3+ ) / (1 ) , C is a real constant, C1  

is a complex constant, m(s) and p(s) are the bending moment 

and the bending force per unit length along boundary line L, 

respectively. 

 The displacement boundary conditions on M can be ex-

pressed as:  

( ) +
( )

( )
( ) + ( ) =

w

x
+ i

w

y
 M          (3) 

where w is the deflection of the thin plate. 

3. ANALYSIS OF THE PROBLEM 

 As shown in Fig. (1), a rigid inclusion in an infinite plate 

with a point dislocation has a debonding along its boundary. 

The solution of this problem represents the Green’s function 

of the corresponding crack problem. Herein, the dislocation 

of a point in the thin plate bending problem is defined as: 

L =
w

x
+ i

w

y
L

            (4) 

where { }L
 denotes the increment in value of the expression 

in the braced brackets when moving around the dislocation 

point in the counter-clockwise direction. To overcome the 

difficulty of the described problem, we divide the original 

formulation into two parts. In part one, a point dislocation is 

initiated outside a traction free hole in the infinite plate, in 

which the shape of the hole is the same as that of the inclu-

sion. Part two is complementary, and is stated in such a way 

that the original mixed boundary condition is satisfied under 

consideration of stresses and displacements induced by part 

one. This yields, for each of the stress functions: 

G ( ) = p1( ) + p2 ( ) , G ( ) = p1( ) + p2 ( )          (5) 

where p2 ( )
 
and p2 ( )  represent the holomorphic func-

tions defined in S
+ 

. The latter denotes the exterior of the unit 

circle in the  plane. 

4. SOLUTION OF THE STRESS BOUNDARY VALUE 

PROBLEM 

 As shown in Fig. (2), the problem in part one describes a 

point dislocation initiated outside a traction free hole in the 

infinite plate. This is a stress-type boundary value problem. 

The stress functions to be obtained are comprised of two 

parts as follows:  
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Fig. (2). Stress boundary value problem. 

 

p1( ) = a ( ) + b ( ) , p1( ) = a ( ) + b ( )          (6) 

where a ( ) and a ( )  represent the irregular, multi-valued 

terms. They can be expressed as: 

a ( ) =
L

2 i

1

4
log( o )         (7a) 

a ( ) =
L

2 i

3+

4
log( o )

L

2 i

1

4

( o )

( o )( o )
       (7b) 

where 0  denotes the point in the  plane where the dislo-

cation is applied. b ( ) , b ( )  represent the regular terms. 

Using the traction free boundary condition of (2), analytical 

continuation can be accomplished over the boundary. Then 

p1( )  can be represented in terms of p1( )  in the entire 

region: 

p1( ) = p1(1 / )
(1 / )

( ) p1( )  ( S+
)

        

(8) 

 

 

 

 

 

 

 

Fig. (1). Infinite plate with a partially bonded inclusion and a point dislocation. 
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 We substitute (6) into this expression. Since b ( )
 
is a 

regular function in S
+
, function b (1 / )  can be determined 

by removing the irregular terms defined in S
+
. Then by the 

inverse transformation, b ( ) , which should be continuous 

over the boundary when the surface is traction free, can be 

determined as: 

b ( ) =
L

2 i

1

4

1

( k o )
+ Abk

k=1

2n Bk

( k )
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2 i

1

4

( o ) ( o )

( o )
o

2

o

+
L

2 i

3+

4
log(

1
o )

  

( S+ )

  

(9) 

where we denote k 1 / k , Abk b ( k ) , o 1 / o  
and

 
Bk Ek / ( k ) . The undetermined parameters Abk  can be 

obtained by letting = k  (k =1, 2,…, 2n) individually in 

b ( ) , a series of algebraic equations are obtainable, from 

which the real and imaginary parts of Abk  and Abk  can be 

determined, while p1( )  can be determined by (8). 

5. SOLUTION OF THE INCLUSION DEBONDING 

PROBLEM 

 In the previous section, the solution of part one has been 

obtained. In fact, it represents the Green’s function of the 

stress boundary value problem. For the problem of a point 

dislocation applied to an infinite plate with the partially 

bonded inclusion, which is shown in Fig. (1), the stress func-

tions p2 ( )
 
and p2 ( )

 
of the complementary parts in (5) 

should be determined. Similar to (8), the formulae of ana-

lytical continuation is used in this section, so that G ( )  is 

expressed by G ( )  in the entire region. Substituting the 

particular expressions of stress functions G ( )
 
and G ( )

 
into boundary conditions (2) and (3), the following expres-

sions can be obtained: 

p2
+ ( ) p2 ( ) = 0    L       (10a) 

p2
+ ( ) p2 ( ) = ( 1) p1( )  M      (10b) 

where the superscripts 
+
 and 

–
 indicate the limit values of  

the function p2 ( )
 

as it approaches the boundary from  

the regions S+
 and S , respectively. p1( )  can be obtained 

by (6), (7) and (9). We found that the determination of 

p2 ( )
 

in (10a) and (10b) represents a Riemann-Hilbert 

problem, of which the solution is expressed in the following 

form [7]:

 

p2 ( ) =
( )

2 i

( 1) p1( )
+ ( )( )M

d + ( ) G1( )       (11) 

 The integral term in (11) can be obtained by replacing the 

single-path integral with a contour integral. The latter can be 

evaluated through the residues [8]. This yields:
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where Plemelj function can be expressed as 

( ) = ( )m ( )1 m
       (13a) 

m = 0.5 + i
log

2
       (13b) 

with  and  being the points on the unit circle corre-

sponding to the tips of debonding as shown in Fig. (1). Since 

( )  is a Plemelj function, the branch of lim[ ( ) / ] = 1  is 

selected. 

 In the expression for p2 ( ) , there still exist integral 

terms as shown in (12), while their first derivatives are ex-

pressed in the analytical form containing no integrals [8]. 

Function G1( )  in (12) is rational throughout S+
. Upon ex-

ploiting the formulae of analytical continuation, and keeping 

in mind that p1( )
 
has satisfied the relationship (8), we 

obtain,  

G1( ) =
A2k Bk

( k )( k )k=1

2n

         

(14)

 

where A2k p2 ( k )  and Bk Ek / ( k ) , A2k  can be ob-

tained similarly to the previous section. That is, letting 

= k (k=1,2,..., 2n) individually in its first derivative 

p2 ( ) , one reduces the problem to a system of linear alge-

braic equations. 

6. THE STRESS INTENSITIES OF DEBONDING TIPS 

 We have known that at the vicinity of the debonding tips 

I and J shown in Fig. (1), there is a highly oscillatory stress 

field. Hasebe et al., [9] studied a branching problem for a 

crack, in which the debonding was generated at the end of a 

displacement constraint of a thin plate subjected to the out-

of-plane loading, and a definition of the stress intensity of 

debonding was proposed. For the debonding tip J (  in the 

 plane shown in Fig. 1), the stress intensity of debonding 

 is:  
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= 1 + i 2 = 2 2D(1+ ) e lim
z z j

(z z j )
1 m (z)

 

= 2 2D(1+ ) e
( )( ){ }

1 m

( )( )
g( )        (15) 

where = log / 2 , the stress function ( )  can be  

expressed in the following form: 

( ) = ( )m 1( ) m g( ) + g0 ( )
       

(16)
 

where g0 ( )  is a regular function. At the vicinity of the 

debonding tip on the interface, we found that the bending 

and twisting moment components can be expressed in terms 

of the absolute value | J |, rather the complex value J. 

Therefore, we use | J | as the index of the stress intensity of 

debonding. This is equivalent to that of the strain energy 

release rate for the evaluation of the debonding [9]. 

7. NUMERICAL EXAMPLES AND DISCUSSION 

 To demonstrate the effectiveness of the proposed solu-

tion, numerical computations are carried out for the problem 

with the square inclusion. For the sake of convenience, the 

non-dimensional stress intensity of debonding at tip J is used 

as follows: 

FJ =
+ 3

+1

b

D J          (17) 

where b is the scale of the square hole as shown in Fig. (1).  

 The stress distributions along the x-axis for the plate sub-

jected to a point dislocation are depicted in Figs. (3 and 4) 

for L=1 and L=i respectively. The following parameters are 

chosen for the actual computing: inclusion debonding length 

l/2b=0.654, Poission ratio  =0.25 and the dislocation is ini-

tiated at (3b, 0). It is worth noting that the stress levels at  

the vicinity of the dislocation point increase significantly, 

while decrease gradually to zero as the value of x approaches 

infinity. At the corner of the point (b, 0) in Fig. (1), a stress 

concentration can be found. Fig. (5) shows the variation of 

the non-dimensional stress intensity of debonding at tip J 

when the directional angle  (L=cos +i sin  ) of a point 

dislocation rotates ninety degrees for two different debond-

ing lengths l/2b=0.367, l/2b=0.654. Fig. (6) shows the non-

dimensional stress intensity of debonding at tip J versus the 

dislocation position on the x-axis also for two different 

debonding lengths l/2b=0.367, l/2b=0.654. Fig. (7) shows the 

non-dimensional stress intensity of debonding at tip J versus 

the debonding length l/2b for three Poisson ratios 0.0, 0.25 

and 0.5. It should be noted that manifest high trend of FJ can 

be found at the vicinity of the inclusion corner G (l/2b =0.5). 

 

 

Fig. (4). Stress distribution on the x-axis (L is at (3b, 0), L=i,  

=0.25). 

 

 

Fig. (5). Non-dimensional stress intensity of debonding FJ versus 
dislocation angle. 

 

 Hence, we have obtained the closed form solutions for 

the Green’s functions of point dislocation under the mixed 

boundary conditions for the thin plate bending problem. The 

solution of the mixed boundary value problem is obtained by 

the use of the solution of the stress boundary value problem 

 

Fig. (3). Stress distribution on the x-axis (L is at (3b, 0), L=1, 

 =0.25). 
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as the principal part in the original stress functions. This 

Green’s function could be used in analyzing a variety of 

problems (the crack problem in thin plate bending). And it 

can also be used as a kernel of boundary integral equations 

in BEM analysis, where it simplifies the calculation of the 

boundary integrals along the inclusion [10]. In addition, this 

study proves that the rational mapping function technique 

together with the complex stress function’s approach is par-

ticularly effective in solving inclusion problems of intricate 

configurations. In general, this method is applicable to arbi-

trary shape, and the closed solution for the relevant problem 

can be obtained for a simply connected region. 

8. CONCLUSIONS 

 The Green’s function of a point dislocation was derived 

for the mixed boundary value problem of an infinite plate 

with a partially bonded rigid inclusion. The stress functions 

are obtained in closed form. The key points in the procedure 

are the utilization of the Green’s function of an appropriate 

stress boundary value problem and the rational mapping 

technique. This is particularly effective in solving inclusion 

problems of intricate configurations. The stress intensities of 

debonding tips were computed. This Green’s function can 

also be used as a kernel for boundary integral representations 

in BEM analysis, where it can notably simplify the proce-

dure of the standard boundary integral equations. 
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Fig. (6). Non-dimensional stress intensity of debonding FJ versus 

dislocation position. 

 

Fig. (7). Non-dimensional stress intensity of debonding FJ versus 

debonding length. 


