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Abstract: In the mechanism analysis of foundation consolidation by using dynamic compaction, many kinds of non-linear 

conditions exist. This paper adopts large deformation on the relationship between strain and displacement. Non-linear 

governing equation of soil, based on finite element method, is established. Iterative calculation form is raised. Finally, 

non-linear numerical analysis is done to a calculation example. We not only obtain the changing regularity of soil 

displacement and stress during the acting time of dynamic compaction, but also achieve their contour maps after 

compaction.  
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1. INTRODUCTION 

 As for multiple factors and complex of the dynamic 

compaction(refer with Fig. 1), many scholars have studied 

reinforcement mechanisms of compaction from the 

engineering practice, laboratory tests, numerical analysis and 

other fields. When the basic control equations of dynamic 

problems are established, there are the following major 

principle issues: 1) Stress - strain model; 2) Strain - 

displacement model; 3) The subjects were considered only 

soil skeleton, or considering using the coupled analysis of 

soil skeleton and pore water (Dynamic consolidation model 

is adopted); 4) Calculation methods of shock loads or 

dynamic contact stress between ground surface and the 

bottom hammer when tamping. The main difference 

existence in various studies of theory and methods of 

compaction problems lies in the handling of some above 

principle issues. In the relations of stress-strain, dynamic 

loading and unloading bilinear constitutive model presented 

by Qian Jiahuan [1] was widely used. In the strain-

displacement relations, most researchers also use the "small 

strain" assumption. Jiang Peng [2] in proposed a "large 

deformation" assumption that is, considering geometric 

nonlinearity. Dong-Soo Kim [3] proposed that for different 

vibration source, the geometric models to be built were also 

different. In [4], only the soil skeleton was considered to do 

the compaction. In considering the coupling analysis of soil 

skeleton and pore water, Yang Jun [5] provided the time 

solutions on symmetric problems of fluid dynamic coupling 

shaft and the improved method of the problem was given by 

Kong Lingwei [6]. Using three-dimensional consolidation 

theory of porous media, Chen Jie [7] et al. calculated and 

analyzed the structure of saturated soil compaction process. 

In the numerical simulation processes of dynamic consolida- 

tion of saturated soft clay foundation, Ding Zhenzhou [8] 
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Fig. (1). Dynamic compaction action.  

used Boit consolidation theory. He considered the strong 

nonlinear coupling problem of the soil and pore water and 

obtained the dynamic changes of the process of soil 

consolidation. Song Xiuguang [9] took fluid dynamic 

coupling and contact coupling between hammer and 

foundation soil into account and obtained changes of soil 

displacement and contact dynamic stress under time period 

in the dynamic compaction. Gunaratne M [10] used the 

numerical method to simulate dynamic consolidation 

according to the modified classical Terzaghi static 

consolidation theory. He took the contact dynamic stress as 

the pulse stress which was broken down into a sufficient 

number of load steps so as to calculate the characteristics of 

pore pressure. Zhou XL [11] used Biot's consolidation theory 

to study the transient dynamic response of foundation under 

the triangular pulse load and Laplace transform to solve the 

problem. Then he obtained the time history between 

displacement and pore pressure and the relationships of load 

forms. Besides, he [12] also studied the dynamic response of 

the saturated soil under the concentrated load and got more 

accurate displacement, stress and the numerical solution of 

pore pressure. In terms of the transient load simulation 

generated by the dynamic compaction, it usually would be 

simplified to a triangle wave or half-sine based on 

experience [13]. The calculation of dynamic contact between 

the bottom of hammer and the face of soil is the key 

technique problem of dynamic compaction. In this field, 

Scott RA and Pearce RW [14] put forward a calculation 

forum, but it couldn’t satisfy the initial condition. Kong LW 

and Yuan JX [15] used integral transform and transition 
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matrix to study the dynamic contact stress. The technique 

also has been studied analytically by Roesset JM [16]. 

However, the method above, even many other essays, were 

merely in space field, explained the distributing feature of 

dynamic contact stress on the bottom of hammer, they 

adopted a simple elastic contact model in time field during 

the dynamic compaction, and didn’t take the possible 

behavior of hammer into account such as, bouncing contact 

and separating. Jiang P and Li RQ [17] considered this non-

linear contact and suggested to adopt impulse-dynamic 

contact model to calculate the dynamic contact stress, but the 

contact condition in this model is static form. 

2. DIFFERENTIAL GOVERNING EQUATION 

 For dynamic compaction, let active areas of 

reinforcement foundation be abstracted to be which is 

bounded by boundary S , where X is one of the points. Then 

the basic equations of the large deformation problem of soil 

body are as follows 

 Dynamic balance equation is  

 
[( ik + ui,k ) kj ], j + Fi p&&ui = 0           (1) 

Relationship between strain and displacement is 

ij =
1

2
(ui, j + u j ,i + uk ,iuk , j )            (2) 

Relationship between stress and strain is  

ij = kk ij + 2G ij            (3) 

 Boundary conditions of displacement（ Su） 

ui = ui              (4) 

Boundary condition of stress（ Sp）  

( ik + ui,k ) kjn j = pi            (5) 

 Where：Each physical quantity is expressed as a tensor 

component form. That is, ui is a displacement component, 

ij a stress tensor component, ij a strain tensor component, 

Fi  a force component of the volume of soil,  the density of 

soil body. Besides ui  and pi  are given boundary displace- 

ment and external borders,  and G  Lame constants, ij  a 

Clinton Sign and ni  denotes direction cosine. 

 Energy functional is constructed as follows 

 

= { [
1

2
&ui

t1

t2

&ui A( ij )+ Fiui ]d + piuidS}dt
Sp

        (6) 

Hamilton’s Principle 

 Boundary conditions of displacement and relationship 

between strain and displacement are met so that functional 

displacement ui of the extreme value must satisfy the 

dynamic equilibrium equation, stress boundary conditions 

and stress-strain relations under the given conditions of 

displacement ui  at time t = t1  and t = t2 , that is the true 

solution of the problem. Let the energy functional in 

equation (6) be varied into zero 

= 0              (7) 

3. GOVERNING EQUATIONS BASED ON FINITE 

ELEMENT 

 With the finite element method and the discrete structure, 

the energy functional for body of any unit is  

 

e = { [
1

2
{ &u}e

T [N ]T [N ]{
vet1

t2

&u}e A( ij )]dve

+{u}e
T {F}e + {u}e

T {P}e}dt

        (8) 

 Where, 
 
{u}e , { &u}e  denote the displacement array and 

velocity array of element node respectively; [N ]  denotes the 

shape function matrix; {F}e  is the equivalent nodal load 

caused by body force of the element; {P}e  is the equivalent 

nodal load caused by surface force. 

 Let equation (8) be varied into  

 

e = { {u}e
T ( [m]e{&&u}e + {F}e + {P}e )

t1

t2

{ }T { }dve}dt
ve

   (9) 

With { } = [B]e{u}e ( [B]e  is the strain matrix for the unit), 

equation (9) is transformed into  

 

e = {u}e
T { [m]e{&&u}e + {F}e + {P}e

t1

t2

[B]e
T { }dve}dt

ve

   (10) 

Where, [m]e = [N ]T [N ]dve
ve

 is the mass matrix for the 

unit. 

 Let equation (8) be varied into zero and obtain dynamic 

equilibrium equation of the unit body 

 

[m]e{&&u}e + [B]e
T {

ve

}dve = {F}e + {P}e        (11) 

 According to the unit assembly, the dynamic equation of 

overall structure can be obtained 

 

[M ]{&&u}+ [B]e
T {

ve

}dve
e

= {F}+ {P}        (12) 

4. METHOD FOR SOLVING THE NONLINEAR 

DYNAMIC EQUATIONS 

4.1. Dynamic Equation in Incremental Form  

 According to equation (2), relations of strain-

displacement belong to nonlinear. So [B]e  is the function of 

{u}e  and can be written as 

[B]e = [B0 ]+ [BL ]e          (13) 

 Where: [B0 ]  is the matrix entry by linear deformation 

analysis; [BL ]e  is the matrix entry by nonlinear deformation, 
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which is relative to the node displacement {u}e  of the unit 

body. 

 Equation (11) can be rewritten as 

 

[{u}e ] = [m]e{&&u}e + [B]e
T {

ve

}dve ({F}e + {P}e ) = 0    (14) 

Let {u}e  be derived on both sides in equation (14) and we 

can obtain  

d [{u}e ] = d[B]e
T {

ve

}dve + [B]e
T d{

ve

}dve       (15) 

As  

{ } = [D]({ } { 0})+ { 0}         (16) 

 Where: [D]  is an elastic matrix; { 0}, { 0} are the 

initial strain and initial stress respectively. 

 Hence,  

d{ } = [D]d{ } = [D][B]e d{u}e         (17) 

 In equation (13), [B0 ]  is irrelative to the node 

displacement {u}e . Therefore,  

d[B]e = d[BL ]e           (18) 

 Type equations (17) and (18) into equation (15) and we 

can get 

d [{u}e ] = d[BL ]e
T {

ve

}dve + [k ]e d{u}e        (19) 

 Where:  

[k ]e = [B]e
T

ve

[D][B]e dve = [k0 ]e + [kL ]e        (20) 

 Type equation （13）into （20）and we can obtain 

[k0 ]e = [B0 ]
T [D][B0 ]dve

ve

        (21) 

[kL ]e = {[B0 ]
T [D][BL ]e + [BL ]e

T [D][BL ]e + [BL ]e
T [D][B0 ]}dve

ve

    (22) 

Let 

d[BL ]e
T {

ve

}dve = [k ]e d{u}e         (23) 

 Where: [k ]e  is the geometric stiffness matrix. 

 Type equations from （20） to （23）into （19）and 

we can get 

d [{u}e ] = {[k0 ]e + [kL ]e + [k ]e}d{u}e        (24) 

 Assume that the system under external loads, element 

node displacement at time t is {u(t)}e . Then the first-order 

for (14) at {u(t)}e + {u}e  is approximately 

[{u(t)}e + {u}e ] = [{u(t)}e ]

+(
d

d{u}e
{u}e ) {u}e={u(t )}e = 0

        (25) 

 Type (14) and (24) into (25) and we can obtain 

 

[{u(t)}e + {u}e ] = [m]e{&&u(t)}e

+ [B]e
T {

ve

}dve ({F(t)}e + {P(t)}e )
  

+{[k0 ]e + [kL ]e + [k ]e} {u}e = 0         (26) 

 According to (16) and we take initial strain and initial 

stress as zero, then we can get  

[B]e
T { }dve = ([k0 ]e + [kL ]e ){u(t)}e

ve

       (27) 

 Type (27) into (26), and according to the unit assembly 

and considering damp, we can obtain the overall dynamic 

equilibrium equation in the incremental form.  

 

[{u(t)}+ {u}] = [M ]{&&u(t)}+ [C]{ &u(t)}

+[K ]{u(t)} ({F(t)}+ {P(t)})+ [K ] {u} = 0
      (28) 

Where: [K ] = {[k0 ]e + [kL ]e + [k ]e}
e

, [K ] = {[k0 ]e + [kL ]e}
e

, 

[C]  is the damping matrix. 

4.2. Iterative Solution 

 According to the time step t , dynamic impact time is 

divided into several time periods. 

1) For any time t , let {u(t)}small ,  { &u(t)}small  and 
 
{&&u(t)}small  

which are obtained by solving the small deformation 

dynamic equation of the system be the initial iterative 

values {u(t)}1 , 
 
{ &u(t)}1  and 

 
{&&u(t)}1  of large deformation 

dynamic equation. Small deformation dynamic equation 

of the system is 

 
[M ]{&&u}+ [C0 ]{ &u}+ [K0 ]{u} = {F}+ {P}        (29) 

Where: [K0 ] = [k0 ]e
e

; [C0 ] = [M ]+ [K0 ] . 

2) According to the nonlinear relationships between the 

strain and displacement of large deformation problem, 

we type {u(t)}1  into (29) and get [BL ]e  for every 

element. Then on the basis of (21), (22) and (23), [k0 ]e , 

[kL ]e , [k ]e  are obtained for every element and [K ]1  

and [K ]1  are got through assembly. 

3) Type {u(t)}1 , 
 
{ &u(t)}1 , 

 
{&&u(t)}1 , [K ]1  and [K ]1  into (28) 

and get {u}1  

4) Using linear acceleration method, we get the values of 

the next iteration {u(t)}2 , 
 
{ &u(t)}2  and 

 
{&&u(t)}2  at time t. 

5) Repeat steps from 2) to 4), the iterative format is  
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{ &u(t)}n+1 = {u(t)}n+1
3
t
{u(t t)}

3
t

 

2{ &u(t t)} {&&u(t t)}
t

2
 

 

{&&u(t)}n+1 = {u(t)}n+1
6
t 2

{u(t t)}
6
t 2

 

 

{ &u(t t)}
6

t
2{&&u(t t)}  

 

 Where: t  is the time step; {u(t t)} , 
 
{ &u(t t)}  

and 
 
{&&u(t t)}  are, respectively, the displacement, velocity 

and acceleration at t t  for the nonlinear problem of  

(28). 

5. STRAIN MATRIX OF AXISYMMETRIC PROBLEM 

BASED ON THE GEOMETRIC NONLINEARITY 

 For axisymmetric problems, we use the cylindrical 

coordinates (r, , z) . Let z  be the axis of symmetry and all 

the stress, strain and displacement have nothing to do with  

but the functions of r and z . There are only two 

displacement components at any point, that is, the radial 

displacement along to r  and axial displacement along the 

direction of z . Because of the symmetry, the circumferential 

displacement of the direction  is zero. 

 Take a unit cell and element nodes are 
 
i, j,m,L , where 

the displacement array of element nodes is  

 
{ }e = ui wi u j wj um wm L{ }

T
       (30) 

 Unit displacement of any point can be expressed as  

{ } =
u

w
= [N ]{ }e          (31) 

Where: 

 

[N ] =
Ni 0 N j 0 Nm 0 L

0 Ni 0 N j 0 Nm L
. 

 The nonlinear relationship between strain and 

displacement is  

{ } =

r

z

rz

=

u

r
u

r
w

z
1

2
(
u

z
+

w

r
)

+
1

2

u

r

u

r
+

w

r

w

r
u

r

u

r
u

z

u

z
+

w

z

w

z
u

r

u

z
+

w

r

w

z

      (32) 

Let

 

{ 0} =

u

r
u

r
w

z
1

2
(
u

z
+

w

r
)

=

Ni

r
ui +

N j

r
u j +

Nm

r
um +L

Ni

r
ui +

N j

r
u j +

Nm

r
um +L

Ni

z
wi +

N j

z
wj +

Nm

z
wm +L

1

2
[(
Ni

z
ui +

N j

z
u j +

Nm

z
um +L)+ (

Ni

r
wi +

N j

r
wj +

Nm

r
wm +L)]

  

 

=

Ni

r
0

N j

r
0

Nm

r
0 L

Ni

r
0

N j

r
0

Nm

r
0 L

0
Ni

z
0

N j

z
0

Nm

z
L

1

2

Ni

z

1

2

Ni

r

1

2

N j

z

1

2

N j

r

1

2

Nm

z

1

2

Nm

r
L

ui
wi

u j

wj

um
wm

M

 

= [L][N ]{ }e           (33) 

Where: [L] =

r
0

1

r
0

0
z

1

2 z

1

2 r

. 

 Therefore, the strain matrix of small displacement is  

[B0 ] = [L][N ]           (34) 

Let 

{ L} =
1

2

u

r

u

r
+

w

r

w

r
u

r

u

r
u

z

u

z
+

w

z

w

z
u

r

u

z
+

w

r

w

z

=
1

2

u

r
0 0

w

r
0

0
u

r
0 0 0

0 0
u

z
0

w

z
1

2

u

z
0

1

2

u

r

1

2

w

z

1

2

w

r

u

r
u

r
u

z
w

r
w

z
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=
1

2
[ ][G][N ]{ }e          (35) 

Where: 
[G] =

r
0

1

r
0

z
0

0
r

0
z

; 
[ ] =

u

r
0 0

w

r
0

0
u

r
0 0 0

0 0
u

z
0

w

z
1

2

u

z
0

1

2

u

r

1

2

w

z

1

2

w

r

 

 Therefore, the strain matrix caused by the nonlinear 

deformation is  

[BL ]e =
1

2
[ ][G][N ]          (36) 

6. ACTUAL EXAMPLE ANALYSIS 

Calculating Explanation  

 Take the highway engineering around JiNan city for 

example, the soil is loess with the density of 19.0kN/m
3
, the 

mass of hammer is 98kN and its cross sectional area is 

3.9m
2
, the height at which the hammer is dropped is 10 m. 

The loading modulus is 6000kPa and the unloading modulus 

is 24000kPa, the Poisson ration μ  is 0.40, time step 

t =1ms . The vertical height of dispersing area of finite 

element is H=16.0m and horizontal radius is 5.0m. The 

bottom boundary condition of soil is u = w = 0 ; the side 

boundary condition is w = 0  and contact force of non-

compaction area of the surface is zero. Besides, initial 

conditions are u t=0 = 0 , w t=0 = 0 , 
 
&u t=0= 0, &w t=0= 0 , 

 
&&u t=0 = 0  and 

 
&&w t=0 = 0 . The first attack on the compaction 

is calculated, where the maximum input contact stress is 

940kPa and contact time is 90ms.Time-interval curves are 

simplified into three load types, that is, isosceles triangle 

load, half-sine load with damping and normal distribution 

curve of load (see Fig. (2). Triangle, sine and normal is 

called for short below). 

 

Fig. (2). Time-interval curve of load.  

 

Results and Analyses  

 Calculation results on No.265 node (the contact point of 

Hammer center with the ground surface) are compared and 

analyzed. Stress and time-interval curves from Fig. (3) to 

Fig. (5) reflect more consistently that soil has shown a 

significant rebound at around 60ms in the compaction 

process. Rebound reflected in the displacement curve of Fig. 

(6) comes later about 10ms than that of the stress and time-

interval curve, where rebounds of Triangle, sine and normal 

occur at 73ms, 70ms and 75ms respectively. 

_ 1
(P

a)

 

 

Fig. (3). Time-interval curve of 1  for No. 265 node. 

 

Fig. (4). Time-interval curve of 3 for No. 265 node. 

 

_
z 

 (
P

a)

 

Fig. (5). Time-interval curve of z  for No. 265 node.  
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Fig. (6). Time-interval curve of 
 
uz  for No. 265 node. 

 

 

 

 

 

 

 

 

 

 

    (a) triangle     (b) sine    (c) normal 

Fig. (7). Contour maps of 1 for foundation after compaction (MPa). 

 

 

 

 

 

 

 

 

 

     (a) triangle      (b) sine    (c) normal 

Fig. (8). Contour maps of 3 for foundation after compaction (MPa). 
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 Viewed from the peak of the time-interval curve, the 

peaks of sine and normal are much closer, where the 

difference is less than 3%. Compared them with the 

triangular peak, the difference is more than 11%. Comparing 

the degree of rebound under these three cases, we can see 

that the rebound degree of Sine is relatively large while the 

rebound degree of Triangle is very close to that of normal. 

Rebound values of Triangle, sine and normal account for 

12.9%, 21.7% and 13.1% of the peak respectively. 

According to the stress and time-interval curve and the 

displacement and time-interval curve, we can obtain that, in 

the compaction, half sine load with damping is more precise 

when degree of rebound, rebound time, eventually ramming 

pit value and the stress-displacement changing process are 

taken into account for the foundation soil.  

 Contour maps of 1 , 3  and z for foundation after 

compaction are shown in Figs. (7, 8 and 9). From Figs. (7 

and 8), regularities of distribution of 1 and 3  for the three 

cases are consistent, where the value of the normal 

circumstance is the maximum. From Fig. (9), we can see that 

distribution rules are basically consistent, where the result of 

normal distribution curve of load is the maximum and that of 

sine load is the minimum. From Fig. (10), we can see that 

 

 

 

 

 

 

 

 

 

 

 

    (a) triangle              (b) sine         (c) normal 

Fig. (9). Contour maps of z for foundation after compaction (MPa) 

 

 

 

 

 

 

 

 

 

 

 

    (a) Triangle        (b) sine     (c) normal 

Fig. (10). Contour maps of uz for foundation after compaction (m). 
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distribution rules are basically consistent, where the result of 

normal distribution curve of load is the maximum and that of 

triangle load is the minimum. 

7. CONCLUSIONS 

 In the analysis of dynamic compaction problems, as the 

geometry non-linearity have been considered, the mechanics 

analysis is finer, and the model corresponds to the actual 

feature of dynamic compaction.  

 Through the analysis and computation, we can get the 

changing regularity of the soil displacement and dynamic 

stress on surface during the acting time of dynamic 

compaction. The effective way of analyzing and simulating 

dynamic compaction mechanism is raised. The last one 

should be elucidated is that hypothesis is not considered in 

dynamic contact condition. 
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