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Abstract: The spatial and temporal evolution of small perturbations of the temperature and electromagnetic field for the 

simplest geometry, i.e., in a superconducting slab placed in a parallel magnetic field is considered. The obtained solution 

solution describes an blow-up-type instability in the superconductor sample. It remains localized within the limited area 

x < L* / 2  with increasing infinitively of time. 

Keywords: Nonlinear equations, thermal and electromagnetic perturbations, critical state, flux creep. 

INTRODUCTION 

 The magnetic flux penetration into a type-II 

superconductor occurs in the form of quantized vortices. In 

the presence of different types of defects or pinning centers 

in the superconductor sample, the vortices may be attached 

to such defects. A nature of interaction between the vortices 

and the structural defects is determined by the pinning force 

P
F . If transport current with the density j  is passed through 

superconductor, the interaction of the current with vortex 

lines leads to the emergence of the Lorentz force 
L
F , acting 

on each one of the vortices. Under the effect of the Lorentz 

force 
L
F  the viscous flux flow of vortices begin to move. 

The viscous magnetic flux flow in accordance with 

electromagnetic induction creates a vortex electric field E . 

This means that energy dissipation occurs, an electric 

resistance appears and the superconductor undergoes a 

transition to the resistive or to the normal state. Propagating 

magnetic flux causes Joule heating, giving rise to global 

and/or micro flux avalanches in the critical state of type-II 

superconductors. Thus, flux jumps results in a large-scale 

flux avalanches in a superconductor and their origin are 

related to the magnetothermal instabilities [1-5]. 

Thermomagnetic instability or flux jump phenomena have 

been observed in conventional hard superconductors [1-6], 

as well as in high-temperature superconductors, recently [7, 

8]. The critical state stability against flux jumps in hard and 

composite superconductors has been discussed in a number 

of theoretical and experimental papers [1-5]. The general 

concept of the thermomagnetic instabilities in type-II 

superconductors was developed in literature [4, 5]. The 

dynamics of small thermal and electromagnetic 

perturbations, whose development leads to the flux jump, 

have been investigated theoretically in detail by Mints and 

Rakhmanov [5]. The authors have found the stability 

criterion for the flux jumps in the framework of adiabatic  
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and dynamic approximations in the viscous flux flow regime 

of type-II superconductors. Conventionally, thermomagnetic 

instabilities were interpreted in terms of thermal runaway 

triggered by local energy dissipation in the sample [5]. 

According to this theory, any local instability causes a small 

temperature rise, the critical current is decreased and 

magnetic flux moves much easily under the Lorentz force. 

The additional flux movement dissipates more energy further 

increasing temperature. This positive feedback loop may 

lead to a flux jumps in the superconductor sample. 

 In our previous work, the dynamics of small thermal and 

electromagnetic perturbations has been studied in the flux 

flow regime, where voltage current-current characteristics of 

hard superconductor is described by linear dependence of 

)(Ej  at sufficiently large values of electric field [9]. In the 

region of weak electric fields the current-voltage 

characteristics )(Ej  of superconductors is highly nonlinear 

due to thermally activated dissipative flux motion. A 

theoretical analyze of the flux jumping in the flux creep 

regime, where the current-voltage characteristics of a sample 

is a nonlinear have been carried out recently by Mints [10] 

and by Mints and Brandt [11]. However, a careful study the 

dynamics of the thermal and electromagnetic perturbations 

in the regime weak electric field with nonlinear current-

voltage characteristics associated with flux creep is still 

lacking. 

 In the present paper the spatial and temporal evolution of 

small perturbations of the temperature and electromagnetic 

field in the flux creep regime for the simplest geometry, i.e., 

in a superconducting slab placed in a parallel magnetic field 

is considered. We shall study the problem in the framework 

of a macroscopic approach, in which all lengths are larger 

than the flux-line spacing; thus, the superconductor is 

considered as a uniform medium. 

 We study the evolution of the thermal and 

electromagnetic penetration process in a simple geometry - 

superconducting semi-infinitive sample 0x . We assume 

that the external magnetic field induction 
e
B  is parallel to 
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the z-axis and the magnetic field sweep rate 
e
B  is constant. 

When the magnetic field with the flux density 
e
B  is applied 

in the direction of the z-axis, the transport current ),( txj  

and the electric field ),( txE  are induced inside the slab 

along the y-axis. For this geometry, the temporal and spatial 

evolution of thermal ),( txT , electromagnetic field ),( txE  

and current ),( txj  perturbations are described by the 

following nonlinear heat diffusion equation [9-11] 
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 Here cj  is the critical current density, )(= T  and 

)(= T  are the specific heat and thermal conductivity, 

respectively. In order to obtain analytical results of a set Eqs. 

(1), (2), we suggest that cj  is independent on magnetic field 

induction B  and use the Bean's [1] critical state model 
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where 
0
T  and 

c
T  are the equilibrium and critical 

temperatures of the sample, respectively [9]. For the sake of 

simplifying of the calculations, we perform our calculations 

on the assumption of negligibly small heating 

)( 00 TTTT
c

 and assume that the temperature profile 

is a constant within the across sample and thermal 

conductivity  and heat capacity  are independent on the 

temperature profile. We shall study the problem in the 

framework of a macroscopic approach, in which all lengths 

scales are larger than the flux-line spacing; thus, the 

superconductor is considered as a uniform medium. 

 The set of differential equations (1), (2)) should be 

supplemented by a current-voltage curve ),,(= TBEjj . In 

the flux creep regime the current-voltage characteristics of 

type - II conventional superconductors is highly nonlinear 

due to thermally activated dissipative flux motion [12, 13]. 

For the logarithmic current dependence of the potential 

barrier )( jU , proposed by [14] the dependence )(Ej  has 

the form 

,=

1/n

c

c
E

E
jj  (3) 

where constE
c
=  and the parameter n depends on the 

pinning regimes and can vary widely for various types of 

superconductors. In the case 1=n  the power-law relation 

(3) reduces to Ohm's law, describing the normal or flux-flow 

regime [6]. For infinitely large n , the equation describes the 

Bean critical state model cjj =  [1]. When <<1 n , the 

equation (3) describes nonlinear flux creep [14]. In this case 

the differential conductivity  is determined by the 

following expression 

nE

j

dE

dj c
==  (4) 

 It is assumed, for simplicity, that the value of n 

temperature and magnetic-field independent. It should be 

noted that the nonlinear diffusion-type equations (1) and (2), 

completed by the flux creep equation (4), totally determine 

the problem of the space-time distribution of the temperature 

and electromagnetic field profiles in the flux creep regime 

with a nonlinear current-voltage characteristics (3) in a semi-

infinite superconductor sample. 

 To find an analytical solution of Eqs. (1) and (2) we use 

simple adiabatic approximation, assuming that 1 , i.e., 

that the magnetic flux diffusion is faster than the heat flux 

diffusion [4, 5]. Therefore, we neglect the diffusive term in 

the heat equation. Then eliminating the variable ),( txT  by 

using the relationship (1) and substituting into Eq. (2), we 

obtain a second-order differential equation for the 

distribution of small electromagnetic perturbation ),( txe  in 

the form 
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 Here, we introduced the following dimensionless 

variables 
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 Here 
c

e

j

cH
L

4
=  is the magnetic field penetration depth. 

Since we have neglected the redistribution of heat in 

deriving Eq. (5), only the electrodynamic boundary 

conditions (see, Ref. [9]) should be imposed on this equation 

0.=
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0,=)(1,
dz

de
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 The solution of (5) together with the boundary conditions 

(6) can be obtained by using the method of separation of 

variables. Looking for the solution of Eq. (5) in the form 

).()(=),( zze  (7) 

we get the following expressions for a new variables 
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 By integrating equation (8) we easily obtain 

,)(=)( 1/
p  (10) 
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where p  is the constant parameter, describing the 

characteristic time of magnetic flux penetration profile; 

1/=k . Now, integrating twice, the ordinary differential 

equation for the function )(z  with the boundary conditions 

(6) and taking into account (10), we find the following an 

explicit solution of (5) in the form [15] 
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 The obtained solution (11) describes the distribution of 

the electromagnetic field in the flux creep regime with a 

power-law current-voltage characteristics. The solution 

describes an blow-up-type instability in the superconductor 

sample. As easily can be seen that the solution remains 

localized within the limited area /2<
*
Lx  with increasing 

infinitively of time. This characteristic phenomenon often 

occurring in nonlinear parabolic problems is blow-up of 

solutions in finite time [15]. In other words, the growth of 

the solution, becomes infinite at a finite time p . Typical 

distributions of the electric field e(z,t) determined from 

analytical solution (11) is shown in Fig. (1) for the values of 

parameters p =1, n=2,  0.5 and 
*
L  1. 

 

Fig. (1). The space and time evolution of the electric field profiles 

at different times for 
p
=1, n=2,  0.5 and *

L  1. 

 

 

 

CONCLUSION 

 In conclusion, we have performed a theoretical study of 

dynamics of small thermal and electromagnetic perturbations 

in type-II superconductors in the flux creep regime in the 

framework adiabatic approximation [5]. For this purpose, the 

space-time evolution of temperature and electric field was 

calculated using the heat diffusion equation, coupled with 

Maxwell’s equations and material law, assuming that heat 

diffusion is small that the magnetic diffusion. An explicit 

solution of the diffusion equation has been obtained, which 

describes the distribution of the electromagnetic field in the 

flux creep regime with a power-law current-voltage 

characteristics. 
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