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Abstract: A theoretical proof of the computational function performed by a time-delayed neural network implementing a 

Hebbian associative learning-rule is shown to compute the equivalent of cross-correlation of time-series functions, show-

ing the relationship between correlation coefficients and connection-weights. The values of the computed correlation coef-
ficients can be retrieved from the connection-weights. 

Keywords: Time-delayed neural networks, cross-correlation function, Hebbian learning rule, associative learning, time-series 

signal processing. 

INTRODUCTION 

 Neural networks are networks of interconnecting neurons 

that compute specific functions when given a set of input 

signals. These networks can be shown to compute complex 

adaptive functions (including self-learning) using the vari-

able (adaptive) internal connection-weights between neurons 

to compute their outputs. When specific appropriate learn-

ing-rules are used in these networks, they can be shown to 

compute adaptive complex functions transforming the input 

into output that may not be solved by traditional analytical 

techniques, such as self-learning. The ability to perform 

these unique functions by these neural networks lie in (1) the 

neural network architecture (nonlinear multi-layered net-

work), (2) the learning-rules, and (3) adaptive connection-

weights. 

 These neural networks have been used in recent years to 

perform parallelizable computing functions that are capable 

of learning using the adaptive learning-rules to update their 

connection-weights. The significance of the computation 

performed by these networks depends very much on the 

network architecture and learning-rules. There has been 

much interest in finding the mathematical relationship be-

tween these neural networks and traditional engineering 

analyses. For instance, the relationships between neural net-

works and principal component analysis (PCA) have been 

investigated [1], because PCA is one of the techniques used 

in data compression and feature extraction. The relationship 

between a one-layer feedforward network using a Hebbian 

learning-rule in an unsupervised mode to compute the PCA 

was initiated [2], and subsequently investigated by many 

others (e.g., [3-8]). 

 This paper focuses on extending the analysis to establish 

the theoretical relationship between a time-delayed Hebbian 

learning network and the mathematical cross-correlation 

function. We will show theoretically that a Hebbian network  
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with time-delayed inputs is equivalent to computing the 

cross-correlation function for time-varying signals. 

 The neural network architecture introduced in this paper 

differs from most other traditional feedforward networks. In 

particular, we use a time-delayed neural network (TDNN) to 

process time-varying signals. This network takes a time-

series signal as its input for processing in order to compute 

the cross-correlation function automatically. A similar neural 

network architecture has been shown to process time-series 

signals generated from biological neurons to extract the cor-

relation between the firing times of neurons [9]. 

 An analytical solution of the computation performed by 

such a TDNN will be given in closed form showing the rela-

tionship between the connection-weights in the network and 

the cross-correlation coefficients it computes. It provides a 

formal proof of the mathematical description of the computa-

tion performed by such a TDNN network. It can be shown 

that a time-delayed Hebbian neural network essentially com-

putes the cross-correlation function by storing the correlation 

coefficients in its connection-weights. 

 Note that we will limit the discussion of this paper to the 

theoretical analysis only, while the implementation of this 

TDNN to solve specific real-world problems will be deferred 

to subsequent papers in full-length, such as the implication 

of how biological neurons may use a time-delayed Hebbian 

network to cross-correlate auditory signals in real-time for 

sound localization and frequency-tone discrimination.  

CLASSICAL NON-TIME-DELAYED HEBBIAN AS-

SOCIATIVE LEARNING-RULE 

 An associative learning-rule was first proposed by Hebb 

[10] as the mechanism for synaptic-weight change in a bio-

logical neural network. Hebb essentially stated that changes 

in synaptic (connection) weights between neurons occur 

when the pre-synaptic and post-synaptic neurons fire simul-

taneously. It is called associative learning because it makes 

the association between the input and output by modifying 

the connection-weights between them. The stronger the as-

sociation, the greater the connection-weights will be. 
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 Mathematically, it states that if the input and output of a 

neuron are activated simultaneously, then the connection-

weight for the inputs are changed. To rephrase in the current 

neural network terminology, it states that the weight con-

necting two neural elements will change if and only if both 

neural elements are activated at the same time; otherwise the 

connection-weight remains the same. 

 Let x(t)  and y(t)  denote the real-valued activation 

functions of input and output of a neuron, respectively, and if 

w(t)  denotes the real-valued connection-weight between 

x(t)  and y(t) , and w(t)  represents the weight change 

between successive time-steps, then the Hebbian associative 

learning-rule is give by: 

if x(t) 0  and y(t) 0  

then w(t) 0  

else w(t) = 0  

where non-zero value of the activation functions represents 

activation and zero value represents non-activation. More 

concisely, a Hebbian learning-rule that satisfies the above 

condition is expressed mathematically as follows: 

w(t) = x(t)y(t)     (1) 

 The relationship between the input and output with re-

spect to the associated connection-weight is shown in Fig. 

(1), and the output is given: 

y(t) = w(t)x(t)     (2) 

MODIFIED TIME-DELAYED HEBBIAN ASSOCIA-

TIVE LEARNING-RULE 

 A time-delayed neural network architecture is used to 

process the time-varying input signal in this neural network. 

This time-delayed network is similar but different from the 

hybrid network introduced earlier by Tam [11]. The initial 

input is delayed successively by a time-delay element in each 

input stage of the network (see Fig. 1). Thus, the time-delay 

produces the modified Hebbian learning-rule such that the 

connection-weight will change only if the time-delayed input 

and current output are activated rather than if the current 

input and current output are activated simultaneously. In 

other words, the output is associated with the previous input 

rather than the current input. 
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Fig. (1). Architecture of the time-delayed neural network showing 

the relationships between the time-delayed input, x(t k t) , con-

nection-weights, wk (t,k t)  and their output, yk (t) . 

 Let x(t)  and y(t)  denotes the input and output signals 

at time t , respectively, and w(t, )  denotes the connection-

weight between them with a lag-time, , then the modified 

time-delayed Hebbian learning-rule is given by: 

if x(t ) 0  and y(t) 0  

then w(t, ) 0  

else w(t, ) = 0  

where x(t )  denotes the input signal delayed by the lag-

time, , and w(t, )  denotes the change in connection-

weight (or the weight-change). Thus, a continuous-time 

time-delayed Hebbian learning-rule is given by extending 

Eq. 1: 

w(t, ) = x(t )y(t)     (3) 

 For hardware implementation, we use discrete lag-times 

( = k t ) in integral, k , multiples of t  to delay the input 

signal by multiple delay-tap lines. Therefore, the time-

delayed Hebbian associative learning-rule at the k -th delay-

line is given by: 

wk (t,k t) = x(t k t)yk (t)   (4) 

where k  is an integer constant, wk (t,k t)  is the change 

in the k -th connection-weight between the time-delayed 

input, x(t k t), and the k -th output, yk (t)  (see Fig. 1). 

 A single time-series signal is used as the input to the 

network. This time-delayed input is cascaded into multiple 

branches as inputs to successive neurons to provide the in-

puts for the modified Hebbian learning-rule (Eq. 4) to update 

the corresponding connection-weights. The network would 

produce as many outputs as there are discrete time-delays. 

The k -th output of the network in Fig. (1) is established by: 

yk (t) = wk (t,k t)x(t k t)    (5) 

 Alternatively, each of the delay-tap lines in Fig. (1) can 

be considered as feeding into a pseudo-neuron as the first 

(pseudo) layer of the network in Fig. (2). This first layer can 

be considered as a pseudo-layer for the network because it 

does not perform extra computation, except for conceptuali-

zation of the equivalent neural network architecture. 
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Fig. (2). Diagram showing how the time-delayed inputs are cas-

caded into forming a layer of pseudo-input neurons. This network 

architecture is equivalent to the diagram shown in Fig. (1). 
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 The output of the k -th time-delayed pseudo-input neuron 

(in the first pseudo-layer) can be expressed in terms of the 

initial input signal by: 

xk (t) = x(t k t)     (6) 

 The main reason why we represent the network in this 

equivalent architectural form is that now the layer of time-

delayed inputs is a parallel layer rather than a cascaded se-

quential input layer. In other words, it transforms the single 

sequential time-series input into parallel inputs by the delay-

lines, which allows for simultaneous parallel processing 

rather than sequential processing. This represents the spatio-

temporal transformation of the input signal explicitly by the 

alternate network architecture, although they are equivalent 

implicitly. 

 Such a network would have a single sequential input, 

x(t) , branched into (k +1)  parallel lines by k  discrete 

delays. It will also have k  outputs, yk (t) . The k -th output 

of the network in Fig. (2) is given by: 

yk (t) = wk (t,k t)xk (t)    (7) 

 These outputs can be further merged into a single output, 

y(t) , to form a network produces a single output signal 

rather than multiple outputs (see Fig. 3). This results in the 

output of the network that computes the weighted-sum of all 

k  time-delayed signals mathematically: 

y(t) = yi(t)
i= 0

k

      = wi(t,i t)xi(t)
i= 0

k

      = wi(t,i t)x(t i t)
i= 0

k

   (8) 
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Fig. (3). Diagram showing the architecture of the single-input and 

single-output network that computes the weight-sum of time-
delayed input signal. 

 Thus, this network architecture will provide a single in-

put and a single output to process the time-series signal using 

a pseudo-input layer. This design satisfies the main objective 

of creating a neural network that correlates two time-series 

signals, x(t)  and y(t) , using a set of time-delayed Hebbian 

associative learning-rules. 

 It will be shown below that the cross-correlation coeffi-

cients are computed by the weight-sum of the time-delayed 

inputs by the output neuron at the k -th connection-weight 

after successive iterative training. 

COMPUTATION OF ADAPTIVE TIME-DELAYED 

CONNECTION-WEIGHTS 

 When the network is trained with n  iterations of the dis-

crete time step, t , the resulting connection-weight is given 

by: 

wk (n t,k t) = wk (0,k t) +

                       wk ( j t,k t)
j= 0

n
  (9) 

for t = n t  and = k t . The continuous-time time-

delayed Hebbian learning-rule of Eq. (3) can be re-expressed 

in terms of the discrete-time step (for t = j t ) as: 

wk ( j t,k t) = x( j t k t)y( j t)   (10) 

 The resulting connection-weights after iterating n  dis-

crete time steps becomes: 

wk (n t,k t) = wk (0,k t) +

                       x( j t k t)y( j t)
j= 0

n
  (11) 

MATHEMATICAL CROSS-CORRELATION FUNC-

TION 

 The standard classical cross-correlation function between 

two continuous-time stationary time-series signals, x(t)  and 

y(t) , is given by: 

rxy ( ) = lim
T

1

T
x(t )y(t)dt

0

T
  (12) 

 The corresponding cross-correlation function for a dis-

crete time step, t , and lag time, = k t , is given by:  

rxy (k t) = lim
n

lim
t 0

1

n t
x( j t,k t)y( j t) t

j= 0

k

 (13) 

RELATIONSHIP BETWEEN CROSS-CORRELATION 

FUNCTION AND TIME-DELAYED HEBBIAN CON-

NECTION-WEIGHTS 

 Substituting Eq. 11 into Eq. 13, the relationship between 

the cross-correlation function and the time-delayed Hebbian 

connection-weights is revealed:  

rxy (k t) = lim
n

lim
t 0

1

n t
wk (n t,k t) wk (0,k t)[ ]  (14) 

 This equation proves that theoretically the cross-

correlation function is essentially computed by cumulating 

the connection-weight after iterations of n  learning time 

steps using the time-delayed Hebbian learning-rule intro-

duced in this paper. This relationship shows that the cross-

correlation function is computed simply by the difference 
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between the initial and final connection-weights of the 

TDNN. 

 The correlation coefficient, rxy (k t) , at lag-time 

= k t  can be retrieved directly from the k -th connec-

tion-weight of the network. This provides a theoretical 

closed-form solution of the relationship between the connec-

tion-weights and the correlation coefficients of a cross-

correlation function. 

 This also shows, in contrast with most other neural net-

works, the computational result of the network is retrieved 

from the connection-weights rather from the output of the 

network. Furthermore, in contrast with most other neural 

networks, the network performs linear computation rather 

than nonlinear computation, since cross-correlation is essen-

tially a linear operation. Because of the linearity, there are 

multiple equivalent networks that can represent the same 

computation, as already shown in the above analysis. 

TRAINING OF THE NETWORK 

 The neural network shown above illustrates how the net-

work can self-organize to compute the cross-correlation 

function by adapting its connection-weights after n  itera-

tions of time-steps. The remaining question is: How does the 

network “know” what the output, y(t) , should be? The an-

swer lies in how the network is trained. During the training 

phase, the network is detached from producing its own out-

put. The time-series signals to be cross-correlated, x(t)  and 

y(t) , are fed into the input and output of the network, re-

spectively, so that the connection-weights can be formed 

internally during training.  

 After training, in the retrieval phase, the time-series sig-

nal y(t)  is detached from the network so that the network 

can produce its own output, y(t) , by computing the 

weighted sum of the time-delayed input based on the adapted 

connection-weights. The correlation coefficients are re-

trieved from the connection-weights directly at the k -th 

connection-weight after training. 

DISCUSSIONS 

 Although it can be shown by other investigators [1-8] 

that a time-delayed Hebbian network can compute mathe-

matical functions such as PCA, this paper illustrated that a 

time-delayed Hebbian network can compute cross-

correlation function too. A theoretical analysis is given to 

prove that the connection-weights developed after training is 

equivalent to the computation of the coefficients of a cross-

correlation function. The TDNN processes the time-series 

signals, x(t)  and y(t) , in such a way that the connection-

weights developed after training would produce the correla-

tion coefficients of the cross-correlation between x(t)  and 

y(t) . 

 The main difference between the computation achieved 

by this network and other traditional neural networks is that 

the processing results are retrieved from the connection-

weights rather than obtained from the output of the network. 

Once trained, the network can still predict the output, y(t) , 

like other neural networks by computing the weighed-sum of 

the time-delayed input signal at the k -th connection-weight. 

 Although this is linear network collapseable into an 

equivalent single-input, single-output network, it can per-

form multiple (parallelizable) computations of all the corre-

lation coefficients simultaneously, which are retrievable 

from each of the connection-weights. Thus, this analysis 

bridges the conceptual framework between traditional engi-

neering technology in cross-correlation and the novel tech-

nology implemented by a time-delayed neural network. 

 Furthermore, since the cross-correlation function is com-

puted using a neural network, such computation can be im-

plemented in hardware to process signals in real-time. 

Hardware implementation of this network can provide high-

speed processing of time-series signals when cross-

correlation computation is required. Demonstration of the 

applications of this time-delayed Hebbian network for proc-

essing time-series signals, such as auditory signals for 

sound-localization and frequency-tone discrimination will be 

given in a subsequent paper in further details. 
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