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Abstract: This paper proposes a new multiobjective location problem for emergency facilities, e.g. ambulance service 
stations and fire stations. In the problem, one of the objectives is to minimize the maximal distance of the paths from the 
located emergency facilities to hospitals via accidents. The other is to maximize the frequency of accidents that the emer-
gency facilities can respond quickly. An interactive fuzzy satisficing method with particle swarm optimization (PSO) 
method is proposed for finding a satisficing location for the problem. Computational results illustrate the method with 
numerical examples of the multiobjective location problem. 

INTRODUCTION 

 In this paper, we consider a new emergency facility loca-
tion problem (EFLP), such that ambulance service stations 
[1-3], fire stations [1, 4, 5], etc. Matsutomi and Ishii [2] con-
sidered EFLPs with the situation that if an accident occurs, 
the nearest emergency facility sends ambulances to it and 
injured people are conveyed to the nearest hospital. We pro-
pose a new multiobjective EFLP by extending Matsutomi 
and Ishii’s EFLP. 

 EFLPs have the following two important factors. One is 
distance (or norm); for details of the relation between facility 
location and norm, the reader can refer to the study of Mar-
tini [6]. There are two norms widely used in studies about 
the EFLPs. One is the Euclidean norm [7, 8], which is as-
sumed that it can be traveled to any orientations at any 
points. However, this assumption does not usually hold for 
facility location in urban areas. The other is the block norm 
[9-11], which is assumed that it can be traveled to given sev-
eral allowable orientations of movement with weights at any 
points. Rectilinear distance [8] is regarded as one of the 
block norms such that there are two allowable orientations 
which cross at right angles with the same weights. The 
EFLPs with the rectilinear distance are often studied [7, 12]. 
The A-distance defined by Widmayer et al. [13] is also re-
garded as one of block norms such that there are several al-
lowable orientations of movement with the same weights. 
Matsutomi and Ishii [2] consider an EFLP with the A-
distance. In this paper, we propose a new EFLP based on the 
EFLP with the A-distance. 

 The other is criterion of optimality for facility location. 
In general EFLPs [2, 4, 7, 14, 15], an objective for facility 
location is to minimize the maximal distance between emer-
gency facilities and the scenes of accidents. In this paper, we 
introduce another new objective, which is to maximize  
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frequency of accidents that emergency facilities can respond 
quickly. Then, a new multiobjective EFLP with the two ob-
jectives is formulated. 

 Most multiobjective EFLPs do not have complete opti-
mal solutions. For finding a satisficing solution of the 
multiobjective EFLP for the decision maker (DM), we apply 
interactive fuzzy satisficing method proposed by Sakawa and 
Yano [16]. Katagiri et al. [17] recently proposed interactive 
fuzzy satisficing method for multiobjective fuzzy random 
linear programming problems. In this method, we need to 
find an optimal solution for each of the minimax problems 
with the corresponding reference membership values. Parti-
cle swarm optimization (PSO), which is proposed by Ken-
nedy and Eberhart [18] and improved by Matsui et al. [19], 
is one of the efficient solution methods for nonlinear pro-
gramming problem. We propose to apply the PSO improved 
by utilizing some characteristics of the EFLPs. 

 The organization of the paper is as follows. In Section 2, 
we give the definition of the A-distance and its properties. In 
Section 3, we formulate a multiobjective EFLP with the A-
distance. For the formulated EFLP, first we propose the 
method to compute the objective values for each location in 
Section 4. In order to find a satisficing solution for the DM, 
we introduce the interactive fuzzy satisficing method pro-
posed by Sakawa and Yano [16] in Section 5. In order to 
solve the minimax problems in this method, we proposed a 
PSO method considering characteristics of the EFLP in Sec-
tion 6. In section 7, we show the results for applying the 
method to numerical examples of the multiobjective EFLPs. 
Finally, we make mention of conclusions and future remarks 
in Section 8. 

A-DISTANCE 

 In this section, we describe the definition of A-distance 
and its properties. We consider the situation that there are a 
orientations which can only move in the plane R2. The orien-
tations are represented as the angles between the correspond-
ing straight lines to orientations and the Cartesian x-axis; for 
example, orientation 0 is the x-axis and orientation 2/  is 
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the y-axis. Let A = },...,{ 1 a
 be a set of orientations such 

that <
a1

0 . A line, a half line, or a line seg-

ment is called A-oriented if its orientation is one of those in 

A. Then, the A-distance between two points 
1

p  and 2

2
Rp  

is represented as follows: 

dA (p1, p2 ) :=

d2 (p1, p2 ),  if p1  and p2  are in 

                    an A-oriented line,

min
p3 R2

dA (p1, p3 ) + dA (p3, p2 ){ },

                                   otherwise

  (1) 

where ) , (2d  means the Euclidean distance. Fig. (1) shows 

an example of the A-distance between 
1

p  and 2

2
Rp . The 

rectilinear distance is represented as the A-distance with 
}2/,0{=A . 

 

Fig. (1). An example of the A-distance. 

 Widmayer et al. [13] show that if points 
1

p  and 
2

p  are 

not in any A-oriented lines, there exists at least one point 
2

3
Rp  such that 

dA (p1,p2 ) = d2 (p1,p3 ) + d2 (p3,p2 )    (2) 

 For a point p  and a distance d > 0, the locus of all points 

'p  with dd
A

=)',( pp  is called the A-circle with center p  

and radius d. As shown in Fig. (2), A-circle has its boundary 
of 2a-gon whose corner points are the intersections of the 
circle with center p  and radius d and the A-oriented lines 

through p . 

 For two points 
1

p  and 
2

p , the bisector of 
1

p  and 
2

p  

with the A-distance is defined as follows: 

{ }.),(),(   ),( 2121 ppppppp
AAA

ddB ==   (3) 

 Let },...,{ 1 nQ pp=  be a set of n points 2
1,..., R

n
pp . 

Then, the Voronoi polygon ),(
iA

V p ni ,...,1= , with the A-

distance is defined as follows: 

 

VA (pi ) = p dA (p,pi ) dA (p,p j ){ }
j i

   (4) 

 

Fig. (2). An A-circle ( }4/3,2/,3/{=A ). 

 The sides and vertices of the Voronoi polygons are called 
Voronoi edges and Voronoi points, respectively. The set of 
all Voronoi polygons, which can be regarded as a partition of 
R

2, is called Voronoi diagram with the A-distance. Voronoi 
diagram for Q is denoted by )(QVDA . 

 Theorem 1: A Voronoi diagram in the A-distance for Q 
can be constructed in )log( nnO  times using )(nO  space, 

which is asymptotically optimal in the worst case. 

 Proof: Correctness follows from the consideration in Sec-
tion 3 of the reference [13]. Optimality is due, for instance, 
to a reduction of sorting [20]. 

 Fig. (3) shows an example of the Voronoi diagram with 
}2/,0{=A . 

 

Fig. (3). Voronoi diagram with the A-distance. 

FORMULATION OF MULTI-OBJECTIVE EFLP 

 In this section, we formulate a multiobjective EFLP with 

the A-distance. Let 2
RS  be a closed convex polygon in 

which accidents occur and the DM needs to locate emer-
gency facilities. We consider the situation that if an accident 
occurs at a point, the nearest emergency facility to the point 
sends ambulances to the point and then injured people in the 
accident are conveyed from the point to the nearest hospital. 
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 First, we show the minimax criterion about path from the 
emergency facilities to the hospitals via the points of acci-
dents. Let S

m
hh ,...,1  be sites of m hospitals, let 

S
n

yy ,...,1  be sites of n emergency facilities, and let 
n

n
SY = ),...,( 1 yy . Then, if an accident occurs at a point 

Sp , the A-distance for the above path is represented as 

follows: 

u(Y ,p) = min
i=1,...,n

dA (yi ,p) + min
j=1,...,m

dA (p,h j )    (5) 

 Because the DM does not know where accidents occur in 
S beforehand, one of our objectives is interpreted as coping 
with any accident points in S quickly. Then, the first objec-
tive function is represented as follows: 

f1(Y ) := max
p S

u(Y ,p)      (6) 

 Secondly, we show a new criterion about frequency of 
accidents. We assume that the DM knows points where acci-
dents frequently occur in S, called accident points. There are 
k accident points whose sites are denoted by S

k
aa ,...,1 , 

and each of their accident points has a weight about fre-
quency of accidents, denoted by 0,...,1 >

k
ww , respectively. 

Let 0>  be an upper limit of the distance from the emer-

gency facilities to the hospitals such that a medical treatment 
for injured people can be in time. The other of our objectives 
is interpreted as maximizing the sum of the weights of fre-
quency of accident points that the emergency facilities can 
cover for a given . Then, the second objective function is 

represented as follows: 

f2 (Y ) := wi
i I (Y )

      (7) 

where 

I (Y ) :=  ai   u(Y , p)  { }    (8) 

 Therefore, a multiobjective EFLP is formulated as fol-
lows: 

minimize   f1(Y )

maximize   f2 (Y )

subject to   Y = (y1, ..., yn ) Sn

    (9) 

COMPUTATION OF THE OBJECTIVE VALUES OF 

MULTIOBJECTIVE EFLP 

 In order to find an optimal solution of (9), we need to 
compute the two objective values for each solution. For the 
second objective function, we can compute its objective 
value by measuring the A-distances from the emergency fa-
cilities to the hospitals via the k accidents points. In the fol-
lowing part of this section, we propose the method to com-
pute the first objective value for each location. 

 For the case 1=n , Matsutomi and Ishii [2] showed the 
following theorem. 

 Theorem 2: If 1=n , Sp  which maximizes ),( pYu  is 

one of the following points: 

• Vertices of the boundary of S, 

• Intersections of Voronoi edges of each 
)(),...,( 1 mAA

VV hh  and the boundary of S. 

 If the DM locates two or more emergency facilities, we 
need to consider which of the emergency facilities is used at 
any points in S. From the definition of Voronoi polygon, 

)(
iA

V y  is the set of points which uses emergency facility i. 

While Sp  which maximizes ),( pYu  is only on the 

boundary of S if 1=n , Sp  which maximizes ),( pYu  

may be in the interior of S and on the Voronoi edges of 
)(),...,( 1 mAA

VV hh  and )(),...,( 1 mAA
VV yy  if 2n . Then, 

Theorem 1 can be extended to the following corollary: 

 Corollary 1: If 2n , Sp  which maximizes ),( pYu  

is one of the following points: 

• Vertices of the boundary of S, 

• Intersections of Voronoi edges of each 
)(),...,( 1 mAA

VV hh  and the boundary of S, 

• Voronoi points of each )(),...,( 1 mAA
VV hh , 

• Voronoi points of each )(),...,( 1 mAA
VV yy , 

• Intersections of Voronoi edges of each 
)(),...,( 1 mAA

VV yy  and the boundary of S, 

• Intersections of Voronoi edges of each 
)(),...,( 1 mAA

VV hh  and Voronoi edges of each 

)(),...,( 1 mAA
VV yy . 

 The above points can be found by drawing Voronoi dia-
gram for hospitals and Voronoi diagram for each location of 
emergency facilities. Then, we can find the first objective 
value by computing the maximal distance for paths from 
emergency facilities to hospitals via these points. 

INTERACTIVE FUZZY SATISFICING APPROACH 

 In this section, we introduce the interactive fuzzy satis-
ficing method proposed by Sakawa and Yano [16] in order to 
find a satisficing solution of (9) for the DM. 

 For decision making in real world, the DM usually prefer 
to make an objective function value more/less than a certain 
value rather than to maximize/minimize its objective func-
tion value. Such an objective, called “a fuzzy objective”, 
includes vagueness based upon judgment of the DM. In this 
paper, we represent the two objectives of (9) as fuzzy objec-
tives provided by membership functions, denoted by 

1
μ  and 

2
μ . 

 Now we introduce an example of membership functions 
for each objective function. 

 Let 
e

d  denote the distance such that the DM is quite 

satisfied if the first objective value is less than 
e

d , and 
l

d  

denote the distance such that she/he is satisfied to a certain 
degree if its objective value is more than 

e
d  but less than 
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l
d . Then, we use the following linear membership function 

for the former objective: 

μ1( f1(Y )) :=

1,                    if f1(Y ) < de ,

f1(Y ) de

dl de

,    if de f1(Y ) < dl ,

0,                   if dl f1(Y )

  (10) 

 Next, one of the simplest ways to provide membership 
function for the latter objective is as follows: 

μ2 ( f2 (Y )) :=
f2 (Y )

wi
i=1

k      (11) 

 Then, (9) is transformed as the following multiobjective 
fuzzy programming problem: 

minimize   μ1( f1(Y ))

maximize   μ2 (f2 (Y ))

subject to   Y = (y1, ..., yn ) Sn

   (12) 

 Since there is generally no complete optimal solution for 
multiobjective programming problem including (12), the 
concept of the M-Pareto optimal solution is usually used for 
multiobjective fuzzy programming problems. 

 Definition 1: Solution *Y  is an M-Pareto optimal solu-
tion of (12) if and only if there does not exist any solutions 

n
SY  such that *))(())(( YfYf iiii μμ  for all 2,1=i  and 

*))(())(( YfYf jjjj μμ >  for at least one }2,1{j . 

 The interactive fuzzy satisficing method [16] is to find a 
satisficing M-Pareto optimal solution through interaction to 
the DM. Let ),( 21 μμ  be a pair of initial reference member-

ship levels of membership function 
1

μ  and 
2

μ , respec-

tively. The interactive fuzzy satisficing method for (12) can 
be described as follows: 

Algorithm 1: Interactive Fuzzy Satisficing Method 

Step 1. Provide two membership functions 
1

μ  and 
2

μ  

according to (10) and (11). 

Step 2. Set the initial reference membership levels 
) 1 ,1 (),( 21 =μμ . 

Step 3. For the given pair of reference membership levels 
),( 21 μμ , solve the following corresponding 

minimax problem: 

minimize   max
i=1,2

{μi μ i ( fi (Y ))

                    + (μi μ i ( fi (Y )))
j=1

2

}

subject to   Y = (y1, ..., yn ) Sn

   (13) 

where,  is a sufficiently small positive number. 

Step 1. If the DM is satisfied with the current levels of the 
M-Pareto optimal solution, STOP. Then the cur-

rent M-Pareto optimal solution is a satisficing so-
lution for the DM. 

Step 2. Update the pair of current reference membership 
levels ),( 21 μμ  based on information of prefer-

ence of the DM, the current values of the mem-
bership functions, etc. Return to Step 3. 

 In the interactive fuzzy satisficing method, we need to 
solve the minimax problems in Step 3 efficiently. In the next 
section, we propose an efficient solution method for the 
minimax problem. 

A SOLUTION ALGORITHM FOR MINIMAX PROB-

LEM 

 A PSO method proposed by Kennedy and Eberhart [18] 
is based on the social behavior that a population of individu-
als adapts to its environment by returning to promising re-
gions that were previously discovered [21]. This adaptation 
to the environment is a stochastic process that depends upon 
both the memory of each individual, called particle, and the 
knowledge gained by the population, called swarm. 

 In the numerical implementation of this simplified social 
model, each particle has the following three attributes: the 
position vector in the search space, the velocity vector and 
the best position in its track, and the best position of the 
swarm. The process can be outlined as follows. 

Algorithm 2: Outline of the PSO Method 

Step 1. Generate the initial swarm involving N particles at 
random. 

Step 2. Calculate the new velocity vector for each parti-
cle, based on its attributes. 

Step 3. Calculate the new position of each particle from 
the current position and its new velocity vector. 

Step 4. If the terminal condition is satisfied, STOP. The 
best solution given in the searching history is an 
approximate optimal solution. Otherwise, go to 
Step 2. 

 To be more specific, for the position and the velocity 

vector of the i-th particle at time t, denoted by t

i
x  and t

i
v , 

respectively, the new velocity vector of the i-th particle at 
time 1+t  is calculated by the following scheme introduced 
by Shi and Eberhart [22]. 

)()(: 2211
1 t

i
t
g

tt
i

t
i

tt
i

tt
i RcRc xpxpvv ++=
+   (14) 

where t
R

1
 and t

R
2

 are random numbers between 0 and 1 at 

time t, t

i
p  is the best position of the i-th particle in its track 

and t
gp  is the best position of the swarm. There are three 

problem-dependent parameters, the inertia of the particle t , 

and two trust parameters 
1

c  and 
2

c . Then, the new position 

of the i-th particle at time 1+t  is calculated from the follow-
ing equation: 

11
:

++
+=

t

i

t

i

t

i
vxx       (15) 
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 The i-th particle calculates the next search direction vec-

tor 1+t

i
v  by (14) in consideration of the current search direc-

tion vector t

i
v , the direction vector going from the current 

search position t

i
x  to the best position in its track t

i
p  and 

the direction vector going from the current search position 
t

i
x  to the best position of the swarm t

gp , moves from the 

current position t

i
x  to the next search position 1+t

i
x  calcu-

lated by (14). The parameter t  controls the amount of the 
move to search globally in early stage and to search locally 

by decreasing t  gradually. It is defined by follows: 

max

0
0

75.0

)(
:

max

T

t
T

t
=      (16) 

where 
max

T  is the number of maximum iteration times, 0  

is an initial value at the time iteration, and max
T  is the last 

value. 

The searching procedure of PSO is shown in Fig. (4). 

 

Fig. (4). Movement model for PSO. 

 Comparing the evaluation value of a particle after 

movement, denoted by )( 1+t
if x , with that of the best posi-

tion in its track, denoted by )( t
if p , if )( 1+t

if x  is better than 

)( t
if p , then the best position in its track is updated as 

)()( 11 ++ t
i

t
i ff xp . Otherwise, then the best position in the 

swarm is updated as )()( 1 t
i

t
i ff pp
+ . In this way, a parti-

cle gets information of the best position of new oneself and 
the swarm, and moves according to (14) and (15) again, and 
searches newly. The summary of the PSO method is shown 
in Fig. (5). 

 Such a PSO technique includes two drawbacks. One is 
that particles concentrate on the best search position of the 
swarm and they cannot easily escape from the local optimal 

solution since the move direction vector 1+t

i
v  calculated by 

(14) always includes the direction vector to the best search 
position of the swarm. Another is that a particle after move is 
not always feasible for problems with constraints. 

 In order to settle the first issue, Matsui et al. [19] pro-
posed “the leaving acts” for particles which are on the best  
 

position of the swarm. Moreover, they proposed the multi-
plex stretching method, which is the extended version of the 
stretching method proposed by Parsopoulos and Varahatis 
[23]. In order to settle the second problem, Matsui et al. [19] 
proposed to generate initial particles in the feasible set by 
utilizing the homomorphism proposed by Koziel and 
Michalewicz [24]. Moreover, there are often cases that a 
particle after move is not always infeasible if we use the up-
dating equation of search position mentioned above. To deal 
with such a situation, Matsui et al. [19] divided the swarm 
into two subswarms; one is the move of a particle to the in-
feasible region is accepted and the other is not. 

 

Fig. (5). Summary of PSO algorithm. 

IMPROVEMENT OF PSO METHOD 

 In this study, based upon the PSO method introduced in 
the previous section, we proposed to add a new fourth 

movement in (14). Let Sq  be maximizer of ),( px
t

i
u , 

such a point can be found by using Theorem 1. In (9) ap-
proaching the nearest emergency facility to q , objective 

value of )(1 Yf  may be improved. Therefore we introduce 

such a movement to our solution method. Let t

a
p  be a posi-

tion such that for t

i
x , a site of the nearest facility is changed 

to q  and sites of the other facilities are fixed. Then, our pro-

posing new velocity vector of the i-th particle at time 1+t  is 
represented as follows: 

v i
t+1 := tv i

t
+ c1R1

t (pi
t xi

t ) + c2R2
t (pg

t xi
t )

+c3R3
t (pa

t xi
t )

   (17) 

where 
3

c  is a trust parameter and t
R

3
 is a random number 

between 0 and 1. 

NUMERICAL EXPERIMENTS 

 In this section, we apply interactive fuzzy satisficing ap-
proach with the PSO method to an example of our proposing 
multiobjective EFLPs. In this example, we consider an EFLP  
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for two emergency facilities, that is 2=n . We represent S as a 
convex hull including 20 points given in ]100,0[]100,0[  

randomly. For the A-distance, we set }4/3,2/,4/,0{=A . 

For hospitals, we set 3=m  and their sites are given in S ran-
domly. For the frequency of accidents, we set 15= , and for 

each of 100 accident points, its site and weight are randomly 
given in S and (0,1], respectively. 

 We illustrate the interactive fuzzy satisficing approach 
for the above example of the multiobjective EFLP. For pa-
rameters of PSO, we use the same parameter as the study of 
Matsui et al. [19], that is, its population size is 40, its genera-
tion is 500, and 2

21
== cc . Moreover, we set the new pa-

rameter 5.0
3

=c . 

 At Step 1, in order to represent fuzziness about two ob-
jectives, we use membership functions (10) and (11) in Sec-
tion 5 with setting 5=

e
d  and 120=

l
d . 

 At Step 3, we solve minimax problem (13) for each given 
),( 21 μμ  by solving the PSO method in section 6. We set 
3

10= . In order to verify efficiency of PSO method, we 

apply the solution method GENOCOP [24], which is a ge-
netic algorithm for numerical optimization for constrained 
problem proposed by Koziel and Michalewicz [24], to mini-
max problems. For parameters of GENOCOP, we set the 
same population size and generation. Moreover, we set the 
other parameters similarly to the study of Koziel and 
Michalewicz [24]. Computational results for each given 

),( 21 μμ  at 20 times by PSO and GENOCOP are shown in 

Tables 1 and 2, respectively, where these results are given by 
using DELL Optiplex GX620 (CPU: Pentium(R) 4 2.33GHz, 
RAM: 512MB). 

Table 1. Computational Results by PSO 

 

Minimax Problem 1 2 3 

μ1  1.0 1.0 0.9 

μ2  1.0 0.8 0.8 

Best 0.4104 0.3109 0.2608 

Mean 0.4106 0.3113 0.2611 

Worst 0.4113 0.3120 0.2614 

Mean CPU 

Time (Sec) 
9.5196 10.080 9.0718 

 

 From Tables 1 and 2, PSO can find better solutions than 
GENOCOP by meanings of both mean and stability. This 
means that efficiency of PSO for such minimax problems. 

 At Step 4, the DM evaluates whether the M-Pareto opti-
mal solution given by solving the minimax problem at Step 3 
is satisfied or not. If its solution satisfies the DM, this algo-
rithm is terminated. Otherwise, ask the DM to update the  
 

 

Table 2. Computational Results by GENOCOP 

 

Minimax Problem 1 2 3 

μ1  1.0 1.0 0.9 

μ2  1.0 0.8 0.8 

Best 0.4132 0.3111 0.2611 

Mean 0.4302 0.3292 0.2764 

Worst 0.4483 0.3440 0.2885 

Mean CPU 

Time (Sec) 
10.101 11.982 10.044 

 

current reference membership levels ),( 21 μμ  by considering 

the current values of the membership functions, and resolve 
minimax problem to Step 3. In this example of EFLP, we 
assume that the DM thinks that the first objective is more 
important than the second objective. Then the DM hopes to 
improve the value of 

1
μ  even if the value of 

2
μ  is changed 

for the worse. However, the DM does not hope to go the 
value of 

2
μ  too bad. Then, an example of the interactive 

fuzzy satisficing methods is shown in Table 3. 

Table 3. Results of Interactive Fuzzy Satisficing Approach 

 

Iteration 1 2 3 

μ1  1.0 1.0 0.9 

μ2  1.0 0.8 0.8 

μ1 ( f1 (Y*))  0.5901 0.6892 0.6395 

μ2 ( f2 (Y*))  0.5897 0.4892 0.5393 

 

 In Table 3, the DM considers as follows: 

• At Iteration 1, the DM is not satisfied M-Pareto opti-
mal solution because the first objective value is bad. 

• At Iteration 2, for improving the first objective value, 
the DM decreases 

2
μ , which is reference member-

ship levels for the second objective. Then, the M-
Pareto optimal solution given at Iteration 2 is im-
proved for the first objective. However, she/he is not 
satisfied because the second objective value is too 
bad. 

• At Iteration 3, for improving the second objective 
value a little, the DM decreases 

1
μ , which is refer-

ence membership levels for the first objective. Then, 
she/he obtains a satisficing solution for both two ob-
jectives, so the algorithm is terminated. 

CONCLUSIONS AND FUTURE STUDIES 

 In this paper, we have proposed a new multiobjective 
EFLP with the A-distance. In order to obtain a satisficing  
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solution for the DM, we have proposed an interactive fuzzy 
satisficing method which involves the procedure of solving 
minimax problems by the PSO method. By applying an ex-
ample of multiobjective EFLPs, we showed efficiency of 
PSO and illustrated the interactive fuzzy satisficing method. 

 In the multiobjective EFLPs, we assume that the region 
of facility location S is a convex polygon because Theorem 2 
and Corollary 1 use the assumption. However, in order to 
apply the EFLPs to more general cases, we need to consider 
various shapes of S which are non-convex, non-connected, 
etc. To construct our solution method for general shapes of S 
is a future study. Moreover, if S includes many hospitals and 
the DM locates many emergency facilities in S, we need to 
find an optimal solution more efficiently for the minimax 
problems in the interactive fuzzy satisficing methods. To 
consider an efficient solution method for large-scale 
multiobjective EFLPs is also a future study. 
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