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Abstract: A theoretical model for deriving the origin of emotional functions from first principles is introduced. The 

model, called “Emotional Model Of the Theoretical Interpretations Of Neuroprocessing”, abbreviated as the “EMO-

TION”, derives how emotional context can be evolved from innate responses. It is based on a biological framework for 

autonomous systems with minimal assumptions on the system or what emotion is. The first phase of the model (EMO-

TION-I) addresses the progressive abstraction of the sensory input signals within relevant context of the environment to 

produce the appropriate output actions for survival. It uses a probabilistic feedforward and feedback neural network with 

multiple adaptable gains, self-adaptive learning rate and modifiable connection weights to produce a self-organizing, self-

adaptive system incorporating associative reinforcement learning rules for conditioning and fixation of circuitry into 

hardwire to form innate responses such that contextual feel of sensation is evolved as an emergent property known as 
emotional feel. 
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INTRODUCTION 

 Emotion is one of the most studied subjects in many dis-

ciplines of science including psychology, physiology, phi-

losophy, anthropology, etc., and recently in robotics. Yet, it 

is one of the most controversial subjects because of the dif-

ferences in definition, in perception, and in perspectives, 

among other things such as introspection and retrospection 

by human cognition. Rather than engaging in the debate of 

whether emotion is unique to human, whether other animals 

or robots could have emotions, this paper focuses on deriving 

the emergent property called emotion from the basic princi-

ples required for processing autonomous control functions. 

We will use an inter-disciplinary approach that includes 

mathematics, neuroscience, physiology, psychology and en-

gineering control science in the derivation of emotion. Due to 

the volume of research on the topic, we will limit our discus-

sion on relevant classical literature in the derivation of emo-

tions. 

EVOLUTIONARY APPROACH 

 This approach to study the emergence of emotion in a 

self-actuating autonomous system is analogous to the ap-

proach to study how emotions are evolved in the biological 

system at the theoretical level rather than studying it at the 

phenomenological level. It is an evolutionary approach to 

derive the necessity for the emergence of an entity called 

“emotion” for processing sensory signals and its internal 

functions in order to survive in the real world. It is based on 

the computational principles needed for an autonomous robot 

to function in the real world without any external guide or 

control. 
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 We consider a self-actuating autonomous robot as an 

animal (or organism) without any pre-programmed ability 

(i.e., a priori knowledge) to interact with the physical world. 

The task of this autonomous robot (or animal) is to derive its 

own working principles to interact with the real world with a 

minimal set of assumptions, and see how emotions are 

evolved in this process as the necessary condition to survive 

in the real world, without assuming what emotions are or 

should be. 

OPERATIONAL APPROACH 

 By using this approach of inquiry, we will bypass the 

unavoidable debate on the human perception of what emo-

tions are, what they are used for, whether they are unique to 

humans, whether they exist in animals or robots, and any 

other subjective perception of what emotions are, including 

the debate of the subjective definitions of different emotions. 

In other words, we will use an objective approach to study 

this phenomenon (called emotion) without assuming its func-

tional role in animals, humans or robots. Rather, we will 

study the phenomenon of autonomous control in animals, and 

observe what principles of operation are required to survive 

in the real world. From these operational principles needed 

for survival, we will identify which of these governing prin-

ciples happen to correspond to the entity that people identify 

as “emotion”. 

ROBOTIC EMOTIONS 

 Emotions in autonomous robots have been implemented 

recently in various systems, primarily as a study of autono-

mous behavior augmented by emotional controls [1-3]. Most 

often, the autonomous robots mimic the human emotions as 

an “add-on” to the unemotional cognition by introducing 

emotion as part of the process-control function rather than 

deriving emotional functions or exploring the origins of emo-

tions in self-adaptive behavior. Although comparison be-
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tween the human cortical system and robots were made to 

characterize whether robots have emotions [4], such com-

parison does not address the functional role played by emo-

tions in self-adaptive autonomous control or independent 

agent such as an animal. 

CYBERNETIC APPROACH 

 We will derive a theoretical model of emotional functions 

from the first principles for autonomous control. A cyber-

netic system is an autonomous system that captures the es-

sence of most basic biological and higher cognitive functions 

(including intellectual, emotional and mental functions). The 

derivation of this emotional model is based on capturing the 

minimal set of conditions that are fundamental to the survival 

(and/or appropriate interactions with the environment) of 

such autonomous systems. 

REAL WORLD INTERACTIONS 

 It will be shown that within the framework of autono-

mous control, emotions emerge as natural phenomena in or-

der for autonomous systems (animals or autonomous robots) 

to function appropriately within context in a real world envi-

ronment. This foundation is based on the thesis that autono-

mous systems are independent agents (organisms or robots) 

that rely on an internal representation model of the external 

world to function accordingly. 

ROLE OF CENTRAL NERVOUS SYSTEM 

 The role of the nervous system (either central nervous 

system (CNS) in animals or neural control system in robots) 

is to provide an accurate abstract representation of the exter-

nal environment internally. Most importantly, this internal 

representation is not necessarily an exact replica of the exter-

nal world, but an accurate contextual representation such that 

the autonomous system can respond appropriately under any 

given circumstances for survival and other operating func-

tions. 

 One of the many schemes for capturing this abstract, con-

textual representation of the external environment is creating 

an internal model of the external world by the nervous sys-

tem. 

INTERNAL MODEL OF EXTERNAL WORLD 

 One of the advantages of creating an internal model of the 

external world is that it not only provides a contextual repre-

sentation of the outside world, but also provides the predic-

tion of how its future actions may have on the environment. 

It is this predictive power of the internal model that provides 

for what is known as “cognition” or “higher intelligence”. 

 We will show that emotions, within this framework, cor-

respond to the feedforward and feedback variables of the 

internal model used for assessing the accuracy of the model 

and its actions. Thus, emotions, in this perspective, are not 

necessarily unique to humans or animals, nor are they intro-

spective constructs labeled/constructed by human to explain 

some psychological phenomena. 

 

 

EMOTION-I Model 

 This model is called the “Emotional Model Of the Theo-

retical Interpretations Of Neuroprocessing”, abbreviated by 

the acronym as the “EMOTION” model. This paper focuses 

on the first phase of development of the biological frame-

work for this model: EMOTION-I. It addresses the emer-

gence of the “feel” of sensation for increasing the chance of 

survival as the first step in internal pre-processing of emo-

tions. The subsequent paper [5] will focus on the second 

phase in developing the minimal set of basic emotions for 

this model: EMOTION-II. It addresses the emergence of a 

metric for assessing the accuracy of the internal model. This 

internal model congruency consistency-check is represented 

by “emotion”. 

AUTONOMOUS CONTROL SYSTEMS 

 An autonomous control system is a self-actuating system 

capable of performing sensorimotor functions based on its 

internal controls. Most often, it is capable of decision making 

without external guide or control. Examples of autonomous 

systems are animals and autonomous robots. 

 Biological organisms (animals, in particular) can be con-

sidered as autonomous control systems because they are ca-

pable of performing sensory and motor functions independ-

ent of an external agent. Autonomous robots can also be con-

sidered as autonomous systems since their sensorimotor 

functions are controlled by their internal processors without 

relying on any external control. 

SOCIAL SYSTEMS 

 Self-actuating autonomous systems are self-contained 

entities that operate independently. Although social systems 

of these individuals may be dependent on each other for so-

cial interdependency (such as a school of fish, an army of 

ants or a swamp of robots), the analysis of social interdepen-

dency is beyond the scope of this paper. 

COMPONENTS OF AN AUTONOMOUS SYSTEM 

 Autonomous systems are self-contained entities that are 

composed of systems of many interacting parts, including 

sensory units, motor units and processing/controlling units. 

Together, they form a system exhibited as an animal (in bio-

logical systems) or a robot (in robotic systems). 

SURVIVABILITY AND APPROPRIATENESS OF AC-

TIONS 

 The task of the system is to integrate the sensory inputs 

by the internal processing units to produce output actions that 

are appropriate in the environment it lives in. The appropri-

ateness of these output actions is determined by the accuracy 

of the internal model that produces actions for the organism 

to survive in its environment. 

REFLEX AS A SIMPLE AUTONOMOUS SYSTEM 

 One of the simplest autonomous systems is the reflex 

system, which is endowed with sensory input, motor output  
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and its processing elements that associate sensory input with 

motor output. The sensorimotor function is the minimal set of 

functions to be considered as autonomous system. 

STIMULUS-RESPONSE FUNCTON 

 Mathematically, the sensory stimulus is considered as the 

input, x , which often encodes the intensity of the stimulus. 

The motor response is considered as the output, y , which 

often encodes the magnitude of the response. This sensori-

motor function is sometimes called “stimulus-response func-

tion” (S-R function) in physiology. 

INPUT/OUTPUT (I/O) FUNCTION 

 This stimulus-response function also corresponds to the 

mathematical input/output (I/O) function, f : 

y = f (x)             (1) 

 The input, x(t) , and output, y(t) , are often functions of 

time, t , i.e., time-varying functions; thus, the I/O function, 

f , becomes: 

y(t) = f x(t)( )             (2) 

 Although, in general, the input and output can take on any 

real number ( x, y ), it is advantageous to simplify the 

subsequent derivation using the range of x  and y  that is 

positive (i.e., x 0 and y 0), since negative values can 

reverse the direction (sign) of the computed I/O function un-

intentionally. 

 Therefore, the task of an animal is to produce an appro-

priate I/O function such that the resulting action (motor out-

put) will be an appropriate response in a given the environ-

ment (encoded by the sensory inputs). 

REFLEX ACTION 

 Reflex is one of the simplest (most basic) sets of sensori-

motor functions found in animals. The reflex-action found in 

animals is that, given a stimulus of sensory input, the animal 

is able to respond with a motor output independently without 

any external control. The response in a reflex-action is usu-

ally stereotypical for a given stimulus. It usually provides a 

physiologically appropriate response for the given stimulus 

that enables the animal to respond rapidly without needing 

higher-level processing. This usually increases the surviv-

ability of an animal by decreasing its response time. 

I/O MAPPING 

 Mathematically, reflex is essentially an I/O mapping 

function that maps the input into the output space. This map-

ping function (Eq. 1) is usually a simple function for reflexes. 

It can be a linear function or a nonlinear function depending 

on the specific reflex. 

 Most of the physiological reflexes are nonlinear functions 

(often a sigmoidal function), in which there is a linear portion 

in the middle called the “physiological range”, below which 

the sensory signal is too small to be sensitive to respond to, 

and above which the response is maxed out due to physical 

limitations of the response system. 

 The response in the physiological range is often a linear 

function, since it approximates the linear response range. 

Most reflexes operate at this linear region, although the 

physiological range of some reflexes may be exponential or 

logarithmic instead of linear when signal compression is re-

quired for efficient scaling. Pupil constriction reflex is an 

example. 

PHYSIOLOGICAL RANGE 

 For a simple linear reflex system, the I/O function is 

given by: 

y(t) = a x(t) + b             (3) 

where a  and b are constants. 

 For a nonlinear reflex system, such as a sigmoidal re-

sponse, the I/O function can be represented by: 

y(t) =
1

1+ e a x(t )
            (4) 

with an approximately linear response at the physiological 

range. 

LOOK-UP TABLE 

 Because these I/O functions are rather simple, which map 

the input space into the output space by some straightforward 

mapping functions (or look-up tables), these basic reflexes 

are usually not considered as representing any “higher-

functions” such as emotion, cognition, perception or intelli-

gence. Higher-level processing often requires a much more 

complex I/O function, and it is often dependent on additional 

parameters and conditions. 

HIGHER-LEVEL MAPPING 

 We will derive the I/O function that leads to the emergence 

of emotions from the additional parameters and conditions that 

are beyond this basic set of simplistic reflex functions. Thus, 

emotions and higher-cognition are an expansion of this basic 

reflex I/O function that maps the input space into the output 

space depending on other additional factors. The higher-level 

processing/controlling functions, such as perception, cognition, 

emotion and intellectual functions, are the additional attributes 

of the system that allow them to perform above and beyond the 

basic sensorimotor reflex functions. 

PROBABILISTIC STOCHASTIC I/O FUNCTIONS 

 The I/O function for a reflex can also be either determi-

nistic or non-deterministic (i.e., probabilistic). If it is deter-

ministic, the exact response can be determined by the I/O 

function, such as Eqs. 3 and 4. If the reflex is non-

deterministic, Eq. 3 can be re-represented by a probabilistic 

function: 

y(t) = Prob a x(t) + b( )            (5) 

which takes on the normalized value of [0,1]. 

PHYSIOLOGICAL NOISE 

 In the real world, any physical system is inherent with 

noise, which provides the basis for a probabilistic system. Eq. 
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5 can be implemented equivalently by an addition of random 

noise function: 

y(t) = a x(t) + b+Noise( )           (6) 

where Noise( )  can be any real valued random number 

drawn from any random distribution with a variance of  

according to the implementation details. Similarly, the non-

deterministic form of Eq. 4 can be represented by: 

y(t) = Prob
1

1+ e a x(t )

 

 
 

 

 
            (7) 

or implemented by an addition of random noise function: 

y(t) =
1

1+ e a x(t )
+Noise( )           (8) 

SOURCE OF NOISE 

 The source of noise may come from the sensory signal, the 

transfer function or the output element. For simplicity, without 

loss of generality, since most noises are additive, we will col-

lapse these noise sources into a single noise term in the output 

element, y(t) , in Eqs. 6 and 8. For non-additive noise, a sepa-

rate noise term can be added to each of the sensory input func-

tion, transfer function, and motor output function. 

EXPLORATION IN LEARNING 

 The advantage of using a probabilistic function instead of 

a deterministic function is that it allows for variations in out-

put response for the same stimulus. This variability is impor-

tant in both learning and evolution, which require a trial-and-

error approach to explore the unknown parameter space. 

 The probabilistic response essentially provides the varia-

tions (or randomizations) needed for exploration in learning 

and in evolution. If the response is too deterministic, no 

variations will result, and the animal will always produce the 

same response as in a typical reflex, which is always the 

same for a given stimulus intensity. 

SELF-EXPLORATION 

 Self-exploratory adaptation/learning and evolution may 

not occur without variability. Thus, probabilistic response 

function is essential in self-adaptive systems whereby the 

variability in output can be used as a feedback signal for 

evaluating the adaptability of the system in response to dif-

ferent exploratory actions. In other words, it enables the sys-

tem to explore the parameter space autonomously, similar to 

applying the Monte Carlo simulation method but applying in 

the real world in this case. 

MODIFICATION OF REFLEX ACTIONS 

 Advanced behaviors (behavioral responses) often require 

atypical responses instead of stereotypical responses. This 

often requires modification of the response found in learning 

and in evolution. Modification of the response implies chang-

ing the I/O function. 

SENSITIZATION 

 Reflex can be modified to adapt to the environment, such 

as increasing or decreasing the response amplitude. When the 

response is increased over time (over repeated trials), it is 

called “sensitization” in physiology. When a reflex is sensi-

tized to a stimulus, it leads to a larger response amplitude. 

This is essentially an amplification of the response by in-

creasing the scale of the I/O function. 

 That is, Eq. 1 can be modified by a scaling factor, c , (or 

gain) such that the output becomes: 

y = c f (x)           (9a) 

where c > 1 for sensitization. 

HABITUATION 

 When the response is decreased over time (over repeated 

trials), it is called “habituation;” the reflex is habituated to 

the stimulus, i.e., it becomes less sensitive. When the reflex 

is habituated to the stimulus, it leads to a smaller response 

amplitude. Thus, habituation is sometimes called “desensiti-

zation” in physiology. In other words, the output becomes 

smaller: 

y = c f (x)           (9b) 

where c < 1 for habituation. 

GAIN CONTROL 

 The increase or decrease in the scale factor, c , can also 

be considered as changing the “gain” of a control system 

such that the output is amplified or reduced for a given input. 

Thus, this physiological adaptation is essentially a gain con-

trol for the system to respond. In other words, the I/O func-

tion of the reflex can be altered rather than fixed. Thus, the 

system is an adaptive system in which the reflex can be al-

tered by either sensitization or habituation. 

ADAPTATION – SINGLE-STIMULUS LEARNING 

 Sensitization and habituation form the class of physio-

logical learning called “adaptation”. It is the simplest form of 

learning in which the response output of the reflex is either 

increased or decreased when the stimulus is repeated over 

many trials. Whether the response will increase (sensitize) or 

decrease (desensitize) is dependent on the context of the 

stimulus. 

 Note that adaptation is a type of learning that requires 

only a single stimulus. We will show that other types of 

learning will require two or three events to occur. 

CONDITIONS FOR ADAPTATION 

 When the stimulus is potential harmful (noxious) to an 

animal, and when this stimulus is repeated over time, the 

adaptation often results in sensitization. When the stimulus is 

potential harmless (non-noxious) to an animal, and when this 

stimulus is repeated over time, the adaptation often results in 

desensitization or habituation. 

 Noxious stimulus is often derived from a painful sensory 

source, when pain serves as an alarm signal for an animal to 

respond to, and become sensitized to that signal. (Although 

we have not defined the emotional quantity called pain in our 

derivation so far, we include it in our discussion here to con-

vey the contextual meaning of a sensation, i.e., how this sen-
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sory signal could be used in the I/O stimulus-response func-

tion. We will derive the emotion pain in the discussion later.) 

PHYSIOLOGICAL APPROPRIATENESS AND CON-

TEXTUAL MEANING 

 These changes in response amplitude are physiologically 

appropriate. Sensitization to the noxious stimulus allows the 

animal to respond more readily to prevent potential harm. In 

other words, this simple amplification of the reflex-response 

allows the animal to predict the future better by making the 

implicit assumption that amplifying the stimulus-response 

I/O function could prevent future harm. Although this im-

plicit assumption may not always apply in every unforeseen 

situation, it is a pragmatic solution in most physiological cir-

cumstances. 

 Conversely, when the repeated stimulus is potentially 

harmless (non-noxious), the animal would habituate to the 

stimulus. This is also physiologically appropriate because 

when the stimulus is non-noxious, the animal does not need 

to respond as intensely to the same stimulus to save energy. 

PHYSIOLOGICAL ADVANTAGES 

 There are many physiological advantages of habituation 

to the non-noxious stimuli. It provides a minimization of the 

energy-cost in producing the reflex-action. When an animal 

is confronted with multiple stimuli that require coordination, 

competition and interference of different stimulus-responses 

could occur in a complex system. Reducing the response by 

habituation can reduce the chance of interference of reflex-

actions when the animal responds to multiple stimuli simul-

taneously. 

GILL-WITHDRAWAL REFLEX AS AN EXAMPLE 

 The gill-withdrawal reflex studied in Aplysia is a classic 

example of the habituation (desensitization) of reflex in re-

sponse to repeated non-noxious stimuli [6-8]. Intuitively, this 

adaptation corresponds to the interpretation that since the sea 

slug is constantly bombarded with stimuli from sea waves, 

those harmless stimuli can be ignored if they do not represent 

potential threats to the animal. 

FEEDFORWARD CONTROL 

 In order to evaluate the “appropriateness” (or “survivabil-

ity”) of the above self-adaptive responses, feedback and/or 

feedforward control are often needed. The implicit assump-

tion is that amplifying or reducing (sensitizing or habituating) 

the reflex-response to increase the survivability is a feedfor-

ward prediction. In other words, it does not rely on the feed-

back of the response to correct for its action. It merely pro-

duces an output action, which “projects” that the outcomes 

would be appropriate with an implicit assumption that it will, 

regardless of whether it will or not. 

FEEDBACK CONTROL 

 In contrast, a feedback system takes its current output 

response (and other environmental factors) into account as 

part of the input to evaluate the next response action, whereas 

a feedforward system does not. So although a feedback con-

trol system may seem more appropriate in self-adaptation, a 

feedforward control system does have its usefulness in 

autonomous systems. It provides fast responses without need-

ing the extra computational processing time overhead needed 

in a feedback system. Furthermore, a feedback control sys-

tem can be susceptible to instability, such as oscillations, 

when the feedback signal is time-delayed. Thus, both feed-

back and feedforward systems do have their own advantages 

and disadvantages; they serve different purposes in the de-

sign and evolution of an autonomous self-actuating, self-

adaptive system. 

CONTEXTUAL “FEEL” IN SENSATION 

 The alteration of reflex-action by sensitization or habitua-

tion is based on the implicit assumption that the animal is 

able to project (predict) whether the stimulus is potentially 

noxious or not. Although the animal may not be considered 

as having any high-level conscious perception cognitively at 

this stage, the prediction of potential harm is crucial to the 

emergence of the contextual “feel” in sensation (i.e., the 

emotional content of a sensation – whether it feels “pleasant” 

or not). 

EMOTIONAL “QUALITY” IN SENSATION 

 In other words, encoding merely the intensity of the 

stimulus in the input-function, x(t) , is not sufficient to rec-

ognize whether the stimulus is potentially harmful or harm-

less, which in turn translated into whether it is pleasant or not 

emotionally. The abstraction of the stimulus “quantity” into 

stimulus “quality” is the first step in the emergence of emo-

tional “feel” in sensation (sensory input). 

PLEASANT/UNPLEASANT SENSATION 

 Thus, the abstraction of the stimulus in terms of potential 

harm (harmfulness) requires the emergence of the contextual 

feeling in sensation. Although cognition may not exist at this 

low level of processing, nonetheless, the sensory stimulus is 

no longer interpreted in isolation by the system. Rather, it is 

interpreted based on the context in which the sensation is 

received relative to the projected/predicted survivability of 

the animal. 

EMOTIONAL CONTEXT AND SURVIVABILITY 

 Signal is hypothetically interpreted as unpleasant if it is 

potentially noxious (or harmful) to the integrity/survivability 

of the animal. The most unpleasant form of sensation would 

become pain. Conversely, sensation is interpreted as pleasant 

if it is preserving the survivability of the animal. 

 This pleasantness of sensation becomes one of the most 

elemental forms of “contextual” sensation in the emotional 

context. The “context” is the survivability of the animal, the 

stimuli and environment in which it is interacting with. 

PHYSICAL SENSATION AND EMOTIONAL SENSA-

TION 

 In higher animals, such as mammals, emotional sensation 

is interpreted and processed at the thalamic level [9]. On the 

other hand, physical sensation that encodes the stimulus in-

tensity (stimulus quantity) is encoded at the sensory receptor-

cell level. 
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PHYSICAL PAIN (HURT) AND EMOTIONAL PAIN 

(SUFFERING) 

 Pain is a good example to describe the distinction be-

tween emotional sensation and physical sensation. There are 

two distinct components of pain as perceived in higher-

animals – the emotional pain called “suffering” and the 

physical pain called “hurt” in sensation. 

 Hurt is the physical damage to the tissue, i.e., the stimulus 

intensity encoded by action potentials in the first-order neu-

rons (pain fibers). Suffering is the emotional context in which 

the hurt is felt, i.e., how bad it feels – the quality of the sensa-

tion rather than the quantity of the sensation. The emotional 

component of sensation is processed by the thalamic nuclei. 

NEUROPHARMACOLOGICAL DISSOCIATION OF 

PHYSICAL PAIN FROM EMOTIONAL PAIN 

 Physiologically, the emotional aspect and the physical 

aspect of the same nociception (pain sensation) can be sepa-

rated by dissociative anesthetics, such as ketamine and PCP 

(phencyclidine), in which physical hurt can be felt without 

the emotional suffering in higher-animals. In other words, 

when an animal is under dissociative anesthetics, it can feel 

the physical pain (hurt sensation) but that hurt does not 

bother it emotionally, and is totally tolerable without feeling 

any suffering emotionally associated with that hurt. 

 Thus, physical pain and emotional pain are two distinct 

components of the same sensation for pain. The emotional 

component can be separated from the physical component 

physiologically by drugs, which demonstrates the existence 

of the emotional context of a sensation (sensory stimulus) in 

animals. This distinction between hurt and suffering (physi-

cal and emotional pain) can be separated physiologically and 

neurologically; thus suffering is not merely a psychological 

construct or subjective perception. 

FEEDFORWARD MODEL PREDICTION 

 The emergence of contextual sensation is essential for the 

survival of the animal, which can predict the potential out-

comes of the sensory stimulus with respect to the animal’s 

survivability. This context takes into the account of environ-

ment and integrity (survivability) of the animal involved – a 

feedback control. It also presumes the ability to predict (or at 

least project) the outcomes so that it can produce the physio-

logically appropriate output – a feedforward control. 

CONTEXTUAL SENSATION 

 An animal can be considered as forming a conceptual 

model of the world (or the environment in which it lives) and 

itself to produce this prediction (projection) accurately. This 

also implies forming an implicit “model” of the external 

world and a “model” of its own internal world where the sen-

sorimotor processing is done. 

IMPLICIT MODEL 

 Although this contextual model may not be formed ex-

plicitly, nonetheless, it can be considered as having an im-

plicit conceptual framework to model a rudimentary model of 

the world around it. This model may not be a concrete model 

or an explicit model, but a conceptual model such that the 

behavior (motor output) is produced appropriately for a given 

sensory input in the physiological context, even though the 

animal may not even be considered as having any “con-

cepts”, “perception” or “model” of its own at this elementary 

stage of development because all these responses are merely 

reflexive responses without any higher-level processing or 

cognition. 

MECHANISTIC STEREOTYPICAL RESPONSES 

 It is important to note that these reflexive actions are 

mechanistic responses (because they are very stereotypical) 

rather than cognitive emotional responses with higher-level 

processing or recognition at the awareness level. Yet, this 

implicit representation of contextual information provides the 

conceptual framework for the derivation of emotional re-

sponse from first principles in relation to the survivability of 

an animal or any autonomous being. 

ABSTRACTING SIGNIFICANCE OF SENSORY SIG-

NALS BY CONTEXT 

 The above analysis of the emergence of “emotional feel” 

in sensation forms the basis for abstraction of sensory inputs 

by context. In other words, sensory inputs are no longer 

merely encodings of the stimuli intensity, which represent the 

physical sensation. Rather, sensory inputs are processed in 

such a way that it takes context into account to form an ab-

straction of the “significance” of the stimuli. 

 The significance of the sensory inputs is evaluated based 

on the context in which the inputs are received and inter-

preted. In the above example, the significance of the sensory 

inputs is evaluated based on the survivability of the animal. 

Thus, the emotional feel takes on the significance of that sen-

sation for instructing the animal how to respond appropri-

ately if it were to increase its likelihood of survival in its en-

vironment. 

OPERATIONAL DEFINITION OF EMOTIONAL SEN-

SATION 

 The above analysis provides the theoretical basis for the 

derivation of elementary emotions in sensation called “emo-

tional feel” based on first principles rather than retrospection 

in psychology or fact-of-evolution in biology. Although these 

responses may be hardwired with some modifiability to some 

extent, they are still simple reflexes without any complex 

processing or cognition. They are merely simple reflexive 

responses that are governed by simple equations represented 

by the I/O functions similar to Eqs. 1-9. 

 Note that the emotional components in these I/O func-

tions are implicit rather than explicitly represented. The im-

plicit representation is the context in which it takes on in al-

tering the response. This re-representation of the stimulus-

response can be considered as an elementary (first-level) 

emotional response as far as sensation is concerned. It pro-

vides the qualitative emotional feel even though the animal 

does not necessarily have any explicit emotions with respect 

to these reflexes. Based on this framework, we will explore 

the neural mechanisms for establishing this contextual sensa-

tion for an autonomous system. 



34    The Open Cybernetics and Systemics Journal, 2007, Volume 1 David Tam 

CONDITIONED REFLEX 

 It is well known that the stimulus of a reflex can also be 

“switched” to a different one other than the original stimulus. 

In such case, the reflex is called “conditioned reflex” because 

the response is altered by a conditioned stimulus. 

 For example, the eye-blink reflex is one of the classical 

experiments in which the air-puff stimulus that induces the 

eye-blink response can be switched over to a tone if a tone 

stimulus is paired with the air-puff stimulus [10]. A rabbit 

can learn (or be conditioned) to blink the eyes when the tone 

is presented instead of an air-puff to the eye. 

CLASSICAL CONDITIONING – TWO-STIMULI AS-

SOCIATIVE LEARNING 

 Classical (Pavlovian) conditioning (a well-known psycho-

logical phenomenon) is a mechanism in which two stimuli 

are paired to establish the association between the stimuli and 

response that were not established before. It requires two 

stimuli instead of one stimulus as in adaptation discussed 

earlier. The stimulus-response function of the original pair 

(the innate unconditioned stimulus (US) and unconditioned 

response (UR) pair) is transferred to the novel pair (condi-

tioned stimulus (CS) and conditioned response (CR) pair). 

 Note that this type of learning requires two stimuli (US 

and CS) to form the association. The end-result is that the 

original I/O function between US and UR is changed such 

that the new I/O function is established between CS and CR. 

TRANSFER OF CONDITIONING STIMULUS 

 This transfer is established by pairing the presentation of 

the unconditioned stimulus with the conditioned stimulus. 

Thus, the difference between self-adaptation and condition-

ing is that adaptation requires only one stimulus whereas 

conditioning requires two stimuli for the association. In other 

words, the animal is able to establish new association be-

tween the novel stimulus and response. 

ASSOCIATIVE LEARNING 

 This type of learning is often called “associative learning” 

since it establishes association between stimuli and re-

sponses. In the above classical conditioned eye-blink reflex, 

the US is the air-puff and the CS is the tone. They are paired 

together to establish the subsequent association between CS 

and CR. That is, presentation of tone will elicit an eye-blink 

response after repeated pairing whereas such association did 

not exist prior to the conditioning experiment (i.e., presenta-

tion of tone would not elicit an eye-blink prior to the training 

phase). 

TRANSFER OF ASSOCIATION FROM INNATE 

STIMULUS TO A NOVEL STIMULUS 

 Fig. (1) illustrates the transfer of US to CS to establish the 

CS-CR stimulus-response function using a block diagram, 

and the corresponding simplified neural circuitry. In the neu-

ral circuitry, the synaptic efficacy (connection weight 

strength) for the CS-CR pair is zero before training whereas 

the synaptic weight for CS-CR pair is increased subsequent 

to training (repeated associative conditioning). The strength-

ening of the connection weight is induced by the activation of 

the US-UR pair, thus transferring the original US-UR stimu-

lus-response function to the novel CS-CR stimulus-response 

function. 

CS

US

CR

UR
w=1

w’

 

Fig. (1). Schematic diagram of a simplified neural circuitry for 

transferring the unconditioned stimulus (US) to conditioned stimu-

lus (CS) via the modification of connection weight,  w , at the CS-

CR synapse induced by the US-UR synapse (fixed connection 
weight, w = 1) 

MODIFIABLE REFLEX 

 This illustrates that reflexes are modifiable rather than 

fixed or strictly hardwired. The original (innate) stimulus-

response I/O function can be altered such that the original 

stimulus does not need to be presented to elicit a response. 

This transfer of stimulus from the original innate form to a 

novel stimulus can be very different in quality (i.e., from air 

pressure to sound frequency in the above example). The 

transferred stimulus can also be different in energy form, e.g. 

from air-puff to light (from mechanical energy to photo en-

ergy) if the conditioning is paired between air-puff and light-

onset stimuli, in which the animal will subsequently blink 

whenever the light is turned on. 

POSITIVE AND NEGATIVE REINFORCEMENT 

 Central to the neural mechanism of conditioning is the 

reinforcement signal in which the response is reinforced. 

There are two major classes of reinforcement – positive rein-

forcement and negative reinforcement. 

 Reward is considered as positive reinforcement whereas 

punishment is considered as negative reinforcement. Positive 

reinforcement often leads to affiliative (seeking/attractive) 

behaviors whereas negative reinforcement often leads to 

avoidance (repulsive) behaviors. 

REINFORCEMENT LEARNING 

 Because of these characteristic responses, conditioning 

paradigm is often called behavioral shaping. The end-goal to 

be shaped is either seeking behavior (for positive reinforce-

ment) or avoidance behavior (for negative reinforcement). In 

either case, the neural mechanism in establishing such stimu-

lus-response function is associative learning (or condition-

ing). Thus, this type of reinforced associative learning is 

called “reinforcement learning” in neural network commu-

nity whereas it is called “conditioning” in psychology. 

REINFORCER 

 The transfer of US to CS stimuli to the CS-CR stimulus-

response function in the classical conditioning paradigm is 

shaped by the reinforcement signal called the “reinforcer”. 
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Pairing with a positive reinforcer (reward) tends to promote 

affiliation whereas pairing with negative reinforcer (punish-

ment) tends to promote avoidance. 

GOAL-DIRECTED LEARNING 

 Reinforcement learning requires a reinforcer to establish 

the goal-directed behavior. The reinforcer is often the US, 

but the reinforcer can be derived from an alternate source too, 

as explained below. The direction of the end-goal is depend-

ent on whether the reinforcer is a positive or negative rein-

forcement. The behavioral outcome of the animal (or 

autonomous being) in this conditioning paradigm can be di-

rected toward seeking-behavior or avoidance-behavior. Thus, 

this type of reinforcement learning is sometimes called “goal-

directed learning” [11-13]. 

 Although many other neural network models were im-

plemented with conditioning as the learning paradigm to 

solve problems (such as [14]), those models often are not 

addressing or solving problems related to emotions; whereas 

the model introduced in this paper focuses on the basic prin-

ciples of operation for establishing emotional context in sen-

sation. 

NEURAL NETWORK IMPLEMENTATION 

 Theoretical foundation of neural network has been estab-

lished extensively to explain many high-level cognitive func-

tions, such as learning and pattern recognition [15]. In brief, 

the brain of an animal is essentially composed of many net-

works of neurons. By definition, neural network is essentially 

a set of interconnecting neurons (neural elements). The func-

tion of a neural net is to process information collectively by 

its neurons. 

NETWORK CHARACTERISTICS 

 One of the characteristics of a neural net is that the over-

all I/O function processed by a neural net is performed by the 

collective properties of many subsets of neurons rather than 

strictly by each individual neuron. Although each neuron 

does have its individual I/O function to be processed, the I/O 

function of a network is often very different from the indi-

vidual I/O function. In fact, the resulting properties exhibited 

by a neural network’s processing may not be found in its 

component (i.e., the neurons). 

EMERGENT PROPERTY 

 This property exhibited by a neural network that cannot 

be found in its component neurons is often called “emergent 

property”. Examples of emergent properties of neural net-

works are learning and pattern recognition. Since most of the 

neural I/O functions are nonlinear, the overall I/O function of 

the network cannot be described by the linear sum of the I/O 

function of each neuron; thus this allows the emergence of 

processing properties from the network that are not found in 

individual neurons. 

MANY-TO-MANY MAPPING IN NEURONS 

 For neurons in a network with multiple connections, the 

I/O function of Eq. 9 is not merely a one-to-one mapping, but 

a many-to-many mapping mathematically. In other words, 

the mapping is not merely scalar, but vector. This many-to-

many mapping for a network can be represented by a vector 

or matrix: 

  

 

Y = c f (
 

X )           (10) 

CONNECTION WEIGHTS 

 One of the characteristics of neural networks is that the 

neurons are interconnected with a connection weight, w , 

such that the individual inputs are scaled by the connection 

weight. Furthermore, the connection weight, w , is modifi-

able such that it is adaptive over time, governed by a set of 

learning rules. 

SYNAPTIC STRENGTH 

 Biologically, the connection weights correspond to the 

synaptic strengths of neurons. The synaptic strength can be 

positive in excitatory synapse, and negative in inhibitory 

synapse, and zero for a non-functioning synapse (or no con-

nection between two neurons). The synaptic strength for bio-

logical neurons can also be modified, which is called synap-

tic plasticity in neurobiology. 

MULTIPLE-GAIN CONTROL SYSTEM 

 This connection weight can also be considered as the 

“gain” function in feedback control systems. Thus, the con-

nection weight is essentially the gain in an adaptive control 

system even though each input has its individual gain func-

tion rather than a single gain function in a typical adaptive 

feedback control system. This multiple-gain adaptive control 

system provides the essential mechanism for learning in neu-

ral network. 

NEURAL NETWORK 

 The generalized Eq. 10 can be implemented as a function 

of time, t , specifically by including the connection weight 

gain matrix, w(t) , as follows: 

  

 

Y (t) = f
 

W (t),
 

X (t)( )          (11) 

or 

y j (t) = f wij (t), xi (t)( )          (12) 

where xi  represents the i -th
 input of the neuron, y j  repre-

sents the j -th
 output of the neuron, and wij (t)  the connection 

weight between i -th
 input and j -th

 output of the neuron (see 

also Fig. (2)). 

WEIGHTED-SUM 

 In most neural networks, a weighted-sum function is used 

such that the output of a neuron is given by: 

y j (t) = f wij (t)xi (t)
i=1

n 

 

 
 

 

 

 
 
         (13) 

for a total of n  inputs. 

 Thus, the output of a neuron is the weighted-sum of its 

input, adjusted by the individual gain, wij  (or connection 

weight between the i -th
 input and j -th

 output). 
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THRESHOLDING FUNCTION 

 In most neural networks, the nonlinear I/O function, f ( ) , 
is a thresholding function, either implemented as a hard-

threshold (step-function) or a soft-threshold (sigmoidal func-

tion). For hard-threshold, a step function is often used: 

y j (t) =
ymax if wij (t)xi (t)( )

i=1

n

ymin otherwise                   

 

 
 

 
 

       (14) 

where  denotes the threshold, for a neuron with n  inputs, 

and ymax  and ymin  are the corresponding high and low val-

ues of output, respectively. For a soft-threshold, a sigmoidal 

function is often used: 

y j (t) =
1

1+ e
wij (t )xi (t )( )

i=1

n          (15) 

 The use of the sigmoidal function allows the above I/O 

function differentiable in the minimization process mathe-

matically. 

 These nonlinear functions essentially provide the thresh-

old for activating the output given the weighted-sum of the 

inputs. In other words, individual gains are applied to each of 

the inputs, which are then summed together to produce the 

output set by the threshold. 

MULTI-GAIN ADAPTIVE CONTROL SYSTEM 

 In order for a control system to be adaptive, the variable 

gains can be applied instead of using fixed gains. In other 

words, the connection weights can be adjustable. Further-

more, the connection weights are essentially the individual 

gain applied to each of the input of the system such that the 

input signals are biased (amplified or attenuated) by the gain 

or the connection weight. The difference is that there is indi-

vidual gain for each of the input instead of the conventional 

single gain signal that applies to the entire system in most 

conventional control systems. 

MODIFIABLE MULTI-GAIN SYSTEM AND LEARN-

ING 

 Since the connection weights are modifiable (adaptable 

gains), this phenomenon of modifiable synaptic efficacy in 

biological neurons forms the biological substrate for learning 

and memory [16]. 

 The rules for modification of these connection weights 

become the “learning rules” in neural networks, since by ap-

plying these rules to modify the connection weights, the neu-

ral net system as a whole can exhibit the emergent property 

of “learned behavior”. 

HEBBIAN ASSOCIATIVE LEARNING RULE 

 There are many learning rules commonly used in neural 

network [15], such as associative learning rule (Hebbian 

learning rule) [17], back-propagation learning rule [18], etc. 

The most relevant learning rule in this context is the associa-

tive Hebbian learning rule. Not only does this Hebbian rule 

form auto-association naturally, but also the association 

mechanism is most biologically plausible. 

 Hebb [17] in 1949 proposed that if the pre-synaptic and 

post-synaptic neurons are activated together, then the synap-

tic strength could be changed. This is essentially the associa-

tive learning rule where the input and output are correlated 

together to change the connection weight. Hebbian associa-

tive learning rule has been applied in numerous neural net-

work systems and in neurobiology. We will summarize the 

Hebbian learning rule briefly below. 

 The Hebbian associative learning rule is given by: 

wij (t) = l y j (t) xi (t)      i, j       (16a) 

and 

 l = l t         (16b) 

where wij  is the incremental weight change at time t , l  is 

the learning coefficient (corresponding to the scale-factor 

parameter for incremental weight change), and  l is the learn-

ing-rate. 

 The above equation satisfies the Hebbian rule because the 

connection weight changes only when the input, xi (t) , and 

output, y j (t) , are activated (i.e., non-zero). If either one is 

zero (i.e., if either input or output is not activated), no weight 

change occurs. 

 If the above functions are expressed in discrete time-step, 

t , the weight at the next time step, t + t , is given by: 

wij (t + t) = wij (t) + wij (t)      i, j        (17) 

 Alternatively, in engineering perspective, the connection 

weights essentially provide the adjustable/adaptable gain 

changes needed for associative learning such that it correlates 

the specific input with the corresponding output by the biases 

provided by the gains. Thus, Eqs. 14 - 17 form the set of 

equations for Hebbian associative learning for individual 

neurons. 

NETWORK LAYERS 

 Neurons can be interconnected together to form a net-

work. Without loss of generality, a network can be consid-

ered as neurons forming layers, from input layers to output 

layers via some intermediate layers. Thus, the description of 

the I/O function of a generic neuron at any given k -th
 layer is 

given by: 

  

 

Y k (t) = f
 

W k (t)
 

X k (t)( )        (18a) 

or 

y j
k (t) = f wij

k (t)xi
k (t)

i=1

n 

 

 
 

 

 

 
 
       (18b) 

(see Fig. (2)), and the associative weight-change learning rule 

is given by: 

wij
k (t) = l y j

k (t) xi
k (t)      i, j,k       (19a) 

wij
k (t + t) = wij

k (t) + wij
k (t)      i, j,k      (19b) 
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 Thus, Eqs. 18 - 19 form the set of equations for Hebbian 

associative learning for individual neurons at the k -th
 layer in 

a network. 

 Note that the above equations specify the I/O function of 

a neuron at the k -th
 layer from its i  -th

 input to its j  -th
 output 

only (without explicitly specifying which layer the input 

comes from or which layer the output goes to). Different 

connectivity will provide different network architecture. 

 

Fig. (2). Schematic diagram showing the neural input and output at 
the k -th

 layer. 

NETWORK ARCHITECTURE 

 In general, the most extensive network is a fully con-

nected network with all-to-all connections. Alternatively, a 

network can form layers, with either feedforward connections 

or feedback connections or both. Furthermore, connections 

can form layers not just to the adjacent layer, but also bypass 

the adjacent layers. Thus, different network architecture ex-

ists that would provide different properties of processing. In 

this paper, we provide a generalized theoretical foundation 

for derivation of emotional context without restricting the 

network architecture to any specific type. 

CONNECTIONS BETWEEN LAYERS 

 Taking the specific connectivity into account, we will use 

the superscript notation of mk  to denote the connection from 

m  -th
 to k  -th

 layer, and kn  to denote the connection from k  -

th
 to n  -th

 layer. The description of I/O function of a neuron at 

the k -th
 layer connecting from m  -th

 layer to n  -th
 layer is 

given by: 

  

 

Y kn (t) = f
 

W mk (t)
 

X mk (t)( )       (20a) 

or expanding it: 

y j
kn (t) = f wij

mk (t)xi
mk (t)

i

 

 

 

 

 

 

 

 
      (20b) 

(see also Fig. (3)) and the corresponding associative weight-

change learning rule is given by: 

wij
mk (t) = l y j

kn (t) xi
mk (t)      i, j,k,m,n      (21a) 

wij
mk (t + t) = wij

mk (t) + wij
mk (t)      i, j,k,m,n     (21b) 

 Note that since input and output are relative as far as any 

neuron is concerned, so the input from the m  -th
 to k  -th

 layer 

for a neuron at the k  -th
 layer is the output from m  -th

 to k  -th
 

layer for a neuron at the m  -th
 layer (see also Fig. (3)): 

xi
mk (t) = y j

mk (t) mk pair         (22) 

 

Fig. (3). Schematic diagram showing the network connectivity at 
the k -th

 layer, connecting from the m  -th
 layer to the n  -th

 layer. 

NORMALIZATION OF CONNECTION WEIGHTS 

 Since the connection weights can increase indefinitely 

with each incremental time, t , normalization of these 

weights can resolve this dilemma. One of the normalization 

schemes is given by: 

 w ij
k (t) =

wij
k (t)

wij
k (t)

ijk

     i, j,k         (23) 

where  w ij
k (t)  is the normalized weight to be substituted in 

the above equations. (For simplicity, and without loss of gen-

erality, we will use the notation for neurons at the k -th
 layer 

without specifying the notation between layers from here on.) 

CROSS-CORRELATION FUNCTION AND ASSOCIA-

TIVE HEBBIAN LEARNING 

 The associative learning rule of Eq. 19 or 21, provides a 

mechanism for correlating the input with the output. In fact, 

with a time-delayed network architecture, it can be proved 

that a time-delayed associative Hebbian learning network 

essentially performs a mathematical cross-correlation func-

tion computation between input and output streams [19, 20]. 

 Given that the significance of associative learning is per-

forming a cross-correlation function, associative learning can 

be interpreted as correlating the sensory inputs with its own 

output actions to establish some significance (contextual 

meaning) of the input-output pairs. When multiple inputs and 

multiple outputs are included in this cross-correlation with a 

nonlinear, multi-layered neural network architecture, the 

emergent I/O relationship of the network can become contex-

tual relative to the environmental context, i.e., sensory input 

with respect to the system’s output. 

ASSOCIATION BY CROSS-CORRELATION 

 The exact correlated context (extracted or abstracted by 

the network) depends very much on the neural net architec-

ture and interconnectivity, such as feedback or feedback net-

works, which we will discuss further later. We will continue 

our discussion with how this mechanism for association (or 

correlation) can be used to guide (or shape) the behavior, i.e., 

reinforce the animal (or autonomous robot) in such a way 
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that the system will either seek or avoid the associated stim-

uli with its actions. 

 Because association between the input and output alone 

does not necessarily provide the clue needed for behavioral 

shaping of either seeking-behavior or avoidance-behavior, 

additional stimulus (input) is required. This addition signal is 

the reinforcement signal, i.e., positive reinforcement for re-

ward and negative reinforcement for punishment. 

ASSOCIATIVE REINFORCEMENT LEARNING 

 In order for an animal (or autonomous robot) to seek or 

avoid certain stimuli for behavioral guidance, an additional 

signal, z(t) , can be used as a reinforcer to change the con-

nection weight in the associative learning rule of Eq. 19. The 

associative reinforcement-learning rule that includes a rein-

forcer is given by: 

wij
k (t) = l z(t) y j

k (t) xi
k (t)      i, j,k        (24) 

where z(t)  denotes the reinforcement signal at time t  asso-

ciated with input xi
k (t) . 

THREE-WISE CORRELATION 

 Note that the above learning rule for weight change is 

essentially a three-wise correlation, correlating between the 

input, output and reinforcer. In comparison, the classical 

Hebbian learning rule is a two-wise cross-correlation be-

tween input and output. 

SENSORY INPUT AS REINFORCER 

 Note also that, in classical conditioning, the reinforcer, 

z(t) , is derived from one of the sensory inputs, xi
k (t) . In 

other words, there is special significance in one of these in-

puts as far as the processing is concerned. In this case, one of 

the inputs is treated as the reinforcer to shape the behavior. 

Thus, this special input has profound implication in altering 

the course of action for the network. (We will discuss how an 

alternate reinforcer can be derived from other sources later.) 

REINFORCER AS GAIN CONTROL 

 Note that the reinforcer, z(t) , is essentially another “gain 

control” signal used for auto-adaptation (modification of 

connection weight). In other words, the weights are changed 

depending on not only the learning coefficient, l , but also the 

size of the reinforcement (i.e., the gain), in addition to the 

activation of both input and output of that neuron. The larger 

the reinforcer signal, the bigger the gain is applied to the 

weight change. 

SIGNIFICANCE OF REINFORCER AND GAIN 

 If the reinforcement signal z(t)  is positive, it will lead to 

an increase in connection weight. This means the output ac-

tion is more likely to be positive as a result, which means 

acting toward the stimuli, i.e., reinforced positively. The 

animal (or autonomous robot) will be more likely to move 

toward the stimuli as a result. The gain for the weight change 

is positive in this case. 

 Conversely, if the reinforcement signal is negative, it will 

lead to a decrease in connection weight, resulting in rein-

forced negatively, leading the animal to be more likely to 

avoid taking actions toward the stimuli. Thus, the gain for the 

weight change is negative in this case. 

NEUTRAL ENVIRONMENT 

 If the reinforcement signal z(t)  is zero, it means the 

learning trial is not reinforced. In such case, from Eq. 24, 

wij
k (t) = 0 , no learning occurs. This means the system re-

mains constant as is, without changing when it is not rein-

forced. In other words, since the system is neither reinforced 

positively or negatively, the environment is considered as 

neutral, it will remain neutral in its learning. 

LEARNING FROM LEARNING 

 Although it may seem intuitive to assume some baseline 

learning to occur in a neutral environment (when the rein-

forcer signal z(t)  is zero), the fact is, if learning were to oc-

cur (in our definition), it has to bias the system toward or 

away from the end-target, which would imply either posi-

tively or negatively reinforced. Nonetheless, learning about 

neutrality can occur at a higher-level processing. 

 Learning about the neutrality of the setting can be ob-

tained from a higher-level learning, which can be derived 

from another super-set network on top of the current network 

such that the inputs of this super-set network are derived 

from the current front-end network (rather than derived from 

the sensory input of the environment). 

SUPER-SET NETWORK AND PRE-PROCESSOR 

 In many ways, abstraction of learning can be accom-

plished by generalizing this framework, forming networks of 

networks to process higher-level abstraction of the output 

from the pre-processor networks. This abstraction of proc-

essed output by super-set networks of networks essentially 

forms the basis of emotional processing to guide its learning 

or behavioral path. 

SUPERVISED REINFORCEMET LEARNING 

 The reinforcer, z(t) , can be delivered by an external 

source, such as a “teacher”, in which case, this type of rein-

forcement corresponds to classical conditioning. In neural 

networks, this type of learning is called “supervised learn-

ing”. 

UNSUPERVISED REINFORCEMENT LEARNING 

 If the reinforcer is generated by the action of the system 

(the animal or autonomous robot) itself, then this type of re-

inforcement corresponds to operant conditioning in psychol-

ogy. The animal, thus, learn without a “teacher”, which can 

be considered as self-learning or auto-associative learning. 

This class of learning is also called “unsupervised learning”. 

GOAL-DIRECTED LEARNING 

 Independent of whether the reinforcement signal is deliv-

ered by an external “teacher” or not, this class of learning is 

often considered as “goal-directed” reinforcement learning 

[11-13] since the reinforcer provides the learning cue in the 
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direction of the reinforced behavior, i.e., positively or nega-

tively reinforced. 

SOURCE OF REINFORCEMENT SIGNAL 

 The reinforcement signal, z(t) , in Eq. 24 can come from 

many different sources. It can come from the sensory input, 

such as food for animals or battery recharging signal for 

autonomous robots for positive reinforcers, and pain signal 

for negative reinforcer. These basic reinforcers are often in-

nate signals that are hardwired into the system’s circuitry for 

basic survival. These signals are also referred to as uncondi-

tioned stimulus (US) signals. (The mechanism for the forma-

tion of these innate responses will be addressed later in this 

paper after the mechanisms for the transfer of internal rein-

forcements within the environmental context are introduced 

with respect to the meta-system). 

POSITIVE AND NEGATIVE REINFORCERS 

 Since the reinforcer (such as food or pain) is derived from 

one of the sensory inputs in the first-layer, a positive rein-

forcer can be represented by: 

z(t) = xh
1 (t)           (25) 

if the reinforcer is the h -th
 input of the system representing 

the US signal, and a negative reinforcer,  z (t) , can be repre-

sented by: 

 z (t) = xh
1 (t)           (26) 

 Eqs. 25 and 26 can be combined to a single equation for 

both positive and negative reinforcements. The reinforcer is 

given by a generic form: 

 z (t) = r xh
1 (t)           (27) 

where a reinforcement gain coefficient, r , is used to encap-

sulate either positive or negative reinforcement such that 

r > 0 represents positive reinforcement, and r < 0 represents 

negative reinforcement. 

 If the reinforcer is exactly the same as the h -th
 input of 

the neuron without amplification or attenuation, then r = 1 

for positive reinforcement, and r = 1 for negative rein-

forcement. 

ASSOCIATIVE REINFORCMENT LEARNING RULE 

 Applying this generalized reinforcer gain, r , to Eq. 24, 

the learning rule for weight-change equation becomes: 

wij
k (t) = l r xh

1 (t) y j
k (t) xi

k (t)      i, j,k,h       (28) 

where the incremental size and direction of connection 

weight-change are dependent on the learning coefficient, l , 
and reinforcer gain, r . 

TRANSFER OF REINFORCER 

 Other reinforcement signals can be derived from other 

sensory inputs, such as the light signal paired with the innate 

reinforcer in classical or operant conditioning. These signals 

are often referred to as conditioned stimulus (CS), in which a 

secondary sensory signal is used to derive as the reinforce-

ment signal for associative learning. 

 The transfer from the innate reinforcer (US), xh
1 (t) , (at 

the h -th
 input in the first-layer) to the acquired reinforcer 

(CS), xm
1 (t) , (at the m -th

 input in the first-layer) can be estab-

lished by associative correlation using the similar associative 

learning mechanism. 

 Once conditioning is established, the new CS reinforcer, 

xm
1 (t) , becomes the substituted reinforcer, giving the new 

reinforcement learning equation for CS signal: 

wij
k (t) = l r xm

1 (t) y j
k (t) xi

k (t)      i, j,k,m       (29) 

INTERNAL REINFORCER 

 By the same token, applying similar associative learning 

paradigm for transfer of reinforcer signal from one input to 

another, internal neural signals can be used as reinforcement 

signals. In other words, the reinforcer does not need to be 

originated from external sensory signals (first-layer input); 

input in the internal-layer can be used as reinforcer. 

 Thus, the original innate reinforcer, xh
1 (t) , in the h -th

 

input at the first-layer can be substituted (or replaced) by an 

acquired reinforcer, xm
k (t) , in the m -th

 input at the k -th
 layer. 

Eq. 29 can now be rewritten as: 

wij
k (t) = l r xm

k (t) y j
k (t) xi

k (t)      i, j,k,m       (30) 

 In other words, the system is able to derive its own rein-

forcer internally for associative reinforcement learning rather 

than deriving from the external sensory source. 

VIRTUAL REINFORCER 

 This internally derived reinforcer can be considered as a 

virtual reinforcer (virtual reward or virtual punishment). The 

virtual reinforcer can become a powerful mechanism for self-

guided learning in motivating the animal (or autonomous 

robot) to seek or avoid certain environment conditions repre-

sented (encoded) by the set of sensory stimuli without exter-

nal reinforcer. In other words, contextual abstraction of the 

sensory stimuli can be derived by such internal associative 

representation for a given context. 

REINFORCER AS AN IMPLICIT GUIDE 

 The above analysis illustrates that the reinforcer signal 

plays a crucial role in determining the direction of the end-

goal for a goal-directed behavior. In many ways, the rein-

forcement signal can be considered as the “switch” to guide 

the behavior toward or away from the desired goal. Although 

the “desired goal” may or may not be defined (or known) as 

far as the animal is concerned, we use the term desired goal 

in the theoretical sense to indicate what the system will even-

tually arrived at, given the conditioning paradigm. 

CONDITIONED FEEDBACK REINFORCEMENT 

 The reinforcement-guiding signal can be derived from 

either feedforward or feedback signal. Which signal it uses 

depends on whether the system’s output (the animal’s re-

sponse) is incorporated as the feedback reinforcement. If the 

action of the animal results in an alteration of the reinforce-
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ment signal, then it is a form of “feedback reinforcement” 

automatically. 

 For example, if an animal moves toward the food (re-

ward) as a result of the conditioning, it increases the positive 

reinforcement signal by its motor response. This would 

strengthen the synaptic weight in the neural circuitry, result-

ing in a further increase in subsequent response size. 

 This is essentially self-learning, associative learning 

without a “teacher”, unsupervised learning or operant condi-

tioning, where the behavior is shaped by self-exploration of 

the animal instead of being guided by an outsider. 

CONDITIONED FEEDFORWARD REINFORCEMENT 

 If the reinforcement signal is a feedforward signal in 

which the response of the animal does not affect the presenta-

tion of the reward or punishment, it is a form of “feedforward 

reinforcement”. For example, the Pavlovian conditioning is 

an example in which Pavlov [21, 22] presented the food re-

ward independent of the behavioral response of the dog. 

 This type of feedforward reinforcement corresponds to 

classical conditioning (or Pavlovian conditioning), learning 

with a “teacher”, or supervised learning. In both case, the 

behavior is shaped by the reinforcement signal whether it is a 

feedforward or a feedback signal. 

DERIVED REINFORCER 

 When a reinforcement system receives its reinforcer sig-

nal from an external source, such as food reward, then it is a 

feedforward system in which the reinforcer is directing the 

system’s adaptation without relying on any internal feedback 

signal for adjustment. But when the system is deriving an 

alternate reinforcement signal other than the original rein-

forcer, such as in a conditioning paradigm, then it becomes a 

feedback system since the reinforcer is no longer coming 

from an independent external source, but deriving from a 

dependent internal source. 

CONDITIONED FEAR AS AN EXAMPLE 

 Conditioned fear is an example where a reinforcer can be 

substituted by an alternate source. The original fear response 

is triggered by a noxious stimulus. But when it is paired with 

another stimulus, the alternate signal acts as a reinforcer trig-

gering the response. For instance, when a shock is paired 

with a tone signal, the original reinforcer (US shock) is no 

longer needed to elicit the fearful response while the alternate 

reinforcer (CS tone) is sufficient to elicit the conditioned fear 

response. 

CONDITIONING BY BENIGN REINFORCER 

 Subsequent to this fear conditioning, another CS (such as 

pairing the tone with yellow warning light) could be used to 

establish an alternate stimulus-response function using the 

secondary reinforcer (tone). Thus, the transfer of the rein-

forcer from the original source (noxious stimulus) to an al-

ternate source (non-noxious stimulus) forms a feedback loop. 

 Note that, in this case, even though the reinforcer is no 

longer noxious (i.e., benign or neutral), the CR response is 

still avoidance behavior rather than habituation (or extinc-

tion) because the response is associating with the original 

previous noxious stimulus (cascaded from the transfer of 

reinforcers). 

ENVIRONMENT AS THE FEEDBACK LOOP 

 In most circumstances, the output action is a feedforward 

action in which any errors in the output are not directly (or 

explicitly) fed back into the system for correction as far as 

the learning rule for the neural circuitry is concerned. But 

that is not to say that the system does not receive any feed-

back from its action. 

 In reality, because of reinforcement, a change in course of 

action occurs. As a result, the subsequent behavioral action 

alters the environment (such as moving away from the aver-

sive stimulus) in such a way that it also changes the rein-

forcement intensity (diminishing the intensity of reinforce-

ment signal when it moves away from that source). Thus, a 

feedback loop is still maintained even though the loop in-

cludes the external environment, not just the autonomous 

system itself. 

COMBINING AUTONOMOUS BEING AND ITS EN-

VIRONMENT AS A META-SYSTEM 

 The above discussion leads to the expansion of the scope 

included in the components of a system. Although most of 

the time, the autonomous robot (or animal) is considered as a 

standalone system with its own self-actuating and self-

adaptive components, we may include the environment in 

which it operates as a meta-system. 

 Because the animal (or autonomous robot) is no longer 

operating in isolation independent of the environment, the 

environment becomes an integral part of the meta-system it 

operates in. Every action it takes may have an impact on the 

environment, thus the resulting action provides a feedback to 

the organism indirectly through the alteration of the envi-

ronment its exposes to. 

 Thus, the autonomous system cannot be viewed in isola-

tion without the environment considered as part of the meta-

system. In other words, the context of the sensory signals is 

only meaningful in relation to how they affect the organism, 

and is often meaningless without the organism in place. 

ENVIRONMENTAL CONTEXT IN EMOTION FOR-

MATION 

 By the same token, the emotional context of the sensation 

is only meaningful when the environment is present; it is 

meaningless without the environment. Thus, it is essential to 

include the environment as part of the meta-system when 

autonomous control and emotional context are considered 

together. 

SELF-EXPLORATION AS PARAMETER SPACE 

SEARCH 

 For feedback reinforcement, self-learning can be acquired 

by exploration, i.e., variation (randomization) of the response 

output. Small variations in the motor output allow the animal 

(or autonomous robot) to explore different parameter space in 

search for the final I/O function. Thus, probabilistic stimulus-
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response I/O function (such as Eqs. 5 - 8) can enable the sys-

tem to “explore” the parameter space, whereas deterministic 

I/O function (such as Eqs. 3 - 4) often does not. 

SOLUTION WITHOUT A PRIORI KNOWLEDGE 

 The exploration of the parameter space can be done by an 

animal itself (without a “teacher”) to establish the final prob-

abilistic I/O function by incorporating a feedback reinforce-

ment signal together with a stochastic I/O function without 

any presumed knowledge of the outcome of the system. 

 In contrast, exploration of the parameter space for deter-

ministic I/O functions often requires feedforward reinforce-

ment signal provided by the “teacher” who predicts (projects) 

what the final outcome (desired goal) would be, with pre-

sumed knowledge of the outcome of the system. 

ROLE OF PROBABILISTIC FUNCTION IN SELF-

EXPLORATION 

 The mathematical mechanism for self-exploration lies in 

the probabilistic I/O function. Without the variations in out-

put, the animal (or autonomous robot) will always repeat the 

same action unless its action is altered by environmental per-

turbations or by an external “teacher”. 

 Environmental perturbations do occur in the real world 

due to unforeseen circumstances, or failure of moving parts. 

Thus variability in sampling the parameter space can occur in 

deterministic system, but it is incidental rather than intrinsic 

to the system’s operation. 

 This is consistent with the fact that most biological sys-

tems are variable in their output action rather than rigidly 

stereotypical or identical. In fact, variability in output actions 

is the hallmark of animals whereas precise output is the hall-

mark for machine actions. 

ESTABLISHING EMOTIONAL CONTEXT INTER-

NALLY BY REINFORCEMENT LEARNING 

 The next phase in deriving the emotional context in sen-

sation is to establish the neural mechanisms for the abstrac-

tion of emotional feel. Conditioning and associative rein-

forcement learning is well suited for the mechanism in estab-

lishing emotional context associated with the sensory stimu-

lus. 

INTERNAL AFFILIATION OR AVOIDANCE 

 Although traditionally, positive or negative reinforcement 

leads to behavioral output, i.e., motor response of either seek-

ing or avoidance responses, similar responses can be estab-

lished internally within the neural system rather than exter-

nally interacting with the external world. The internal repre-

sentation of the affiliation or avoidance behavior prior to the 

motor output can be considered as the emotional representa-

tion of such behavior. 

MECHANISMS FOR TRANSFER OF DERIVED RE-

INFORCER 

 As illustrated before, when a reflex response is condi-

tioned to another stimulus other than the original stimulus, 

the transfer of one stimulus to another can be established. 

The successive transfer of other stimuli that are associated 

with the original stimulus can form the framework for estab-

lishing the context in which the original stimulus-response 

function is operating. In other words, the original sensory 

input is no longer interpreted (processed) in isolation; rather 

it is processed in reference to the other associated stimuli. 

NEURAL CORRELATE OF INTERNAL REWARD 

CENTER 

 Nucleus accumbens is the brain structure in the mesolim-

bic system that is well known for its behavioral reinforce-

ment property in mammals [23]. Activation of the nucleus 

accumbens often produces highly reinforced behavior, espe-

cially in reward activation. It is also known that nucleus ac-

cumbens is activated by different types of reward signals, 

including water [24], food [25], dopaminergic drugs [26, 27] 

such as cocaine, and even visual stimuli such as beautiful 

faces [28]. Cocaine is known as a powerful internal rein-

forcer in behavioral activation [29]. Thus, internal loci of 

reinforcer exist in animals. 

FEEDBACK GAIN BIAS IN ESTABLISHING EMO-

TIONAL CONTEXT 

 The above discussion shows that associative reinforce-

ment learning can be one of the mechanisms for establishing 

context of a sensation. This reinforcement paradigm is essen-

tially a feedback control system whereby the sensory stimuli 

are integrated into the neural processing, not only as sensory 

inputs per se, but also as internal multiple-gain feedback con-

trol signals. The gain can be positive or negative, which can 

be used to automatically set “biases” to the system in such a 

way that certain sensory inputs are amplified (or attenuated). 

ESTABLISHING EMOTIONAL SIGNIFICANCE BY 

INCREASING THE GAIN 

 The amplification of these specific sets of inputs signifies 

the “importance” of the signal in establishing association, 

i.e., correlation among these input signals. That is to say, the 

signals are self-selected in the processing such that they form 

special “significance” in determining the final output. Con-

ceptually, this process establishes the “context” from the en-

vironment by integrating the sensory signals that have sig-

nificant importance for determining its output. 

SELF-SELECTIVE BIAS IN EMOTION FORMATION 

 This “self-selective” process for biasing the system to put 

more importance of the selected signal to produce its output 

is relied on the feedback information derived from the sen-

sory signals themselves. This also assumes that the initial 

starting point is relied on the existence of a presumed innate 

reinforcer that sets the direction of behavioral motivation, 

i.e., positive reinforcer (such as food) will increase the prob-

ability of motor activation for affiliation (seeking-behavior) 

while negative reinforcer (such as pain) will tend to increase 

the likelihood of motor activation for avoidance motor out-

put. (We will show in subsequent sections how this innate 

reinforcer can be established.) 

INNATE AND VIRTUAL REINFORCER AS INTER-

NAL TEACHER 
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 The innate reinforcer essentially serves as the internal 

“teacher” that guides the autonomous system’s behavior. 

Subsequent acquisition of other signals as the reinforcer can 

be established by feedback reinforcement by correlating the 

initial innate reinforcer with other potential candidate rein-

forcers. The new reinforcer established internally can be con-

sidered as the virtual reinforcer, as discussed earlier. This 

transfer of one reinforcer to another reinforcer can be self-

propagating using the conditioning paradigm. 

MECHANISMS FOR ESTABLISHING INNATE REIN-

FORCER 

 Given that the innate reinforcer can initiate the subse-

quent conditionings, the question may be raised to address 

how this initial innate reinforcer is established in the first 

place. In biology, innate properties often refer to in-born, 

genetically programmed properties. In engineering, these 

properties are often hardwired (or pre-programmed). Then 

the question becomes how genetic programming is estab-

lished about without a designer or a programmer who may 

have a priori knowledge of the system or its desired out-

come. 

ROLE OF FEEDFORWARD IN EVOLUTION 

 One of the possible solutions to this problem of solving a 

problem without even knowing what the problem is lies in 

feedforward control. When a system uses a feedforward con-

trol for its operation, it does not require feedback to deter-

mine whether its actions are appropriate or not. It simply 

produces its output based on the feedforward signal inde-

pendent of the outcome. 

FEEDFORWARD AS A PREDICTION 

 This feedforward control often presumes a (wild guess) 

prediction of its output (even though that presumption may or 

may not be correct in actuality). Because of this presumption 

(predictive property) in feedforward control, it has the advan-

tage of producing an action that may have a “chance” for 

success. 

 Metaphorically speaking, feedforward control allows the 

autonomous system to take chances at finding a solution even 

though it may be a “shotgun approach”, but that is precisely 

the principle underlying the process of evolution. 

TRIAL-AND-ERROR APPROACH 

 As in evolution, feedforward is used as the initial mecha-

nism in the trial-and-error process to explore the parameter 

space. “Survival of the fittest” is the second step in the evolu-

tionary process that is feedback in nature. That is, it rein-

forces (keeps) the trials that work, and minimizes (elimi-

nates) trials that don’t work. Without the feedforward 

mechanism, evolution would not proceed. 

 By the same token, using the feedforward evolutionary 

process, by trial-and-error, the innate reinforcer can be estab-

lished. 

RANDOMIZATION IN PARAMETER SPACE SEARCH 

 Central to this principle of feedforward evolutionary 

process is the trial-and-error exploratory process in sampling 

the parameter space. This trial-and-error process relies on the 

variations of the output. 

 The variations can come from many sources, both internal 

and external. External source may include perturbations to 

the system, such as mutation by radiation in genetics, or per-

turbations from the environment in autonomous robots. The 

autonomous system usually does not have much influence or 

control over these unforeseen external perturbation sources. 

ROLE OF INTRINSIC VARIATIONS 

 In contrast to external perturbations that are beyond the 

control of the system, internal variations of its components 

can become part of the intrinsic properties of the autonomous 

system. Most often, these internal variations may take the 

form of probabilistic function or internal noise. The probabil-

istic output can provide the variations needed in the trial-and-

error process for feedforward signal production. Thus, using 

the evolutionary approach, the innate reinforcer can be estab-

lished when it is followed by the “fitness test” for survival-

of-the-fittest feedback. 

FITNESS TEST FOR SURVIVAL 

 Using a feedforward control function for exploratory so-

lution, together with feedback control for fitness test, many 

of the innate properties found in animals or autonomous sys-

tem can be formed by successive iterations. It is analogous to 

the principles used by “artificial life” or “genetic algorithm” 

[30] to explore the parameter space to find solutions to com-

plex problems by random mutation and recombinant of sub-

solution space. 

ESTABLISHING INNATE REINFORCER WITHOUT 

A PRIORI KNOWLEDGE 

 Using these feedforward and feedback computational 

mechanisms, the aforementioned innate reflexes and innate 

reinforcers can be established without any assumptions in the 

design (or a priori knowledge) of the appropriateness of the 

outcome of such system. No arbitrary artificial retrospective 

assignment of the roles/functions of these reflexes or rein-

forcers (i.e., what reflexes or reinforcers are used for) is 

needed. Their physiological (and psychological) functional 

roles are merely emergent properties of the system after ex-

tensive computational iterations. 

ESTABLISHING EMOTIONAL CONTEXT WITHOUT 

A PRIORI ASSUMPTIONS 

 Similarly, the emotional context in sensation for an 

autonomous system can now be derived from first principles 

without any a priori knowledge or assumptions about what 

emotions are for. That is, it becomes an emergent property of 

the autonomous system when it goes through the feedforward 

and feedback cycles of iterations, consolidating (and rein-

forcing) “relevant” signals by the self-selective process for 

adjusting (adapting) the internal gains (connection weights 

and reinforcers) of the system integrating the input and out-

put for establishing its probabilistic many-to-many I/O map-

ping functions. 
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EMOTION AS AN EMERGENT PROPERTY 

 Thus, emotional sensation is an emergent property rather 

than a retrospective property that fits an artificial construct in 

psychology. Furthermore, emotions in autonomous robots are 

not necessarily pre-programmed or add-on entities introduced 

into the robot, but rather they are intrinsic parts of the sen-

sory parameter space integrated with its internal processing 

for the production of appropriate output actions. 

CONDITIONED FEAR AS A CONTEXTUAL EMO-

TIONAL RESPONSE EXAMPLE 

 The conditioned reflex forms the background theoretical 

basis for the transfer of emotional responses from one type of 

stimulus to another. Fear conditioning [31], as illustrated 

before, is a classical example in neurophysiology [32] 

whereby the original stimulus that elicits the fear response is 

transferred to another stimulus, such as light-onset or tone-

onset when they are paired in the stimulus presentation to 

produce the conditioned fear reflex. 

 More complex response other than reflex can be invoked 

by conditioned fear to produce the contextual emotional re-

sponse. It can be used to illustrate how environmental context 

can be incorporated into the emotional response that transfers 

from an innate response to a conditioned response. 

INTRINSIC FEAR 

 Fear is one of the innate emotions experienced in animals 

to protect themselves from predation and other potential dan-

ger that may lead to death or self-destruction. Intrinsic fear is 

the in-born fear that is genetically programmed in animals 

when encountered with predators or height (fear of falling), 

for example. 

 For instance, when an animal approaches a cave and then 

discovered a bear in the cave, then subsequent to this pairing, 

the animal will be conditioned to be fearful in approaching a 

cave. Thus, the cave becomes the environment context of this 

fearful experience. 

SENSORY EXPERIENCE AND EMOTIONAL RE-

SPONSE 

 By the same token, an autonomous robot can acquire such 

fearful response when approaching a dark cave (sensory 

darkness) if it were conditioned by an aversive stimulus in 

the process using the same computational mechanisms. Thus, 

contextual meaning of the sensory inputs can be acquired 

from the environment in which the sensory experience is 

consolidated. 

BOOTSTRAPPING REFLEX 

 Finally, we will address the mechanism for innate response 

formation, such as the establishment of reflex action. The 

above discussion focuses on the set of proposed mechanisms 

for producing the self-adaptability phenomena in autonomous 

systems such that emotional context can be established from 

the environment. Yet the derivation also depends on the exis-

tence of the presumed innate property (hardwired circuitry) 

within the system that it relies on for bootstrapping the subse-

quent associative reinforcement learning mechanisms. We will 

propose a mechanism whereby the innate characteristics (in-

stinct) can be established. 

MECHANISMS FOR INNATE REFLEX FORMATION 

 The mechanisms for innate response formation (such as 

reflex) depends on two theoretical principles: 

1. the evolution mechanism of trial-and-error and sur-

vival-of-the-fittest test (i.e., initial feedforward ex-

ploration and subsequent feedback fitness-test in the 

meta-system) to sample the solution space; and 

2. the consolidation of the circuitry (hardwiring) once 

the likely solution is found from the above evolution-

ary principle. 

PRINCIPLES OF EVOLUTION 

 The evolutionary principle implicitly requires the inclu-

sion of both autonomous agent and the environment as a 

meta-system for the evaluation of the fitness-test in surviv-

ability. The active exploration of solution space by using 

feedforward approach implies that the nonlinear function, 

f ( ) , in all of the above equations be probabilistic function 

rather than deterministic. The specific probabilistic function 

used for the autonomous system is an implementation-

specific (species-specific) issue, which can be used to opti-

mize the system’s performance. 

ESTABLISHING INNATE RESPONSE BY FIXATING 

THE CIRCUITRY 

 The consolidation of the internal neural circuitry (i.e., 

hardwiring) is opposite to the principle of learning (connec-

tion modifiability or synaptic plasticity) discussed above. In 

order to fixate the circuitry once the solution is approached, 

the learning-rate,  l , can be decreased to zero. 

FREEZING THE LEARNING 

 To freeze learning, the learning-rate needs be a function 

of time,  l (t) , rather than a constant (pre-assigned as a pa-

rameter of the system as in most neural network learning 

equations). Thus, this learning-rate can self-adapt in much 

the same way as the aforementioned paradigm where the rate 

is high initially for exploration, and decreases as the system 

arrives at a stable solution. The fitness-test for survival is 

used as a criterion for evaluating the stability of the solution. 

CRITERION FOR FIXATION 

 Without a priori knowledge of what the solution is, the 

autonomous system is still able to use the stability criterion 

for fixating the circuitry. The stability-test can be accom-

plished by evaluating the system’s response over successive 

time-iterations. For instance, if the connection weights do not 

change significantly over multiple iterations of time-steps, 

the system can be considered as approaching a stable state. 

MOVING-AVERAGE AS A STABILITY MEASURE 

 Many different stability criteria can be used; for illustra-

tive purpose, we will provide one such stability criterion for 

evaluation using a moving-average function, w 
t
, of the 

total weight-changes of the system at time, t : 
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w 
t

=

wij
k (t q t)

q= 0

s 1

s
     t         (31) 

averaging over s  time-increments of t . The length of the 

time-increments averaged over is related to the time-scale of 

interest, a parameter similar to the length of period to be con-

sidered as stationary in any systems analysis. 

STATIONARY PERIOD 

 In biology, s t can be a short time period that corre-

sponds to physiological time-scale (which spans a stimulus-

response episode), a longer time period (which spans multi-

ple trials of stimulus-response cycles) or even the lifetime of 

an animal. 

ITERATIVE SEARCH FOR STABILITY 

 In simulations, this parameter s  can be derived adap-

tively using iterative methods, starting with a small number, 

and then compute the moving-average with an increasing s  

until the system reaches a stability state as established by the 

stability criterion. 

STABILITY CRITERION 

 If this moving-average is approximately a small constant 

over time, then the system can be considered as approaching 

a stable state, since the average weight-change is small: 

w 
t

          (32) 

where  is a small constant. The stability criterion, , is also 

an implementation-specific parameter on the limits of fluc-

tuation for the system. 

SYSTEM RESTART CRITERION 

 When the system reaches a steady-state, whether this sta-

ble state is a candidate solution for the system depends on the 

survivability fitness-test for the system in the evolutionary 

process. That is because a system can be stuck at a stable 

state (local minimum) that may not correspond to a real 

world solution to the problem (global minimum). 

 If it happens to be an inappropriate (or invalid) solution, 

the system would fail to interact with the environment appro-

priately, and it will be eliminated in the survivability test. 

When this happens, the system dies. A new initial condition 

will be used to restart the system for another round of evolu-

tion. 

FIXATION OF CIRCUITRY BY FREEZING THE 

LEARNING RATE 

 Once the system arrives at a stability state, the circuitry 

can be fixated into hardwire rather than allowing it to con-

tinue to change and modified. In other words, the learning 

coefficient, l , described in Eq. 30, representing the weight-

change learning rule is no longer a constant, but will ap-

proach zero when the system reaches a stable state. 

 So the learning parameter, l , can now be changed with 

time such that l(t)  is dependent on the overall weight-change 

average: 

l(t) =  f w 
t( )          (33a) 

and from Eq. 16b: 

 l (t) = l (t) t         (33b) 

where  f ( )  is a function that can be a simple proportional 

linear function or other nonlinear function, depending on 

how the system is designed to approach this stability state. 

CRITERION FOR FIXATION RULE OF LEARNING 

 Eq. 33 shows that, as the moving-average w 
t
 ap-

proaches zero, the learning-rate  l (t)  will approach zero also. 

This satisfies the condition for fixation of the circuitry into 

hardwire without the ability to be modified. 

 Thus, the final generalized equation for the weight-

change is given by: 

wij
k (t) = l(t) r xm

k (t) y j
k (t) xi

k (t)      i, j,k,m     (34a) 

or 

wij
k (t) =  f w 

t( ) r xm
k (t) y j

k (t) xi
k (t)      i, j,k,m    (34b) 

which encapsulates both connection weight-change learning 

rule and circuitry fixation rule simultaneously. 

CONCLUSION 

 The above derivations provide the theoretical framework 

for establishing the principles for emotional context forma-

tion in sensation with minimal assumptions based on evolu-

tionary principles without any a priori knowledge of the en-

vironment, the system or what emotion is used for. It uses a 

self-bootstrap feedforward approach to establish the innate 

responses and reinforcers, and then consolidates the hardwir-

ing of circuitry by the fitness survival-test feedback. 

 With the innate reflex circuitry established, associated 

reinforcement learning is used to transfer the relevant sensory 

signals into derived reinforcers to form the significance of 

these inputs by adjusting the individual gains (connection 

weights, reinforcers and learning rate) of the system. 

 As a result of the self-selected biases produced by the 

multiple adaptive gains, the system can respond to the envi-

ronment within context that enhances the response selec-

tively in respond to those stimuli. 

 Thus contextual significance of the environmental condi-

tions forms the emotional context in which the system (or 

animal) responds to. The emotional feel of these sensory 

stimuli emerges as a result. 

SUMMARY 

 A comprehensive theoretical framework based on an 

autonomous control system is introduced in this paper to de-

rive the basic set of principles that encapsulate emotions as 

the emergent properties for increasing the chance of survival 

in an environment with a minimal set of assumptions. 

 The theoretical framework does not rely on retrospective 

(or introspective) account, experience or artificial construct 

of what emotions are for, or what the roles of emotions are. It 
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does not rely on any innate, hardwired or pre-programmed a 

priori knowledge of what the system is attempting to accom-

plish. 

 The only basic assumption of this autonomous system is 

the existence of the sensory-motor I/O processing elements 

that forms a neural network. The other assumption is the ex-

istence of feedforward and feedback control. No explicit neu-

ral network architecture is assumed either; in fact, the neural 

network architecture can be self-organized by the feedfor-

ward and feedback mechanism to eliminating (or consolidat-

ing) connections between neurons by decreasing (or increas-

ing) their connection weights, reinforcers and/or learning 

rate. 

 The reinforcers needed for the associative learning are 

also self-selected and self-generated, with the initial innate 

reinforcer formed by the feedforward evolutionary process, 

and subsequent reinforcers established by feedback rein-

forcement correlated with the contextual environmental in-

put. The innate responses are derived from self-bootstrap 

methods based on evolution principles such that these innate 

responses can serve as reinforcing signals without any a pri-

ori assumptions on what these reinforcers should be. 

 Thus, this theoretical framework for contextual emotion 

formation is self-organizing and self-selecting within an 

autonomous control system without any external “teacher”, 

without any presumed a priori knowledge of the environ-

ment, or what the autonomous system is expected to behave 

or “feel”. 

 The sensory input, the output actions and the internal rep-

resentation of the external environment are encapsulated by 

the implicit model, which is created by the neural network 

processing circuitry. The emotional context of the sensorimo-

tor actions (including reflex actions, conditioned reflexes, 

and conditioned emotional responses) is the emergent prop-

erty of this self-organizing neural network. 

 This represents the first phase of an emotional model 

called the “EMOTION-I” model, which focuses on the mini-

mal sets of principles for establishing emotional context in 

sensation. The next phase of the “EMOTION-II” model pre-

sented in the next paper [5] will establish the “internal 

model” needed for the representation of the external world 

for an autonomous control system to function, and provide 

the derivation of principles for the emergence of 

happy/unhappy emotions for self-assessment and consis-

tency-check when comparing the discrepancy between the 

expectancy in objective and subject realities (not just sensa-

tion, as in EMOTION-I). 

REFERENCES 

[1] S. C. Gadanho, "Learning Behavior-Selection by Emotions and 

Cognition in a Multi-Goal Robot Task," J. Mach. Learn. Res., vol. 

4, pp. 385-412, Dec 2003. 

[2] S. C. Gadanho and J. Hallam, "Emotion-triggered learning in 

autonomous robot control," Cybernetics and Systems, vol. 32, pp. 

531-559, Jul 2001. 

[3] A. Takanishi, K. Sato, K. Segawa, H. Takanobu, and H. Miwa, "An 

Anthropomorphic Head-Eye Robot Expressing Emotions Based on 

Equations of Emotion," Proc. IEEE Int. Conf. Robot. Automat., vol. 

3, pp. 2243-2249, Nov-Dec 2000. 

[4] M. A. Arbib, "Evolving emotions in animal and robot," Int. J. Com-

putat. Intel. Applicat., vol. 4, pp. 225-236, Sept, 2004. 

[5] D. Tam, "EMOTION-II Model: A Theoretical Framework for 

Happy Emotion as a Self-Assessment Measure Indicating the De-

gree-of-Fit (Congruency) between the Expectancy in Subjective and 

Objective Realities in Autonomous Control Systems," The Open 

Cybernetics & Systemics Journal, vol. 1, pp. 47-60, Dec 2007. [On-

line] Available: http://www.bentham.org/open/tocsj/. 

[6] V. Castellucci, H. Pinsker, I. Kupfermann, and E. R. Kandel, "Neu-

ronal mechanisms of habituation and dishabituation of the gill-

withdrawal reflex in Aplysia," Science, vol. 167, pp. 1745-8, Mar 

1970. 

[7] I. Kupfermann, V. Castellucci, H. Pinsker, and E. Kandel, "Neu-

ronal correlates of habituation and dishabituation of the gill-

withdrawal reflex in Aplysia," Science, vol. 167, pp. 1743-5, Mar 

1970. 

[8] H. Pinsker, I. Kupfermann, V. Castellucci, and E. Kandel, "Habitua-

tion and dishabituation of the gill-withdrawal reflex in Aplysia," 

Science, vol. 167, pp. 1740-2, Mar 1970. 

[9] M M. B. Arnold, "Emotion, motivation, and the limbic system," 

Ann. N. Y. Acad. Sci., vol. 159, pp. 1041-1058, Jul 1969. 

[10] D. A. McCormick, D. G. Lavond, and R. F. Thompson, "Neuronal 

responses of the rabbit brainstem during performance of the classi-

cally conditioned nictitating membrane (NM)/eyelid response," 

Brain Res., vol. 271, pp. 73-88, Jul 1983. 

[11] A. G. Barto and R. S. Sutton, "Landmark learning: an illustration of 

associative search," Biol. Cybern., vol. 42, pp. 1-8, Nov, 1981. 

[12] A. G. Barto, C. W. Anderson, and R. S. Sutton, "Synthesis of non-

linear control surfaces by a layered associative search network," 

Biol. Cybern., vol. 43, pp. 175-185, Apr, 1982. 

[13] R. S. Sutton and A. G. Barto, "Toward a modern theory of adaptive 

networks: expectation and prediction," Psychol. Rev., vol. 88, pp. 

135-70, Mar 1981. 

[14] M. L. Commons, S. Grossberg, and J. E. R. Staddon, “Neural net-

work models of conditioning and action”, Quantitative analyses of 

behavior (Unnumbered), Hillsdale, N.J.: L. Erlbaum Associates, 

1991. 

[15] J. A. Anderson, An introduction to neural networks. Cambridge, 

Mass.: MIT Press, 1995. 

[16] P. R. Montague and T. J. Sejnowski, "The predictive brain: tempo-

ral coincidence and temporal order in synaptic learning mecha-

nisms," Learning & memory (Cold Spring Harbor, N.Y.), vol. 1, 

May-Jun 1994 

[17] D. O. Hebb, The organization of behavior; a neuropsychological 

theory. New York: Wiley, 1949. 

[18] D. E. Rumelhart, J. McClelland, and P. R. Group, Parallel distrib-

uted processing explorations in the microstructure of cognition. 

Volume I, Foundations. Cambridge, Ma.; London: MIT Press, 1986. 

[19] D. C. Tam, “Computation of cross-correlation function by a time-

delayed neural network”, in Intelligent Engineering Systems 

through Artificial Neural Networks, C. H. Dagli, L. I. Burke, B. R. 

Fernández, J. Ghosh, Eds., American Society of Mechanical Engi-

neers Press, New York, NY, vol. 3, pp. 51-55, 1993. 

[20] D. Tam, "Theoretical analysis of cross-correlation of time-series 

signals computed by a time-delayed Hebbian associative learning 

neural network," The Open Cybernetics & Systemics Journal, vol. 

1, pp. 1-4, Jul 2007. [Online] Available: http://www.bentham.org/ 

open/tocsj/ 

[21] I. P. Pavlov, "Conditioned reflex," Feldsher Akush, vol. 10, pp. 3-

10, Oct 1951. 

[22] I. P. Pavlov, "Conditioned reflex," Feldsher Akush, vol. 11, pp. 6-

12, Nov1951. 

[23] J. M. van Rossum, C. L. Broekkamp, and A. J. Pijnenburg, "Behav-

ioral correlates of dopaminergic function in the nucleus accum-

bens," Adv. Biochem. Psychopharmacol., vol. 16, pp. 201-207, 

1977. 

[24] D. J. Woodward, J.-Y. Chang, P. Janak, A. Azarov, and K. An-

strom, "Part I. Functional Organization of the Ventral Striatopallidal 

System - Mesolimbic Neuronal Activity across Behavioral States," 

Ann. N. Y. Acad. Sci., vol. 877, p. 91, Jun 1999. 

[25] B. G. Hoebel, "Brain neurotransmitters in food and drug reward," 

Am. J. Clin. Nutr., vol. 42, pp. 1133-50, Nov 1985. 

[26] R. A. Wise, "The role of reward pathways in the development of 

drug dependence," Pharmacol. Ther., vol. 35, pp. 227-263, 1987. 



46    The Open Cybernetics and Systemics Journal, 2007, Volume 1 David Tam 

[27] R. A. Wise and M. A. Bozarth, "Brain mechanisms of drug reward 

and euphoria," Psychiatr. Med., vol. 3, pp. 445-460, 1985. 

[28] I. Aharon, N. Etcoff, D. Ariely, C. F. Chabris, E. O'Connor, H. C. 

Breiter. “Beautiful faces have variable reward value: fMRI and be-

havioral evidence”, Neuron, vol. 32, pp. 537-551, Nov 2001. 

[29] R. A. Wise, "Neural mechanisms of the reinforcing action of co-

caine," NIDA Res. Monogr., vol. 50, pp. 15-33, 1984. 

[30] C. G. Langton, “Artificial life”, Addison-Wesley, Redwood City, 

Calif., 1987. 

[31] R. G. Phillips and J. E. LeDoux, "Differential contribution of 

amygdala and hippocampus to cued and contextual fear condition-

ing," Behav. Neurosci., vol. 106, pp. 274-85, Apr 1992. 

[32] J. LeDoux, "The emotional brain, fear, and the amygdala," Cell. 

Mol. Neurobiol., vol. 23, pp. 4-5, Oct 2003. 

[33] S. C. Gadanho, J. Hallam, “The role of emotions exploring auton-

omy mechanisms in mobile robots”, D.A.I. research paper, no. 851. 

Edinburgh: University of Edinburgh, Dept. of Artificial Intelli-

gence, 1997. 

[34] S. C. Gadanho, J. Hallam, “Emotion-driven learning for animat 

control”, D.A.I. research paper, no. 881. Edinburgh: University of 

Edinburgh, Dept. of Artificial Intelligence, 1998. 

 

 

Received: November 5, 2007 Revised: November 19, 2007  Accepted: December 10, 2007 

 

 


