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Abstract:

Subheading:

Benchmarking of Radix-2 Sequential Multiplication using five Xilinx FPGA families.

Background:

This paper presents description on the implementation of fast radix-2 sequential multiplier using repeated carry save addition (CSA)
method with variable data path sizes ranging from 8 bits to 1024 bit.

Objective:

The main objective of this paper is to achieve the best achievable time delay reduction with better performance (i.e.  frequency)
running on FPGA platforms and prove their applicability in high performance reconfigurable computing.

Methods:

The design was implemented using VHDL description language and synthesized using five different Xilinx FPGA chip families,
namely: vertix7, kintex7, artix7, zynq7 and spartan6. Rigorous tests were conducted and analyzed in terms of maximum frequency
and total delay time of the FPGA design as well as the hardware utilization.

Results:

The  results  on  the  code  synthesizing  demonstrated  that  the  proposed  1024-bit  sequential  multiplier  with  kintex7  chip  family
outperforms others with a maximum frequency of 296 MHz, while Spartan 6 recorded the lowest frequency with 140 MHz.

Conclusion:

The  performance  of  the  proposed  multiplier-based  CSA  was  benchmarked  against  other  state-of-the-art  designs  which  results
reflected its superiority in terms of throughput of two or more multiple times as compared to others.

Keywords: Adder , Coprocessors , Integrated circuit synthesis , field programmable analog arrays , Digital arithmetic , Sequential
multiplication, Hardware description language (HDL) .

1. INTRODUCTION

The  remarkable  progress  in  electronic  technology  has  led  to  an  enormous  impact  on  digital  integrated  circuits
industries. Digital Integrated circuits are usually designed by engineers using Electronic Design Automation (EDA) [1]
software.  EDA  develop  the  hardware  environment  using  the  HDL  (Hardware  Description  Language)  as  designing
language along with the FPGA (Field Programmable Gate Arrays) chip as the target device, to realize the automation of
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electronic products design. FPGAs are integrated circuits that enable designers to program customized digital logic with
its own microprocessors, memory blocks, and interfaces. It permits more flexibility in the hardware design due to the
ease of building any digital system using the three basic blocks (i.e. wire, a logic gate, and a register) and the ability to
change the system functionalities without introducing a large amount of cost and risk of delays into the design schedule
[2]. FPGA chips contain a matrix of Configurable Logic Blocks (CLBs) connected via programmable interconnects that
can be configured in the field (i.e. as name implied) using HDLs such as VHDL [3] which stands for VHSIC (Very
High Speed Integrated Circuit) Hardware Description Language along with EDA simulation and synthesizing tools.

Nowadays, FPGAs are efficiently used to develop applications specific co-processors such as the design of high
performance multiplier with large data path size such as 512 or 1024 bits. Indeed, a multiplier is an essential unit in
many digital signal and embedded processing applications such as image processing, Fast Fourier Transform (FFT), in
microprocessors design (i.e. in ALU design), crypto-processors design etc. As multiplication operation consumes most
of the execution time of many DSP algorithms,  therefore,  a  fast  multiplier  design and implementation is  highly on
demand. Implementing an efficient multiplication algorithm aims to enhance different design factors such as decreasing
the total execution time (thus increasing the multiplier speed), improving the design area (i.e. decrease the number of
gates and registers) and minimizing the power consumption (especially for energy aware applications).

The fast multiplication unit is required by several DSP and Embedded system design. Many investors are targeting
the design of fast multiplications. All the techniques that are reviewed in the survey are recently published or patent-
applied innovative techniques for improving the performance/cost complexity of multiplication operation. For instance,
inventors of US patent no. 8099655 b1 presented a sequential Galois field (GF) multiplication multiplier system and
method [4] which can enhance the computation of elliptic curve cryptography over GF (p) [5] while general purpose
large multipliers and another binary multiplier circuit for programmable logic devices have been invented recently to be
implemented in programmable logic devices in the us patents [6, 7] respectively. Many other works have been listed in
the literature for multiplier design-based FPGA targeting these factors [8 - 31]. Xilinx corporation for FPGA design
industry provides different programmable FPGA chipsets to address the requirements across a wide set of applications
with system integration while optimizing for performance/watt [32] such as Kintex, Virtex, Spartan and other FPGA
chip families. Such applications may range from high-performance networking applications that require the highest
capacity, bandwidth, and performance to small-low-cost, footprint FPGA applications. The complete details about the
internal architecture and specifications for each FPGA family can be found from [32].

In this work, we propose an efficient FPGA implementation for the radix-2 sequential multiplication of variable
precision  data-path  sizes.  In  this  work,  we  have  used  the  iterative  shift-and-add  algorithm that  has  less  number  of
hardware units  based on Carry Save Adder (CSA) as an internal adder which provides the multiplication results  in
redundant form. Then, we retrieved the conventional results using two methods: using two times CSA or using one time
Carry Lookahead Adder (CLA). Another non-conventional number representation system can be used instead of CSA
to  design  similar  sequential  multiplier  is  the  use  of  Sign-Digit  form  such  as  the  Canonical  Signed  Digit  (CSD)
multiplier invented in [33]. The main objective of this paper is to achieve the best achievable time delay reduction with
better  performance  (i.e.  frequency)  running  on  FPGA  platforms  and  prove  their  applicability  in  high  performance
reconfigurable computing. We have compared our results with many optimized implementations [22 - 30]. We have
used  Xilinx  ISE  synthesis  tool,  Modalism  SE  simulation  tool,  and  Xilinx  Kintex-7  (the  major  platform  of  this
implementation),  Virtex-7,  Artix-7,  Zynq-7,  and  Spartan-6  FPGA platforms  for  implementation  and  benchmarking
purposes. We provided extensive comparisons between our proposed designs and other state-of-the-art implementations
[22 - 30] in terms of performance efficiency and area.

The remaining of this paper is organized as follows: Section 2 discusses the related works for multiplication design.
Section 3 provides a brief background about sequential multiplication, carry save addition, carry lookahead addition and
overview  of  Xilinx  FPGA  families'  comparison.  Section  4  discusses  the  complete  hardware  implementation  and
specifications  with  further  processing  of  multiplication.  Section  5  contains  experimental  results  together  with  the
discussions which include performance measures and hardware utilization of the proposed designs in addition to the
comparisons with previously reported implementations. Finally, Section 6 concludes the paper.

2. RELATED WORK

In the recent years, several hardware and software solutions try to address the efficient design of digital arithmetic
algorithms  such  as  digital  multipliers.  The  most  commonly  used  solutions  were  based  on  the  FPGA  design  and
synthesize  with  its  various  chip  families,  which  was  the  dominator  method of  implementing  high-speed  arithmetic
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processor. Here, we present a thorough and critical review of work conducted in [8 - 21, 31]. Also, many other related
researches were not discussed in this section, instead they are mentioned in the results and comparisons section for
benchmarking and comparison purposes [18 - 26].

Vedic multiplication techniques have been widely used, implemented and discussed in the last five years [4 - 7, 11 -
14,  17].  For  instance,  Abdulkareem,  M.  Vardhana,  and  P.  Kumar  [30]  proposed  FPGA  implementation  efficient
multiplier using modified Vedic mathematical techniques. They implemented and tested their designed using Cadence
Encounter  Xilinx tool  which proved the efficient  use of  Vedic Sutra as they comparison reports  revealed that  their
multiplier consumes less time and is faster than the existing multipliers as well as consumes less power than the existing
multipliers.  Also,  M.  M.  Kemble  and  S.  P.  Ugale  [4]  implemented  the  digital  multiplier  using  barrel  shifter.  They
described their hardware using VHDL and targeted Xilinx xc3s400 FPGA as a hardware platform as well as simulated
the implementation using Xilinx ISE-simulation tool. Finally, they compared their work with different multipliers in
terms of cost, power consumption, area and speed and concluded that the use of barrel shifter enhances the design for
all  these  measurements.  On  the  other  hand,  Rakesh  and  Shilpa  [5]  proposed  64-bit  multiplier-based  VEDIC
multiplication method and carry save addition technique with less number of gates and high-speed specification. They
synthesized their implementation using Xilinx XST. They concluded that their proposed architecture was highly fast
and accurate.

Also,  S.  Thawait  and  J.  Verma  [6]  presented  a  simplified  and  efficient  method  of  multiplication  using  Vedic
mathematics based on Urdhva Triyakbhyam’s Sutra. They synthesized their VHDL implementation using Xilinx ISE
9.2i  simulator  and  found  that  Urdhva  Triyakbhyam  sutra  of  Vedic  multiplication  is  to  be  the  most  efficient  sutra
amongst its all 16 sutras. On the other hand, S. Tamilselvan, et al. [7] implemented an Urdhva Tiryakbhyam’s sutra
method  of  Vedic  multiplication  based  on  Carry  select  addition.  They  reported  the  performance  of  their  multiplier
produced less time delay than carry look ahead adder, ripple carry adder, carry skip adder and carry select adder. They
described their design using Verilog HDL and simulated using Xilinx ISE 14.3 software targeting Spartan 6 FPGA
devices. They recorded a delay time of their 16-bit design 23.47 ns which is considered faster than the conventional
multiplier which produce a delay 41.055 ns as they used in Fast Fourier Transform algorithm.

In addition, Kishore et al.  [15] studied different types of multipliers by comparing their speeds and areas. They
developed the VHDL coding to implement multipliers like WTM, Dadda Multiplier, Vedic Multiplier, Computation
Sharing Multiplier (CSHM), Serial Multiplier and Multipliers using different compressors in Wallace tree architecture.
They tested their 8-bit design using XILINX ISE Simulator targeting the FPGA device xc3s500e-5pq208 and found that
the  maximum  power  consumption  has  been  recorded  for  CSHM  multiplier.  On  the  contrary,  Vedic  multiplier
outperformed with the least power consumption. While the fastest multiplier was found to be Wallace tree multiplier
with 13.4 ns time delay. The case was different in [16] where the authors proposed high speed pipelined multiplier that
consists of 3 stages. The first, second and third stages consist of a 4 - bit Vedic multiplication unit, a parallel generation
of  partial  products  to  eliminate  unwanted  multiplication  steps  and  carry,  and  adders  that  built  up  a  multiplication
process  respectively.  They  modeled  their  proposed  algorithm  using  Verilog  hardware  description  language.  Their
simulation results were carried on Xilinx FPGA device, Spartan-3E and showed that 11 logic cells were required to
build nibble multiplier whereby the propagation time of the proposed architecture was found to be 4.585ns. They also
concluded  that  the  multiplier  implemented  using  Vedic  multiplication  was  efficient  in  terms  of  area  and  speed  as
compared to its implementation using Array and Booth multiplier architectures.

Alternatively,  in  [17],  S.  Khatri  and  G.  Jangid  described  the  hardware  implementation  of  a  64-bit  Urdhva-
triyagbhyam’s sutra of Vedic multiplier based on Barrel shifter using VHDL and targeting the FPGA device SPARTAN
3E  3S  250E.  Their  results  on  synthesizing  has  reported  a  total  path  delay  of  315.725  ns  for  the  proposed  Vedic
multiplier. Similarly, D. J. Udhani and R. C. Patel in [18] proposed a high-speed multiplier design for convolution,
discrete Fourier transform, digital filters, and other digital signal processing operations. Accordingly, they used a 4x4
bit and 8x8 Urdhva Tiryagbhyam Sutra version of Vedic multiplication with different schemes. Among the several
schemes of 4x4 multipliers, their new 4bit adder recorded the best delay time with 17.7 ns while for the 8x8 multiplier
the best delay time was listed as 30.4 ns.

P. Agrawal and R. Sinha in [21] described the design of Vedic multiplier based on Urdhva Trigbhyam technique of
multiplication. They compared the design of Vedicmultiplier for different bit lengths based on Ripple Carry Adder and
Kogge Stone Adder and found that Kogge Stone Adder performed fastest with Parallel Prefix Adder. Hence the delay in
Vedic Multiplier based on Kogge Stone Adder is less as compared to that based on Ripple Carry Adder. Also, they
tested their implementation using Spartan6, device as xc6slx45, package csg324 with speed grade of -3 and found that
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the delay for 16-bit Vedic Multiplier using Ripple Carry Adder has been found to be 29.051 ns whereas using Kogge
Stone Adder has been found to be at 27.499ns.

On the other hand, M. H. Al Mijalli [12] presented VHDL implementation for Braun’s multipliers with four-bit
lengths;  4×4,  6×6,  8×8  and  12×12  respectively.  They  target  four  Spartan-3A  FPGA  devices;  namely:  XC5S50A
(package: tq144, speed grade: -5), XC3S200A (package: ft256, speed grade: -5), XC3S400A (package: Fg400, speed
grade: -5), and XC3S700A (package: fg484, speed grade: -5). The compared their results with the synthesizing report
for all devices and found that all the targeted devices have the same number of 4-LUTs, occupied slices, bonded IOBs,
total equivalent gate count but their average connection and maximum pin delays were different. The comparison for
12x12 multiplier reported that using Spartan-3A XC3S400A (Package: fg400, speed grade: -5) has the best results in
terms of maximum pin delay with 3.2 ns.

Also, V.R. Raut and P. R. Loya in [13] proposed a VHDL design and implementation of radix 2 and modified radix
4 Booth multipliers to enhance the power consumption and delay time. Because of their comparison, they found that the
modified radix 4 Booth multipliers have reduced power consumption than the conventional radix 2 Booth Multiplier.
However, researchers of [14] presented self-checking FPGA designs using VHDL for arithmetic and logic circuits, such
as single-bit full adder, 4-bit adder and 2-bit multiplier circuits with target chip EP2C20F484C7 Altera Cyclone-II.
They applied different test data input samples through input switches, while the error status results were obtained on the
7-segment display device. Thus, they found that the probability of error occurrence increases for complex designs, but
this error occurrence can be avoided by using self-checking circuits at  different build stages in the complex circuit
model. Furthermore, S. Kaur and P. S. Jassal [19] proposed three different FPGA implementations based DSP48s (No
DSP48s, 16 DSP48s, and 17 DSP48s) of 64-bits double precision floating-point multiplier using Xilinx Coregen tool.
From all the three implementations, they concluded that as the use of DSP48s was increased, the usage of LUTs and
FFs decreased whilst the speed and latency increased. Therefore, the use DSP48s was found to reduce the design cycle
by a large factor. Other state of the art work [22 - 30] was mentioned in section 5 of Results and Discussions.

Unlike the aforementioned works, the main objective of our work focuses on efficient FPGA implementation and
synthesize of sequential multiplier using different data-path sizes and FPGA device technologies in terms of timing
issues such as the total  delay period and maximum frequency as well  as the hardware utilization percentage of the
digital processor. In this paper, we present description on the proposed sequential multiplier-based CSA adder using
kintex7 FPGA kit family via VHDL as main target device. In addition, a comparative synthesizing study was carried
out on several design options using different FPGA devices in terms of delay and maximum frequency. The comparison
with other existed designs showed that the proposed coprocessor design has a throughput efficiency of two or more
multiple times faster than other designs.

3. BRIEF BACKGROUND

Typical sequential multiplier algorithm can be designed using two major techniques: right-shift algorithm and left-
shift algorithm. For instance, we'll review the right shift algorithm. Let’s assume that:

The basic multiplication equations can be derived as: P = A.X, where:

𝐴          𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑛𝑑                     𝐴𝐾−1𝐴𝐾−2 … . 𝐴1𝐴0 

𝑋         𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟                          𝑋𝐾−1𝑋𝐾−2 … . 𝑋1𝑋0 

𝑃        𝑃𝑟𝑜𝑑𝑢𝑐𝑡 (𝐴 ∗ 𝑋)                 𝑃2𝐾−1𝑃2𝐾−2 … . 𝑃2𝑃1𝑃0 

𝑋 =  ∑ 𝑋𝑖 ∗  2𝑖 𝑘−1
𝑖=0 ,       𝑃 = 𝐴. ∑ 𝑋𝑖 ∗  2𝑖𝑘−1

𝑖=0     ∴ 𝑃 =  𝑋0𝐴20 + 𝑋1𝐴21 +  𝑋2𝐴22 +

⋯  𝑋𝐾−1𝐴2𝐾−1 
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Using right shift-and- add algorithms, we get:

The mathematical model of sequential shift-and-add multiplier for right-shift algorithm is shown in Fig. (1).

Fig. (1). Typical k-bit Sequential Multiplier.

3.1. Carry Save Addition (CSA)

Addition algorithm is the most essential and frequent operation used in digital computer arithmetic. To reduce the
time delay especially for large hardware design, faster methods to add binary numbers with least carry propagation
delay are used such as the Carry Save Adder (CSA) which has the smallest carry propagation delay where n-bit carry-
save adder take a delay time of one full adder for any n (i.e. the maximum delay for n × n bit multiplication will never
exceed n full adder time delay).

CSA (high speed multi-operand adder) is also known as (3:2) counter [34] where the addends are three and the
result is produced as two vectors. Fig. (2) shows the internal architecture of N-bit CSA, it consists of n disjoint full
adders (FAs) where each of which computes a single sum and carry bit based on the corresponding bits of the three
input numbers. Unlike conventional adders, such as carry ripple adder, CSA consists of multiple one-bit full adders
without any carry chaining. Such carry propagation free addition schemes will provide the results in a redundant form.
The  redundant  results  appear  as  sum  vector  (VS)  and  carry  vector  (VS)  that  can  be  described  as  in  the  following
equations: S = (x + y + z)mod 2 & C = [(x + y + z) - s] / 2

Fig. (2). Internal architecture of N-bit CSA.

∴ 𝑃 = (… ( (0 + 𝑋0𝐴2𝐾)/2 +  𝑋1𝐴2𝐾)/2 +  𝑋2𝐴2𝐾)/2 + ⋯  𝑋𝐾−1𝐴2𝐾)/2 … )) 

 

𝑃(0) = 0, 𝑃(𝑗+1) =
(𝑃(𝑗) + 𝑋𝑗𝐴2𝑘) 

2
 𝑤ℎ𝑒𝑟𝑒  𝑗 = 0, 1, 2, … . , 𝑘 − 1    𝑎𝑛𝑑 𝑃 =  𝑃(𝑘)  

k 

- 

Times
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3.2. Carry Lookahead Adder (CLA)

Reducing the carry propagation delay of two-operand adders is a major factor in digital arithmetic field as most
other arithmetic operations (such as multiplication and division) are implemented using several addition and subtraction
iterations.  Computer  arithmetic  researchers  presented  different  logic  design  approaches  to  overcome  the  carry
propagation  problem.  One  commonly  used  solution  is  via  the  use  of  Carry  Look-ahead  Addition  (CLA)  which
calculates  the  carry  signals  in  advance  based  on  the  input  signals  [34].

The internal architecture of N-bit Carry Lookahead Adder (CLA) is shown in Fig. (3a). It consists of n Full Adders
(FAs) where each of these deals with two input digits Xi and Yi along with the Ci signal compute three signals s: sum, g:
generate and p: propagate. While Fig. (3b) shows internal signals of full adder used for CLA logic where Gi is the carry
generate signal as a carry (Ci+1 ) is generated whenever Gi = 1 regardless of the input carry (Ci ). In addition,Pi is the
carry propagate signal since whenever Pi = 1, the input carry is propagated to the output carry, i.e., Ci+1 = 1(i.e. note that
whenever Pi = 1 and Gi = 1).

Fig. (3). (a) Internal architecture of N-bit Carry Lookahead Adder (b) Full adder circuit.

CLA logic uses the concepts of generating and propagating carries where adding two one-bit inputs x and y is said
to generate in two cases: (a) if both bits Xi = 1 and Yi = 1 are 1 and (b) if either Xi = 1 and Yi = 1 is 1 and the Ci = 1 is 1.
Computing the values of Pi = 1 and Gi = 1 only depends on the input operand bits (Ai = 1 and Bi = 1) as clear from the
figure and the following equations. The propagate (P) , generates (G) in a full-adder, Sum (Si ) and Carry-Out (Ci+1)
expressions are given as:

For example: The Boolean expression of the Ci+1 of first 3-stages CLA can be derived as follows:

4. HARDWARE IMPLEMENTATION AND SPECIFICATIONS

Constructing an efficient  FPGA hardware coprocessor  should consider  several  factors,  such as  the logic  design
techniques, components & interconnections, the hardware description language, the FPGA family kit, and the design
simulation and synthesizing tools. The architecture of the proposed N-bit sequential multiplier is shown in Fig. (4). The
design consists of two input operands (X and Y) with N-bit length, one output result in its final conventional form with
N-bit  length  and three  input  control  signals  (Clock,  Enable  and Reset)  as  well  as  two control  signals  at  the  output
(Acknowledgment and Ready).

According to Fig. (4), the proposed multiplier design is implemented mainly using two N-bit registers (a normal
load register to hold the multiplier bits and shift register used to hold the multiplicand (Y) which performs 1-bit shift
right with each clock cycle) and multiple generator circuit to generate partial products by performing AND operation
between the LSB of Y and the whole vector of X, One 2N-bit register used for sign extension of each partial product
register from N to 2N and one 2N-bit [3:2] CSA reduction adder to perform shift-and-add multiplication and the result
of  multiplication  will  be  in  redundant  form  with  two  vectors  (Ps,Pc).  To  retrieve  the  final  product  result  in  a

𝑃𝑖 = 𝐴𝑖 ⊕ 𝐵𝑖 𝑎𝑛𝑑 𝐺𝑖 = 𝐴𝑖 . 𝐵𝑖     𝑆𝑖 = 𝑃𝑖 ⊕ 𝐶𝑖−1 𝑎𝑛𝑑  𝐶𝑖+1 = 𝐺𝑖 + 𝑃𝑖. 𝐶𝑖 

𝐶1  = 𝐺0 +  𝑃0𝐶0 ,  𝐶2  = 𝐺1 + 𝑃1𝐶1 =  𝐺1 +  𝑃1(𝐺0 +  𝑃0𝐶0 ) =  𝐺1 +  𝑃1𝐺0 +  𝑃1𝑃0𝐶0  

𝐶3  = 𝐺2 +  𝑃2𝐶2 = 𝐺2 +  𝑃2𝐺1 +  𝑃2𝑃1𝐺0 +  𝑃2𝑃1𝑃0𝐶0  
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conventional form, we have implemented and examined an additional stage in two methods: one uses CLA adder and
generates the final product with an expected delay time of

Fig. (4). Internal architecture of N-bit Sequential Multiplier.

While the other uses CSA adder for two times which generates the final product with expected delay time of [K *
CSAs]. The two methods final stage are shown in Fig. (5a and b).

Fig. (5). (a) Conventional product result using CSA (b) Conventional product result using CLA.

The proposed implementation of sequential multiplier works as follows: Multiplication begins when enable and
reset signal are activated (logic high) and the start pulse is issued, then the input registers will contain operands X and Y
in one clock pulse. After accepting these data inputs, the multiplier begins its multiplication process and when it is
completed, it starts sending the result out on the data bus. When Ps vector is placed on data bus, the ACK output signal
is issued. When both vectors (Ps,Pc) are outputted, they become 1 and enable/reset goes low, and the multiplier is ready
for another set of data. The summarized methodology of the proposed sequential multiplier design and the verification
are shown in Fig. (6).

Fig. (6). Summary of work methodology of sequential multiplier design, testing and benchmarking..

[(𝐾 − 2) ∗ 𝐶𝑆𝐴𝑠 + 𝑜𝑛𝑒 𝐶𝑅𝐴] 
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The sequential multiplier design internally based on shift and add algorithm using CSA adder Fig. (4) has been
implemented using VHDL (VHSIC Hardware Description Language, VHSIC is Very High Speed Integrated Circuit)
with two methods for retrieving the final conventional product result Fig. (5) by either using CSA for two more times so
that VC will be killed (i.e.VC = 0) and all bits will be included into VS (Final result = VS) it is called SQL_MUL_CSA or
by using CLA as high speed two operand conventional adder, it is called SQL_MUL_CLA adder for different data-path
sizes (8-,  16-,  32-,  64-,  128-,  256,  512-,  1024- bit),  the simulation results  were generated using Xilinx Synthesizer
design suite version 14.2 tools, the target chip technology Xilinx kintex7 (device: xc7k480t, package: ffg1156, speed:
-3). Also, for benchmarking purposes and comparison between different FPGA devices, we synthesized our proposed
VHDL  implementation  for  1024  –bit  data-path  size  for  four  more  Xilinx  FPGA  kits;  namely:  vertix7
(xc7v2000t-2flg1925), artix7 (xc7a100t-3csg324), zynq7 (xc7z045-3ffg900) and Spartan 6 (xc6clx150t-4csg484). In
addition, ModelSim-10.1d software package was used as simulation and verification tool and Maple worksheets soft 9.0
for  mathematical  verification  purposes.  Finally,  the  synthesizing  and  tests  are  performed  with  high  performance
multiprocessor computer platform (4th generation Intel Core I7 Quad-Core 3.4GHZ, 8MB shared cache with 16GB
DDR3 - 1600MHZ).

5. RESULTS AND COMPARISONS

In  this  section,  we  present  the  various  results  collected  from  synthesizing  reports  of  our  VHDL  code
implementations were generated using Xilinx synthesizer ISE 14.2 tool. The delay time values used in following tables
are  calculated  as  the  expected  longest  source  clock  period  (from  source  rise  to  destination  rise)  multiplied  by  the
number of logic stages (levels) required by the synthesizer to travel from input of a flip-flop or latch to travel through
logic and routing and arrive at the output of the chip before the next clock edge including the clock-to-Q delay of the
source flip-flop and the path delay from that flip-flop to the output pad [35] as shown in the example in Fig. (7), for
example: the estimated total time delay (for 64 bits Seq_Mul_CSA) = Source Clock x 4 Logic Levels when synthesized
using kintex7 chip (= 2.461 ns * 4 = 9.844 ns). The source clock period and the number of logic stages change with the
change of data-path size (e.g. the number of levels for 1024 bit data path size and source clock period of similar chip
and  design  coding  is  11  stages  and  3.381ns,  respectively),  the  design  coding  (e.g.  the  number  of  levels  for
64_Bit_Seq_Mul_CLA and source clock period for the same chip family are 7 stages and 4.369ns, respectively) and
FPGA device (e.g. the number of levels for 1024 bit data path size will be changed from 11 stages to 12 stages as we
change the chip device from (xc7k480t-3ffg1156) to (xc7k70t-3fbg676). While the maximum frequency was calculated
as the reciprocal of minimum period of delay (already computed by synthesizer and affected by similar factors).

Fig. (7). Source clock estimation [35].

Table (1) along with the bar charts (a, b) in Fig. (8) compared the maximum frequency values (in MHz) and the total
delay  time  (in  ns)  of  different  design  data-path  sizes  (32-,  64-,  128-,  256-,  512-,  and  1024  bits)  targeting  kintex7-
xc7k480t-3ffg1156 chip for both implementations Seq_Mul_CSA and Seq_Mul_CLA. Explicitly, Seq_Mul_CSA is
normally  faster  than  Seq_Mul_CLA  for  all  bit  lengths,  therefore,  we  will  focus  our  discussion  on  Seq_Mul_CSA
leaving  the  results  of  Seq_Mul_CLA  for  benchmarking  needed  by  other  researchers.  As  clearly  seen,  the  8-bit
multiplier  has  recorded  the  highest  frequency  (710.227  MHz)  and  lowest  delay  (4.572  ns)  as  it  is  considered  the
smallest data-path size. Such 8-bit multiplier might be used as a building block for larger multiplier circuits. Table (2)
shows the amount of hardware utilization results for both multipliers represented in two hardware factors: the number of
utilized registers (the total number of registers in the target device is 597200) and the number of utilized Lookup Tables
- LUTs (the total number of LUTs in the target device is 298600). The maximum utilization was registered for 1024-bit
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multiplier  with  17443  (2%),  and  21538  (3%)  registers  as  well  as  7557  (2%)  and  16677  (5%)  LUTs  for  both
Seq_Mul_CSA and Seq_Mul_CLA respectively with relatively increased hardware requirements for Seq_Mul_CLA of
the design with all data-path sizes. To sum up, the design data-path size is directly proportional with the total delay
time, inversely proportional maximum frequency values, and directly proportional to the number of registers and LUTs.

Table 1. Maximum frequency vs. total delay values for both implementations using Kintex7-xc7k480t-3ffg1156 chip.

Precision 8-bit 16-bit 32-bit 64-bit 128-bit 256-bit 512-bit 1024-bit

SQL_MUL_CSA
Fmax (MHz) 710.227 633.604 515.31 439.04 404.97 412.241 330.9 295.792

Total time (ns) 4.572 6.332 8.276 9.844 12.345 16.982 18.132 20.286

SQL_MUL_CLA
Fmax (MHz) 534.16 474.518 385.85 308.74 228.75 230.962 214.21 196.71

Total time (ns) 5.397 10.364 16.53 30.583 43.72 38.97 46.68 55.913

Fig. (8). Multiplier precision (in bits) vs. (a) Maximum Frequency (MHz) (b) Total Delay (ns) for both implementations.

Table 2. Hardware utilization comparisons for both implementations using kintex7-xc7k480t-3ffg1156 chip.

Precision (Bits) 8-bit 16-bit 32-bit 64-bit 128-bit 256-bit 512-bit 1024-bit

SQL_MUL_CSA
Registers 144(0%) 281(0%) 554(0%) 1,123(1%) 2211(1%) 4387(1%) 8739(1%) 17443(2%)

LUTs 114(0%) 175(0%) 334(0%) 673(1%) 1113(1%) 1908(1%) 3802(1%) 7557(2%)

SQL_MUL_CLA
Registers 202(0%) 370(0%) 706(1%) 1,442(1%) 2722(1%) 5410(1%) 10786(2%) 21538(3%)

LUTs 147(0%) 271(0%) 548(1%) 1,102(1%) 1968(1%) 3913(1%) 8377(3%) 16677(5%)

Table (3) along the bar charts (a, b) in Fig. (9) compared the maximum frequency and the total delay of proposed
1024-bit sequential multiplier designs implemented using different chip families (vertix7, kintex7, artix7, zynq7 and
spartan6).  The  results  showed  that  the  design  of  1024-bit  Seq_Mul_CSA  using  kintex7  device  is  domineering  the
results in terms of maximum frequency with 296 MHz and approximate total delay time 20.3 ns while spartan6 device
recorded the lowest frequency with 140 MHz and approximate total delay time 40 ns. Zynq7 device recorded similar
values for the 1024-bit device (with lower numbers for smaller devices and less hardware resources). The next two
devices  have  higher  rates,  the  maximum frequency  for  design  based  vertix7  and  artix7  is  greater  than  spartan6  by
almost  87%  and  63%  respectively.  The  performance  evaluation  results  for  the  design  of  1024-bit  Seq_Mul_CLA
showed similar tendency with much frequency numbers and higher total delay values.

Table 3. Maximum frequency vs. Total delay for both proposed 1024-bit multipliers using different FPGA devices.

Chip Family KINTEX 7 ARTIX 7 VERTIX 7 ZYNQ 7 SPARTAN 6

1024_SQL_MUL_CSA
Fmax (MHz) 295.792 227.752 261.762 295.792 139.541

Total delay (ns) 20.286 26.346 22.92 20.286 42.996

1024_SQL_MUL_CLA
Fmax (MHz) 196.71 156.046 171.895 196.716 90.315

Total delay (ns) 55.913 70.488 63.998 55.913 121.792
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Fig. (9). Proposed 1024-bit sequential multipliers using different chip families (a) Maximum frequency (b) total Delay.

Even though some of the previous designs might be different in the design architecture, data-path size and devices
technology, nevertheless the comparison between our proposed implementations with other designs can be valid as it
showed that the proposed design is very competitive with many dedicated solutions. For instance, Table (4) summarizes
the comparisons of the proposed design with different designs existed in the literature. The FPGA implementations of
different 8-bit multipliers in [22, 26 - 29] recorded a total delay values of 29.4 ns, 5.22 ns, 24.6 ns, 5.6 ns and 15.7 ns,
respectively which means that our proposed sequential CSA multiplier is approximately 6.4, 1.14, 5.4, 1.22, and 3.43
times faster, respectively.

Table 4. Comparisons with other implementations in the literature.

Existing Implementations Proposed Implementations

Multiplier Design FPGA Chip FMax (MHz) / Delay (ns) Multiplier Design FPGA Chip FMax (MHz)/
Delay (ns)

8-BIT CLA MUL [22] (2015) Spartan 3E NA/29.4 ns

8-BIT SEQ_MUL_CSA

Kintex-7
(xc7k480t-3ffg1156)

710.227 MHz/
4.572 ns

8-BIT Radix-4 Booth MUL [26]
(2011)

Vertix2
(xc2vpx70-7-ff1704) 191.5 MHz/ 5.22 ns

8-BIT Radix-8 Booth MUL [27]
(2014) Spartan 3 NA/24.6 ns

8-BIT Array MUL [28] (2013) Virtex-5
(using dsp48e) NA/5.6 ns

8-BIT Vedic MUL [29] (2014) Spartan 6
(xc6slx75t-3fgg676) NA/15.7 ns

32-BIT SEQ MUL [23] (2012) xis2 -chip NA/9.0 ns
32-BIT

SEQ_MUL_CSA
515.31 MHz/

8.276 ns
32-BIT Booth MUL [24] (2013) Spartan 3 NA/81.8 ns
32-BIT Wallace Tree MUL [25]

(2012)
Vertix6 low power

(xc6vlx75tl-1lff484) NA/9.536 ns

512-BIT Mont MUL [30] (2014) Altera Cyclone IV
(ep4ce115f29c7) 239.8MHz/NA 512-BIT

SEQ_MUL_CSA
330.9MHz/
18.132ns

Also, authors of [23 - 25] proposed a 32-bit sequential multiplier, 32-bit booth multiplier, and 32-bit Wallace tree
multiplier synthesized for Xis2 –chip, Spartan 3 and Vertix6 low power (xc6vlx75tl-1lff484), respectively and they
reported a total delay times of 9.0 ns, 81.8 ns, and 9.536 ns. For our processor, it is 8.276 ns (515.31 MHz), therefore,
our  processor  throughputs  are  1.09,  9.9  and  1.15  times  greater,  respectively.  Furthermore,  we  have  compared  our
proposed multiplier with the 512-bit Montgomery multiplier proposed by V. Skobic, et.al., [30] who targeted the FPGA
chip device Altera Cyclone IV (ep4ce115f29c7) and reported a maximum frequency of 239.8MHz which is slower than
our multiplier by 91 MHz (27.5% slower).

Eventually, the proposed work in this paper generates many comparable synthesize results to design the sequential
multiplication unit  using parallel/redundant arithmetic processors especially those used commonly in cryptographic
systems over a known finite field. It was found that choosing the best chip technology would increase the throughput of
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the arithmetic operations.

CONCLUSION

Multiplication is an essential building block for several digital processors as it requires a considerable amount of
processing time and hardware resources. A fast FPGA implementation of sequential multiplication unit based on carry
save addition via Xilinx kintex7 device technology that improves the computation process is proposed in this paper. The
redundant result of proposed multiplier has been restored to its conventional format by applying CSA addition twice to
end up with a result stored at the sum vector (so-called Seq_Mul_CSA) or by applying CLA which is a well-known fast
two operand conventional adder (so-called Seq_Mul_CLA). The performance of both implementations was studied in
terms of timing issues (maximum frequency and total time delay) and the hardware utilization of FPGA kit. The paper
proofs  the  distinction  of  sequential  multiplication  with  carry  save  over  other  multiplication  techniques  when
implemented with kintex7 FPGA chip (via VHDL) as it computes the 1024 x 1024-bit multiplication with approximate
delay 20.3 ns and maximum frequency of 296 MHz which is considered a very attractive and competent values.

CURRENT & FUTURE DEVELOPMENTS

A complete FPGA design architecture and VHDL coding implementation of sequential multiplier coprocessor based
on CSA Addition using Xilinx FPGA chip families is introduced in detail in this paper. This research is substantial for
many Cryptoprocessor and embedded system designers as many patented and non-patented researches are currently up-
to-date to target the multiplication unit architectures, designs, circuits and implementations as well as synthesizing for
programmable devices and large operands (data-path size). Future work of this research can focus on different issues,
such  as  the  sequential  design-based  sign  digit  addition,  implementing  large  multipliers  using  smaller  ones,  using
different radix system such as radix-4 with recording, analyzing the design with different design technology such as
ASIC or Microprocessors, applying other multipliers methods using similar FPGA chips such as Karatsuba multiplier
and others.
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