
Send Orders for Reprints to reprints@benthamscience.ae

30 The Open Cybernetics & Systemics Journal, 2018, 12, 30-41

1874-110X/18 2018 Bentham Open

The Open Cybernetics & Systemics
Journal

Content list available at: www.benthamopen.com/TOCSJ/

DOI: 10.2174/1874110X01812010030

RESEARCH ARTICLE

Fast Radix-2 Sequential Multiplier Using Kintex-7 FPGA Chip Family

Qasem Abu Al-Haija1,* and Sharifah M. S. Ahmad2

1Department of Electrical Engineering, King Faisal University, Ahsa, 31982, P. O. 380, Saudi Arabia
2Faculty of Engineering, Universiti Putra Malaysia 43400, UPM, Serdang, Selangor, Malaysia

Received: September 12, 2017 Revised: February 12, 2018 Accepted: February 13, 2018

Abstract:

Subheading:

Benchmarking of Radix-2 Sequential Multiplication using five Xilinx FPGA families.

Background:

This paper presents description on the implementation of fast radix-2 sequential multiplier using repeated carry save addition (CSA)
method with variable data path sizes ranging from 8 bits to 1024 bit.

Objective:

The main objective of this paper is to achieve the best achievable time delay reduction with better performance (i.e. frequency)
running on FPGA platforms and prove their applicability in high performance reconfigurable computing.

Methods:

The design was implemented using VHDL description language and synthesized using five different Xilinx FPGA chip families,
namely: vertix7, kintex7, artix7, zynq7 and spartan6. Rigorous tests were conducted and analyzed in terms of maximum frequency
and total delay time of the FPGA design as well as the hardware utilization.

Results:

The results on the code synthesizing demonstrated that the proposed 1024-bit sequential multiplier with kintex7 chip family
outperforms others with a maximum frequency of 296 MHz, while Spartan 6 recorded the lowest frequency with 140 MHz.

Conclusion:

The performance of the proposed multiplier-based CSA was benchmarked against other state-of-the-art designs which results
reflected its superiority in terms of throughput of two or more multiple times as compared to others.

Keywords: Adder , Coprocessors , Integrated circuit synthesis , field programmable analog arrays , Digital arithmetic , Sequential
multiplication, Hardware description language (HDL) .

1. INTRODUCTION

The remarkable progress in electronic technology has led to an enormous impact on digital integrated circuits
industries. Digital Integrated circuits are usually designed by engineers using Electronic Design Automation (EDA) [1]
software. EDA develop the hardware environment using the HDL (Hardware Description Language) as designing
language along with the FPGA (Field Programmable Gate Arrays) chip as the target device, to realize the automation of

* Address correspondence to this author at the Department Electrical Engineering, King Faisal University, Ahsa, 31982, P. O. 380, Saudi Arabia;
Tel; +966135895400; E-mails: Qalhaija@kfu.edu.sa, Eng_Qasem1982@Yahoo.com

http://benthamopen.com
http://crossmark.crossref.org/dialog/?doi=10.2174/1874110X01812010030&domain=pdf
http://www.benthamopen.com/TOCSJ/
http://dx.doi.org/10.2174/1874110X01812010030
mailto:Qalhaija@kfu.edu.sa
mailto:Eng_Qasem1982@Yahoo.com

Fast Radix-2 Sequential Multiplier The Open Cybernetics & Systemics Journal, 2018, Volume 12 31

electronic products design. FPGAs are integrated circuits that enable designers to program customized digital logic with
its own microprocessors, memory blocks, and interfaces. It permits more flexibility in the hardware design due to the
ease of building any digital system using the three basic blocks (i.e. wire, a logic gate, and a register) and the ability to
change the system functionalities without introducing a large amount of cost and risk of delays into the design schedule
[2]. FPGA chips contain a matrix of Configurable Logic Blocks (CLBs) connected via programmable interconnects that
can be configured in the field (i.e. as name implied) using HDLs such as VHDL [3] which stands for VHSIC (Very
High Speed Integrated Circuit) Hardware Description Language along with EDA simulation and synthesizing tools.

Nowadays, FPGAs are efficiently used to develop applications specific co-processors such as the design of high
performance multiplier with large data path size such as 512 or 1024 bits. Indeed, a multiplier is an essential unit in
many digital signal and embedded processing applications such as image processing, Fast Fourier Transform (FFT), in
microprocessors design (i.e. in ALU design), crypto-processors design etc. As multiplication operation consumes most
of the execution time of many DSP algorithms, therefore, a fast multiplier design and implementation is highly on
demand. Implementing an efficient multiplication algorithm aims to enhance different design factors such as decreasing
the total execution time (thus increasing the multiplier speed), improving the design area (i.e. decrease the number of
gates and registers) and minimizing the power consumption (especially for energy aware applications).

The fast multiplication unit is required by several DSP and Embedded system design. Many investors are targeting
the design of fast multiplications. All the techniques that are reviewed in the survey are recently published or patent-
applied innovative techniques for improving the performance/cost complexity of multiplication operation. For instance,
inventors of US patent no. 8099655 b1 presented a sequential Galois field (GF) multiplication multiplier system and
method [4] which can enhance the computation of elliptic curve cryptography over GF (p) [5] while general purpose
large multipliers and another binary multiplier circuit for programmable logic devices have been invented recently to be
implemented in programmable logic devices in the us patents [6, 7] respectively. Many other works have been listed in
the literature for multiplier design-based FPGA targeting these factors [8 - 31]. Xilinx corporation for FPGA design
industry provides different programmable FPGA chipsets to address the requirements across a wide set of applications
with system integration while optimizing for performance/watt [32] such as Kintex, Virtex, Spartan and other FPGA
chip families. Such applications may range from high-performance networking applications that require the highest
capacity, bandwidth, and performance to small-low-cost, footprint FPGA applications. The complete details about the
internal architecture and specifications for each FPGA family can be found from [32].

In this work, we propose an efficient FPGA implementation for the radix-2 sequential multiplication of variable
precision data-path sizes. In this work, we have used the iterative shift-and-add algorithm that has less number of
hardware units based on Carry Save Adder (CSA) as an internal adder which provides the multiplication results in
redundant form. Then, we retrieved the conventional results using two methods: using two times CSA or using one time
Carry Lookahead Adder (CLA). Another non-conventional number representation system can be used instead of CSA
to design similar sequential multiplier is the use of Sign-Digit form such as the Canonical Signed Digit (CSD)
multiplier invented in [33]. The main objective of this paper is to achieve the best achievable time delay reduction with
better performance (i.e. frequency) running on FPGA platforms and prove their applicability in high performance
reconfigurable computing. We have compared our results with many optimized implementations [22 - 30]. We have
used Xilinx ISE synthesis tool, Modalism SE simulation tool, and Xilinx Kintex-7 (the major platform of this
implementation), Virtex-7, Artix-7, Zynq-7, and Spartan-6 FPGA platforms for implementation and benchmarking
purposes. We provided extensive comparisons between our proposed designs and other state-of-the-art implementations
[22 - 30] in terms of performance efficiency and area.

The remaining of this paper is organized as follows: Section 2 discusses the related works for multiplication design.
Section 3 provides a brief background about sequential multiplication, carry save addition, carry lookahead addition and
overview of Xilinx FPGA families' comparison. Section 4 discusses the complete hardware implementation and
specifications with further processing of multiplication. Section 5 contains experimental results together with the
discussions which include performance measures and hardware utilization of the proposed designs in addition to the
comparisons with previously reported implementations. Finally, Section 6 concludes the paper.

2. RELATED WORK

In the recent years, several hardware and software solutions try to address the efficient design of digital arithmetic
algorithms such as digital multipliers. The most commonly used solutions were based on the FPGA design and
synthesize with its various chip families, which was the dominator method of implementing high-speed arithmetic

32 The Open Cybernetics & Systemics Journal, 2018, Volume 12 Abu Al-Haija and Ahmad

processor. Here, we present a thorough and critical review of work conducted in [8 - 21, 31]. Also, many other related
researches were not discussed in this section, instead they are mentioned in the results and comparisons section for
benchmarking and comparison purposes [18 - 26].

Vedic multiplication techniques have been widely used, implemented and discussed in the last five years [4 - 7, 11 -
14, 17]. For instance, Abdulkareem, M. Vardhana, and P. Kumar [30] proposed FPGA implementation efficient
multiplier using modified Vedic mathematical techniques. They implemented and tested their designed using Cadence
Encounter Xilinx tool which proved the efficient use of Vedic Sutra as they comparison reports revealed that their
multiplier consumes less time and is faster than the existing multipliers as well as consumes less power than the existing
multipliers. Also, M. M. Kemble and S. P. Ugale [4] implemented the digital multiplier using barrel shifter. They
described their hardware using VHDL and targeted Xilinx xc3s400 FPGA as a hardware platform as well as simulated
the implementation using Xilinx ISE-simulation tool. Finally, they compared their work with different multipliers in
terms of cost, power consumption, area and speed and concluded that the use of barrel shifter enhances the design for
all these measurements. On the other hand, Rakesh and Shilpa [5] proposed 64-bit multiplier-based VEDIC
multiplication method and carry save addition technique with less number of gates and high-speed specification. They
synthesized their implementation using Xilinx XST. They concluded that their proposed architecture was highly fast
and accurate.

Also, S. Thawait and J. Verma [6] presented a simplified and efficient method of multiplication using Vedic
mathematics based on Urdhva Triyakbhyam’s Sutra. They synthesized their VHDL implementation using Xilinx ISE
9.2i simulator and found that Urdhva Triyakbhyam sutra of Vedic multiplication is to be the most efficient sutra
amongst its all 16 sutras. On the other hand, S. Tamilselvan, et al. [7] implemented an Urdhva Tiryakbhyam’s sutra
method of Vedic multiplication based on Carry select addition. They reported the performance of their multiplier
produced less time delay than carry look ahead adder, ripple carry adder, carry skip adder and carry select adder. They
described their design using Verilog HDL and simulated using Xilinx ISE 14.3 software targeting Spartan 6 FPGA
devices. They recorded a delay time of their 16-bit design 23.47 ns which is considered faster than the conventional
multiplier which produce a delay 41.055 ns as they used in Fast Fourier Transform algorithm.

In addition, Kishore et al. [15] studied different types of multipliers by comparing their speeds and areas. They
developed the VHDL coding to implement multipliers like WTM, Dadda Multiplier, Vedic Multiplier, Computation
Sharing Multiplier (CSHM), Serial Multiplier and Multipliers using different compressors in Wallace tree architecture.
They tested their 8-bit design using XILINX ISE Simulator targeting the FPGA device xc3s500e-5pq208 and found that
the maximum power consumption has been recorded for CSHM multiplier. On the contrary, Vedic multiplier
outperformed with the least power consumption. While the fastest multiplier was found to be Wallace tree multiplier
with 13.4 ns time delay. The case was different in [16] where the authors proposed high speed pipelined multiplier that
consists of 3 stages. The first, second and third stages consist of a 4 - bit Vedic multiplication unit, a parallel generation
of partial products to eliminate unwanted multiplication steps and carry, and adders that built up a multiplication
process respectively. They modeled their proposed algorithm using Verilog hardware description language. Their
simulation results were carried on Xilinx FPGA device, Spartan-3E and showed that 11 logic cells were required to
build nibble multiplier whereby the propagation time of the proposed architecture was found to be 4.585ns. They also
concluded that the multiplier implemented using Vedic multiplication was efficient in terms of area and speed as
compared to its implementation using Array and Booth multiplier architectures.

Alternatively, in [17], S. Khatri and G. Jangid described the hardware implementation of a 64-bit Urdhva-
triyagbhyam’s sutra of Vedic multiplier based on Barrel shifter using VHDL and targeting the FPGA device SPARTAN
3E 3S 250E. Their results on synthesizing has reported a total path delay of 315.725 ns for the proposed Vedic
multiplier. Similarly, D. J. Udhani and R. C. Patel in [18] proposed a high-speed multiplier design for convolution,
discrete Fourier transform, digital filters, and other digital signal processing operations. Accordingly, they used a 4x4
bit and 8x8 Urdhva Tiryagbhyam Sutra version of Vedic multiplication with different schemes. Among the several
schemes of 4x4 multipliers, their new 4bit adder recorded the best delay time with 17.7 ns while for the 8x8 multiplier
the best delay time was listed as 30.4 ns.

P. Agrawal and R. Sinha in [21] described the design of Vedic multiplier based on Urdhva Trigbhyam technique of
multiplication. They compared the design of Vedicmultiplier for different bit lengths based on Ripple Carry Adder and
Kogge Stone Adder and found that Kogge Stone Adder performed fastest with Parallel Prefix Adder. Hence the delay in
Vedic Multiplier based on Kogge Stone Adder is less as compared to that based on Ripple Carry Adder. Also, they
tested their implementation using Spartan6, device as xc6slx45, package csg324 with speed grade of -3 and found that

Fast Radix-2 Sequential Multiplier The Open Cybernetics & Systemics Journal, 2018, Volume 12 33

the delay for 16-bit Vedic Multiplier using Ripple Carry Adder has been found to be 29.051 ns whereas using Kogge
Stone Adder has been found to be at 27.499ns.

On the other hand, M. H. Al Mijalli [12] presented VHDL implementation for Braun’s multipliers with four-bit
lengths; 4×4, 6×6, 8×8 and 12×12 respectively. They target four Spartan-3A FPGA devices; namely: XC5S50A
(package: tq144, speed grade: -5), XC3S200A (package: ft256, speed grade: -5), XC3S400A (package: Fg400, speed
grade: -5), and XC3S700A (package: fg484, speed grade: -5). The compared their results with the synthesizing report
for all devices and found that all the targeted devices have the same number of 4-LUTs, occupied slices, bonded IOBs,
total equivalent gate count but their average connection and maximum pin delays were different. The comparison for
12x12 multiplier reported that using Spartan-3A XC3S400A (Package: fg400, speed grade: -5) has the best results in
terms of maximum pin delay with 3.2 ns.

Also, V.R. Raut and P. R. Loya in [13] proposed a VHDL design and implementation of radix 2 and modified radix
4 Booth multipliers to enhance the power consumption and delay time. Because of their comparison, they found that the
modified radix 4 Booth multipliers have reduced power consumption than the conventional radix 2 Booth Multiplier.
However, researchers of [14] presented self-checking FPGA designs using VHDL for arithmetic and logic circuits, such
as single-bit full adder, 4-bit adder and 2-bit multiplier circuits with target chip EP2C20F484C7 Altera Cyclone-II.
They applied different test data input samples through input switches, while the error status results were obtained on the
7-segment display device. Thus, they found that the probability of error occurrence increases for complex designs, but
this error occurrence can be avoided by using self-checking circuits at different build stages in the complex circuit
model. Furthermore, S. Kaur and P. S. Jassal [19] proposed three different FPGA implementations based DSP48s (No
DSP48s, 16 DSP48s, and 17 DSP48s) of 64-bits double precision floating-point multiplier using Xilinx Coregen tool.
From all the three implementations, they concluded that as the use of DSP48s was increased, the usage of LUTs and
FFs decreased whilst the speed and latency increased. Therefore, the use DSP48s was found to reduce the design cycle
by a large factor. Other state of the art work [22 - 30] was mentioned in section 5 of Results and Discussions.

Unlike the aforementioned works, the main objective of our work focuses on efficient FPGA implementation and
synthesize of sequential multiplier using different data-path sizes and FPGA device technologies in terms of timing
issues such as the total delay period and maximum frequency as well as the hardware utilization percentage of the
digital processor. In this paper, we present description on the proposed sequential multiplier-based CSA adder using
kintex7 FPGA kit family via VHDL as main target device. In addition, a comparative synthesizing study was carried
out on several design options using different FPGA devices in terms of delay and maximum frequency. The comparison
with other existed designs showed that the proposed coprocessor design has a throughput efficiency of two or more
multiple times faster than other designs.

3. BRIEF BACKGROUND

Typical sequential multiplier algorithm can be designed using two major techniques: right-shift algorithm and left-
shift algorithm. For instance, we'll review the right shift algorithm. Let’s assume that:

The basic multiplication equations can be derived as: P = A.X, where:

𝐴 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑛𝑑 𝐴𝐾−1𝐴𝐾−2 … . 𝐴1𝐴0

𝑋 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 𝑋𝐾−1𝑋𝐾−2 … . 𝑋1𝑋0

𝑃 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 (𝐴 ∗ 𝑋) 𝑃2𝐾−1𝑃2𝐾−2 … . 𝑃2𝑃1𝑃0

𝑋 = ∑ 𝑋𝑖 ∗ 2𝑖 𝑘−1
𝑖=0 , 𝑃 = 𝐴. ∑ 𝑋𝑖 ∗ 2𝑖𝑘−1

𝑖=0 ∴ 𝑃 = 𝑋0𝐴20 + 𝑋1𝐴21 + 𝑋2𝐴22 +

⋯ 𝑋𝐾−1𝐴2𝐾−1

34 The Open Cybernetics & Systemics Journal, 2018, Volume 12 Abu Al-Haija and Ahmad

Using right shift-and- add algorithms, we get:

The mathematical model of sequential shift-and-add multiplier for right-shift algorithm is shown in Fig. (1).

Fig. (1). Typical k-bit Sequential Multiplier.

3.1. Carry Save Addition (CSA)

Addition algorithm is the most essential and frequent operation used in digital computer arithmetic. To reduce the
time delay especially for large hardware design, faster methods to add binary numbers with least carry propagation
delay are used such as the Carry Save Adder (CSA) which has the smallest carry propagation delay where n-bit carry-
save adder take a delay time of one full adder for any n (i.e. the maximum delay for n × n bit multiplication will never
exceed n full adder time delay).

CSA (high speed multi-operand adder) is also known as (3:2) counter [34] where the addends are three and the
result is produced as two vectors. Fig. (2) shows the internal architecture of N-bit CSA, it consists of n disjoint full
adders (FAs) where each of which computes a single sum and carry bit based on the corresponding bits of the three
input numbers. Unlike conventional adders, such as carry ripple adder, CSA consists of multiple one-bit full adders
without any carry chaining. Such carry propagation free addition schemes will provide the results in a redundant form.
The redundant results appear as sum vector (VS) and carry vector (VS) that can be described as in the following
equations: S = (x + y + z)mod 2 & C = [(x + y + z) - s] / 2

Fig. (2). Internal architecture of N-bit CSA.

∴ 𝑃 = (… ((0 + 𝑋0𝐴2𝐾)/2 + 𝑋1𝐴2𝐾)/2 + 𝑋2𝐴2𝐾)/2 + ⋯ 𝑋𝐾−1𝐴2𝐾)/2 …))

𝑃(0) = 0, 𝑃(𝑗+1) =
(𝑃(𝑗) + 𝑋𝑗𝐴2𝑘)

2
 𝑤ℎ𝑒𝑟𝑒 𝑗 = 0, 1, 2, … . , 𝑘 − 1 𝑎𝑛𝑑 𝑃 = 𝑃(𝑘)

k

-

Times

Fast Radix-2 Sequential Multiplier The Open Cybernetics & Systemics Journal, 2018, Volume 12 35

3.2. Carry Lookahead Adder (CLA)

Reducing the carry propagation delay of two-operand adders is a major factor in digital arithmetic field as most
other arithmetic operations (such as multiplication and division) are implemented using several addition and subtraction
iterations. Computer arithmetic researchers presented different logic design approaches to overcome the carry
propagation problem. One commonly used solution is via the use of Carry Look-ahead Addition (CLA) which
calculates the carry signals in advance based on the input signals [34].

The internal architecture of N-bit Carry Lookahead Adder (CLA) is shown in Fig. (3a). It consists of n Full Adders
(FAs) where each of these deals with two input digits Xi and Yi along with the Ci signal compute three signals s: sum, g:
generate and p: propagate. While Fig. (3b) shows internal signals of full adder used for CLA logic where Gi is the carry
generate signal as a carry (Ci+1) is generated whenever Gi = 1 regardless of the input carry (Ci). In addition,Pi is the
carry propagate signal since whenever Pi = 1, the input carry is propagated to the output carry, i.e., Ci+1 = 1(i.e. note that
whenever Pi = 1 and Gi = 1).

Fig. (3). (a) Internal architecture of N-bit Carry Lookahead Adder (b) Full adder circuit.

CLA logic uses the concepts of generating and propagating carries where adding two one-bit inputs x and y is said
to generate in two cases: (a) if both bits Xi = 1 and Yi = 1 are 1 and (b) if either Xi = 1 and Yi = 1 is 1 and the Ci = 1 is 1.
Computing the values of Pi = 1 and Gi = 1 only depends on the input operand bits (Ai = 1 and Bi = 1) as clear from the
figure and the following equations. The propagate (P) , generates (G) in a full-adder, Sum (Si) and Carry-Out (Ci+1)
expressions are given as:

For example: The Boolean expression of the Ci+1 of first 3-stages CLA can be derived as follows:

4. HARDWARE IMPLEMENTATION AND SPECIFICATIONS

Constructing an efficient FPGA hardware coprocessor should consider several factors, such as the logic design
techniques, components & interconnections, the hardware description language, the FPGA family kit, and the design
simulation and synthesizing tools. The architecture of the proposed N-bit sequential multiplier is shown in Fig. (4). The
design consists of two input operands (X and Y) with N-bit length, one output result in its final conventional form with
N-bit length and three input control signals (Clock, Enable and Reset) as well as two control signals at the output
(Acknowledgment and Ready).

According to Fig. (4), the proposed multiplier design is implemented mainly using two N-bit registers (a normal
load register to hold the multiplier bits and shift register used to hold the multiplicand (Y) which performs 1-bit shift
right with each clock cycle) and multiple generator circuit to generate partial products by performing AND operation
between the LSB of Y and the whole vector of X, One 2N-bit register used for sign extension of each partial product
register from N to 2N and one 2N-bit [3:2] CSA reduction adder to perform shift-and-add multiplication and the result
of multiplication will be in redundant form with two vectors (Ps,Pc). To retrieve the final product result in a

𝑃𝑖 = 𝐴𝑖 ⊕ 𝐵𝑖 𝑎𝑛𝑑 𝐺𝑖 = 𝐴𝑖 . 𝐵𝑖 𝑆𝑖 = 𝑃𝑖 ⊕ 𝐶𝑖−1 𝑎𝑛𝑑 𝐶𝑖+1 = 𝐺𝑖 + 𝑃𝑖. 𝐶𝑖

𝐶1 = 𝐺0 + 𝑃0𝐶0 , 𝐶2 = 𝐺1 + 𝑃1𝐶1 = 𝐺1 + 𝑃1(𝐺0 + 𝑃0𝐶0) = 𝐺1 + 𝑃1𝐺0 + 𝑃1𝑃0𝐶0

𝐶3 = 𝐺2 + 𝑃2𝐶2 = 𝐺2 + 𝑃2𝐺1 + 𝑃2𝑃1𝐺0 + 𝑃2𝑃1𝑃0𝐶0

36 The Open Cybernetics & Systemics Journal, 2018, Volume 12 Abu Al-Haija and Ahmad

conventional form, we have implemented and examined an additional stage in two methods: one uses CLA adder and
generates the final product with an expected delay time of

Fig. (4). Internal architecture of N-bit Sequential Multiplier.

While the other uses CSA adder for two times which generates the final product with expected delay time of [K *
CSAs]. The two methods final stage are shown in Fig. (5a and b).

Fig. (5). (a) Conventional product result using CSA (b) Conventional product result using CLA.

The proposed implementation of sequential multiplier works as follows: Multiplication begins when enable and
reset signal are activated (logic high) and the start pulse is issued, then the input registers will contain operands X and Y
in one clock pulse. After accepting these data inputs, the multiplier begins its multiplication process and when it is
completed, it starts sending the result out on the data bus. When Ps vector is placed on data bus, the ACK output signal
is issued. When both vectors (Ps,Pc) are outputted, they become 1 and enable/reset goes low, and the multiplier is ready
for another set of data. The summarized methodology of the proposed sequential multiplier design and the verification
are shown in Fig. (6).

Fig. (6). Summary of work methodology of sequential multiplier design, testing and benchmarking..

[(𝐾 − 2) ∗ 𝐶𝑆𝐴𝑠 + 𝑜𝑛𝑒 𝐶𝑅𝐴]

Fast Radix-2 Sequential Multiplier The Open Cybernetics & Systemics Journal, 2018, Volume 12 37

The sequential multiplier design internally based on shift and add algorithm using CSA adder Fig. (4) has been
implemented using VHDL (VHSIC Hardware Description Language, VHSIC is Very High Speed Integrated Circuit)
with two methods for retrieving the final conventional product result Fig. (5) by either using CSA for two more times so
that VC will be killed (i.e.VC = 0) and all bits will be included into VS (Final result = VS) it is called SQL_MUL_CSA or
by using CLA as high speed two operand conventional adder, it is called SQL_MUL_CLA adder for different data-path
sizes (8-, 16-, 32-, 64-, 128-, 256, 512-, 1024- bit), the simulation results were generated using Xilinx Synthesizer
design suite version 14.2 tools, the target chip technology Xilinx kintex7 (device: xc7k480t, package: ffg1156, speed:
-3). Also, for benchmarking purposes and comparison between different FPGA devices, we synthesized our proposed
VHDL implementation for 1024 –bit data-path size for four more Xilinx FPGA kits; namely: vertix7
(xc7v2000t-2flg1925), artix7 (xc7a100t-3csg324), zynq7 (xc7z045-3ffg900) and Spartan 6 (xc6clx150t-4csg484). In
addition, ModelSim-10.1d software package was used as simulation and verification tool and Maple worksheets soft 9.0
for mathematical verification purposes. Finally, the synthesizing and tests are performed with high performance
multiprocessor computer platform (4th generation Intel Core I7 Quad-Core 3.4GHZ, 8MB shared cache with 16GB
DDR3 - 1600MHZ).

5. RESULTS AND COMPARISONS

In this section, we present the various results collected from synthesizing reports of our VHDL code
implementations were generated using Xilinx synthesizer ISE 14.2 tool. The delay time values used in following tables
are calculated as the expected longest source clock period (from source rise to destination rise) multiplied by the
number of logic stages (levels) required by the synthesizer to travel from input of a flip-flop or latch to travel through
logic and routing and arrive at the output of the chip before the next clock edge including the clock-to-Q delay of the
source flip-flop and the path delay from that flip-flop to the output pad [35] as shown in the example in Fig. (7), for
example: the estimated total time delay (for 64 bits Seq_Mul_CSA) = Source Clock x 4 Logic Levels when synthesized
using kintex7 chip (= 2.461 ns * 4 = 9.844 ns). The source clock period and the number of logic stages change with the
change of data-path size (e.g. the number of levels for 1024 bit data path size and source clock period of similar chip
and design coding is 11 stages and 3.381ns, respectively), the design coding (e.g. the number of levels for
64_Bit_Seq_Mul_CLA and source clock period for the same chip family are 7 stages and 4.369ns, respectively) and
FPGA device (e.g. the number of levels for 1024 bit data path size will be changed from 11 stages to 12 stages as we
change the chip device from (xc7k480t-3ffg1156) to (xc7k70t-3fbg676). While the maximum frequency was calculated
as the reciprocal of minimum period of delay (already computed by synthesizer and affected by similar factors).

Fig. (7). Source clock estimation [35].

Table (1) along with the bar charts (a, b) in Fig. (8) compared the maximum frequency values (in MHz) and the total
delay time (in ns) of different design data-path sizes (32-, 64-, 128-, 256-, 512-, and 1024 bits) targeting kintex7-
xc7k480t-3ffg1156 chip for both implementations Seq_Mul_CSA and Seq_Mul_CLA. Explicitly, Seq_Mul_CSA is
normally faster than Seq_Mul_CLA for all bit lengths, therefore, we will focus our discussion on Seq_Mul_CSA
leaving the results of Seq_Mul_CLA for benchmarking needed by other researchers. As clearly seen, the 8-bit
multiplier has recorded the highest frequency (710.227 MHz) and lowest delay (4.572 ns) as it is considered the
smallest data-path size. Such 8-bit multiplier might be used as a building block for larger multiplier circuits. Table (2)
shows the amount of hardware utilization results for both multipliers represented in two hardware factors: the number of
utilized registers (the total number of registers in the target device is 597200) and the number of utilized Lookup Tables
- LUTs (the total number of LUTs in the target device is 298600). The maximum utilization was registered for 1024-bit

38 The Open Cybernetics & Systemics Journal, 2018, Volume 12 Abu Al-Haija and Ahmad

multiplier with 17443 (2%), and 21538 (3%) registers as well as 7557 (2%) and 16677 (5%) LUTs for both
Seq_Mul_CSA and Seq_Mul_CLA respectively with relatively increased hardware requirements for Seq_Mul_CLA of
the design with all data-path sizes. To sum up, the design data-path size is directly proportional with the total delay
time, inversely proportional maximum frequency values, and directly proportional to the number of registers and LUTs.

Table 1. Maximum frequency vs. total delay values for both implementations using Kintex7-xc7k480t-3ffg1156 chip.

Precision 8-bit 16-bit 32-bit 64-bit 128-bit 256-bit 512-bit 1024-bit

SQL_MUL_CSA
Fmax (MHz) 710.227 633.604 515.31 439.04 404.97 412.241 330.9 295.792

Total time (ns) 4.572 6.332 8.276 9.844 12.345 16.982 18.132 20.286

SQL_MUL_CLA
Fmax (MHz) 534.16 474.518 385.85 308.74 228.75 230.962 214.21 196.71

Total time (ns) 5.397 10.364 16.53 30.583 43.72 38.97 46.68 55.913

Fig. (8). Multiplier precision (in bits) vs. (a) Maximum Frequency (MHz) (b) Total Delay (ns) for both implementations.

Table 2. Hardware utilization comparisons for both implementations using kintex7-xc7k480t-3ffg1156 chip.

Precision (Bits) 8-bit 16-bit 32-bit 64-bit 128-bit 256-bit 512-bit 1024-bit

SQL_MUL_CSA
Registers 144(0%) 281(0%) 554(0%) 1,123(1%) 2211(1%) 4387(1%) 8739(1%) 17443(2%)

LUTs 114(0%) 175(0%) 334(0%) 673(1%) 1113(1%) 1908(1%) 3802(1%) 7557(2%)

SQL_MUL_CLA
Registers 202(0%) 370(0%) 706(1%) 1,442(1%) 2722(1%) 5410(1%) 10786(2%) 21538(3%)

LUTs 147(0%) 271(0%) 548(1%) 1,102(1%) 1968(1%) 3913(1%) 8377(3%) 16677(5%)

Table (3) along the bar charts (a, b) in Fig. (9) compared the maximum frequency and the total delay of proposed
1024-bit sequential multiplier designs implemented using different chip families (vertix7, kintex7, artix7, zynq7 and
spartan6). The results showed that the design of 1024-bit Seq_Mul_CSA using kintex7 device is domineering the
results in terms of maximum frequency with 296 MHz and approximate total delay time 20.3 ns while spartan6 device
recorded the lowest frequency with 140 MHz and approximate total delay time 40 ns. Zynq7 device recorded similar
values for the 1024-bit device (with lower numbers for smaller devices and less hardware resources). The next two
devices have higher rates, the maximum frequency for design based vertix7 and artix7 is greater than spartan6 by
almost 87% and 63% respectively. The performance evaluation results for the design of 1024-bit Seq_Mul_CLA
showed similar tendency with much frequency numbers and higher total delay values.

Table 3. Maximum frequency vs. Total delay for both proposed 1024-bit multipliers using different FPGA devices.

Chip Family KINTEX 7 ARTIX 7 VERTIX 7 ZYNQ 7 SPARTAN 6

1024_SQL_MUL_CSA
Fmax (MHz) 295.792 227.752 261.762 295.792 139.541

Total delay (ns) 20.286 26.346 22.92 20.286 42.996

1024_SQL_MUL_CLA
Fmax (MHz) 196.71 156.046 171.895 196.716 90.315

Total delay (ns) 55.913 70.488 63.998 55.913 121.792

0

100

200

300

400

500

600

700

800

█ SQL_MUL_CLA

█ SQL_MUL_CSA

(a) Fmax in MHz vs. data-path Sizes
using Kintex7 (XC7K480T-3FFG1156)

0

10

20

30

40

50

60

█ SQL_MUL_CLA

█ SQL_MUL_CSA

(b) Delay in ns vs. data-path sizes
using Kintex7 (XC7K480T-3FFG1156)

Fast Radix-2 Sequential Multiplier The Open Cybernetics & Systemics Journal, 2018, Volume 12 39

Fig. (9). Proposed 1024-bit sequential multipliers using different chip families (a) Maximum frequency (b) total Delay.

Even though some of the previous designs might be different in the design architecture, data-path size and devices
technology, nevertheless the comparison between our proposed implementations with other designs can be valid as it
showed that the proposed design is very competitive with many dedicated solutions. For instance, Table (4) summarizes
the comparisons of the proposed design with different designs existed in the literature. The FPGA implementations of
different 8-bit multipliers in [22, 26 - 29] recorded a total delay values of 29.4 ns, 5.22 ns, 24.6 ns, 5.6 ns and 15.7 ns,
respectively which means that our proposed sequential CSA multiplier is approximately 6.4, 1.14, 5.4, 1.22, and 3.43
times faster, respectively.

Table 4. Comparisons with other implementations in the literature.

Existing Implementations Proposed Implementations

Multiplier Design FPGA Chip FMax (MHz) / Delay (ns) Multiplier Design FPGA Chip FMax (MHz)/
Delay (ns)

8-BIT CLA MUL [22] (2015) Spartan 3E NA/29.4 ns

8-BIT SEQ_MUL_CSA

Kintex-7
(xc7k480t-3ffg1156)

710.227 MHz/
4.572 ns

8-BIT Radix-4 Booth MUL [26]
(2011)

Vertix2
(xc2vpx70-7-ff1704) 191.5 MHz/ 5.22 ns

8-BIT Radix-8 Booth MUL [27]
(2014) Spartan 3 NA/24.6 ns

8-BIT Array MUL [28] (2013) Virtex-5
(using dsp48e) NA/5.6 ns

8-BIT Vedic MUL [29] (2014) Spartan 6
(xc6slx75t-3fgg676) NA/15.7 ns

32-BIT SEQ MUL [23] (2012) xis2 -chip NA/9.0 ns
32-BIT

SEQ_MUL_CSA
515.31 MHz/

8.276 ns
32-BIT Booth MUL [24] (2013) Spartan 3 NA/81.8 ns
32-BIT Wallace Tree MUL [25]

(2012)
Vertix6 low power

(xc6vlx75tl-1lff484) NA/9.536 ns

512-BIT Mont MUL [30] (2014) Altera Cyclone IV
(ep4ce115f29c7) 239.8MHz/NA 512-BIT

SEQ_MUL_CSA
330.9MHz/
18.132ns

Also, authors of [23 - 25] proposed a 32-bit sequential multiplier, 32-bit booth multiplier, and 32-bit Wallace tree
multiplier synthesized for Xis2 –chip, Spartan 3 and Vertix6 low power (xc6vlx75tl-1lff484), respectively and they
reported a total delay times of 9.0 ns, 81.8 ns, and 9.536 ns. For our processor, it is 8.276 ns (515.31 MHz), therefore,
our processor throughputs are 1.09, 9.9 and 1.15 times greater, respectively. Furthermore, we have compared our
proposed multiplier with the 512-bit Montgomery multiplier proposed by V. Skobic, et.al., [30] who targeted the FPGA
chip device Altera Cyclone IV (ep4ce115f29c7) and reported a maximum frequency of 239.8MHz which is slower than
our multiplier by 91 MHz (27.5% slower).

Eventually, the proposed work in this paper generates many comparable synthesize results to design the sequential
multiplication unit using parallel/redundant arithmetic processors especially those used commonly in cryptographic
systems over a known finite field. It was found that choosing the best chip technology would increase the throughput of

0

20

40

60

80

100

120

140

Kintex 7 Artix 7 Vertix 7 ZYNQ 7 Spartan 6

█ SQL_MUL_CLA █ SQL_MUL_CSA

0

50

100

150

200

250

300

Kintex 7 Artix 7 Vertix 7 ZYNQ 7 Spartan 6

█ SQL_MUL_CLA █ SQL_MUL_CSA

(a) Total delay in ns for 1024-bit Sequential Multiplier

using different chip families

(b) Fmax in MHz for 1024-bit Sequential Multiplier using

different chip families

40 The Open Cybernetics & Systemics Journal, 2018, Volume 12 Abu Al-Haija and Ahmad

the arithmetic operations.

CONCLUSION

Multiplication is an essential building block for several digital processors as it requires a considerable amount of
processing time and hardware resources. A fast FPGA implementation of sequential multiplication unit based on carry
save addition via Xilinx kintex7 device technology that improves the computation process is proposed in this paper. The
redundant result of proposed multiplier has been restored to its conventional format by applying CSA addition twice to
end up with a result stored at the sum vector (so-called Seq_Mul_CSA) or by applying CLA which is a well-known fast
two operand conventional adder (so-called Seq_Mul_CLA). The performance of both implementations was studied in
terms of timing issues (maximum frequency and total time delay) and the hardware utilization of FPGA kit. The paper
proofs the distinction of sequential multiplication with carry save over other multiplication techniques when
implemented with kintex7 FPGA chip (via VHDL) as it computes the 1024 x 1024-bit multiplication with approximate
delay 20.3 ns and maximum frequency of 296 MHz which is considered a very attractive and competent values.

CURRENT & FUTURE DEVELOPMENTS

A complete FPGA design architecture and VHDL coding implementation of sequential multiplier coprocessor based
on CSA Addition using Xilinx FPGA chip families is introduced in detail in this paper. This research is substantial for
many Cryptoprocessor and embedded system designers as many patented and non-patented researches are currently up-
to-date to target the multiplication unit architectures, designs, circuits and implementations as well as synthesizing for
programmable devices and large operands (data-path size). Future work of this research can focus on different issues,
such as the sequential design-based sign digit addition, implementing large multipliers using smaller ones, using
different radix system such as radix-4 with recording, analyzing the design with different design technology such as
ASIC or Microprocessors, applying other multipliers methods using similar FPGA chips such as Karatsuba multiplier
and others.

CONSENT FOR PUBLICATION

Not applicable.

CONFLICT OF INTEREST

The authors confirm that this article content has no conflict of interest.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[1] E.D. Automation, "About the EDA Industry", Electronic Design Automation Consortium, 2015 http://www.edac.org

[2] C. Maxfield, “The Design Warrior’s Guide to FPGAs: devices, tools and flows”, Mentor Graphics Corporation and Xilinx., Elsevier, 2004

[3] D.L. Perry, "VHDL: Programming by Example", 4th ed., the McGraw-Hill Companies, 2002

[4] K.H. Tan, and A. Wassal, "Galois field multiplier system and method", US Patent 8099655 B1, Jan 17, 2012

[5] Q. Abu Al-Haija, and A. Al Badawi, "Cost-effective design for binary Edwards elliptic curves crypto-processor over GF (2N) using parallel
multipliers and architectures", International Journal of Information and Computer Security, Inderscience, vol. 5, no. 3, pp. 236-250, 2013.
[http://dx.doi.org/10.1504/IJICS.2013.055840]

[6] R. Goyal, A.K. Dey, and N. Gupta, "Binary adder and multiplier circuit", US Patent 8933731 B2, Jan 13, 2015

[7] M. Langhammer, and K. Tharmalingam, "Large multiplier for programmable logic device", US Patent 8788562 B2, Jul 22, 2014

[8] M.M. Kamble, and S.P. Ugale, "Analysis of different multiplication algorithm and FPGA implementation of recursive barrel shifter method
for multiplication", International Research Journal of Engineering and Technology, vol. 3, no. 1, pp. 1141-1142, 2016.

[9] M. Rakesh, and P.S. Rani, "Design and Implementation of High Speed 64-bit VEDIC Multiplier", International Journal of Emerging
Research in Management &Technology, vol. 5, no. 5, 2016.

[10] S. Thawait, and J. Verma, "FPGA Implementation of Simple and High-Speed Vedic Multiplier", SSRG International Journal of VLSI &
Signal Processing, vol. 2, no. 3, 2001.

[11] S. Tamilselvan, "Design, Analysis and FPGA Implementation of N Bit Vedic Multiplier Based on Different Adder Architectures",
International Journal of Advanced Research in Computer and Communication Engineering, vol. 4, no. 8, pp. 72-76, 2015.

http://www.edac.org
http://dx.doi.org/10.1504/IJICS.2013.055840

Fast Radix-2 Sequential Multiplier The Open Cybernetics & Systemics Journal, 2018, Volume 12 41

[12] H. Mohammed, and Al Mijalli, "Spartan-3A FPGA Implementation", World Applied Sciences Journal, vol. 18, no. 9, pp. 1291-1295, 2012.

[13] V.R. Raut, and P.R. Loya, "FPGA Implementation of Low Power Booth Multiplier Using Radix-4 Algorithm", International Journal of
Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 3, no. 8, 2014.
[http://dx.doi.org/10.15662/ijareeie.2014.0308081]

[14] R. Pradhisha, "FPGA Implementation of Self-Testing Logic gates, Adders and Multipliers", Indian Journal of Science and Technology, vol. 8,
no. 22, pp. 23263-23271, 2015.
[http://dx.doi.org/10.17485/ijst/2015/v8i22/79331]

[15] V. Satya Kishore, J.E. Abhilash, and G.N. Ratnakishor, "FPGA Implementation & Performance Comparison of Various High Speed Unsigned
Binary Multipliers using VHDL", International Journal on Recent and Innovation Trends in Computing and Communication, vol. 2, no. 12,
2014.

[16] V. Kunchigi, L. Kulkarni, and S. Kulkarni, "High Speed and Area Efficient Vedic Multiplier", In: International Conference on Devices,
Circuits and Systems (ICDCS), 2012, pp. 360-364.
[http://dx.doi.org/10.1109/ICDCSyst.2012.6188747]

[17] S. Khatri, and G. Jangid, "FPGA Implementation of 64-bit fast multiplier using barrel shifter", International Journal for Research in Applied
Science and Engineering Technology, vol. 2, no. 7, pp. 86-95, 2014.

[18] D.J. Udhani, and R.C. Patel, "Implementation of high speed multiplier on FPGA", International Journal of Science, Engineering and
Technology Research, vol. 3, no. 2, 2014.

[19] S. Kaur, and P.S. Jassal, "FPGA Implementation of Double Precision Floating Point Multiplier using Xilinx Coregen Tool", International
Journal of Electronics and Computer Science Engineering, vol. 2, no. 3, 2013.

[20] M. Issad, B. Boudraa, M. Anane, and S. Seddiki, "FPGA Implementation of Modular exponentiation using single modular multiplier", In:
2014 International Conference on Circuits, Systems, Signal Processing, Communications and Computers (CSSCC ’14), 2014, pp. 162-167.

[21] P. Agrawal, and R. Sinha, "Comparative Analysis and FPGA Implementation of Vedic Multiplier for various Bit Lengths using Different
Adders", International Journal of Innovative Research in Computer and Communication Engineering, vol. 3, no. 10, p. 29, 2015.

[22] A. Sharma, "FPGA Implementation of a High-Speed Multiplier Employing Carry Lookahead Adders in Reduction Phase", International
Journal of Computer Applications, vol. 116, no. 17, 2015.

[23] S. Singh, and S. Mittal, "VHDL Design and Implementation for Optimum Delay & Area for Multiplier & Accumulator Unit by 32-Bit
Sequential Multiplier", International Journal of Engineering Trends and Technology, vol. 3, no. 5, pp. 683-686, 2012.

[24] M. Chaudhary, and M.S. Narula, "FPGA Implementation of Booth’s and Baugh- Wooley Multiplier Using Verilog", International Journal of
Innovative Technology and Exploring Engineering, vol. 3, no. 1, pp. 2278-3075, 2013.

[25] J. Rao, and S. Dubey, "A High-Speed Wallace Tree Multiplier Using Modified Booth Algorithm for Fast Arithmetic Circuits", Journal of
Electronics and Communication Engineering, vol. 3, no. 1, pp. 7-11, 2012.
[http://dx.doi.org/10.9790/2834-0310711]

[26] K. Babulu, and G. Parasuram, "FPGA Realization of Radix-4 Booth Multiplication Algorithm for High Speed Arithmetic Logics",
International Journal of Computer Science and Information Technologies, vol. 2, no. 5, pp. 2102-2107, 2011.

[27] M. Thomas, "Design and Simulation of Radix-8 Booth Encoder Multiplier for Signed and Unsigned Numbers", International Journal for
Innovative Research in Science & Technology, vol. 1, no. 1, pp. 2349-6010, 2014.

[28] "FPGA Implementation of 8-bit multiplier with reduced delay time", International Journal of Computer and Communication Engineering,
vol. 2, no. 6, p. 665, 2013.

[29] M.C. Sudeep, S. Bimba, and M. Vucha, "Design and FPGA implementation of high speed Vedic multiplier", International Journal of
Computer Applications, vol. 90, no. 16, 2014.

[30] V. Škobic’, B. Dokic’, and E. Ivanovic’, "FPGA Implementation of Montgomery Modular Multiplier", In: 5th Small Systems Simulation
Symposium, Serbia, 2014.

[31] A. Kareem, M. Vardhana, and P. Kumar, "VLSI Implementation of High Speed-Low Power-Area Efficient Multiplier Using Modified Vedic
Mathematical Techniques", Recent Patents on Computer Science, vol. 9, no. 3, pp. 216-221, 2016.
[http://dx.doi.org/10.2174/2213275908666150220203501]

[32] Available from https://www.xilinx.com/products/silicon-devices/fpga.html

[33] A. Saado, "Canonical signed digit (CSD) coefficient multiplier with optimization",US Patent 7680872 B2, Mar 16, 2010

[34] M.D. Ercegovac, and T. Lang, Digital Arithmetic., Morgan Kaufmann Publishers, Elsevier: San Antonio, USA, vol. 1. 2004.

[35] Available from https://forums.xilinx.com

© 2018 Abu Al-Haija and Ahmad.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a
copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.

http://dx.doi.org/10.15662/ijareeie.2014.0308081
http://dx.doi.org/10.17485/ijst/2015/v8i22/79331
http://dx.doi.org/10.1109/ICDCSyst.2012.6188747
http://dx.doi.org/10.9790/2834-0310711
http://dx.doi.org/10.2174/2213275908666150220203501
https://www.xilinx.com/products/silicon-devices/fpga.html
https://forums.xilinx.com
https://creativecommons.org/licenses/by/4.0/legalcode

	Fast Radix-2 Sequential Multiplier Using Kintex-7 FPGA Chip Family
	[Subheading:]
	Subheading:
	Background:
	Objective:
	Methods:
	Results:
	Conclusion:

	1. INTRODUCTION
	2. RELATED WORK
	3. BRIEF BACKGROUND
	3.1. Carry Save Addition (CSA)
	3.2. Carry Lookahead Adder (CLA)

	4. HARDWARE IMPLEMENTATION AND SPECIFICATIONS
	5. RESULTS AND COMPARISONS
	CONCLUSION
	CURRENT & FUTURE DEVELOPMENTS
	CONSENT FOR PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES

