
 The Open Cybernetics and Systemics Journal, 2008, 2, 93-100 93 

 

 1874-110X/08 2008 Bentham Science Publishers Ltd. 

Stable Genetic Adaptive Control by Using a 2-DOF Control Scheme 

Asier Ibeas
*
 

Depto. de Telecomunicaciones e Ingeniería de Sistemas, Escuela Técnica Superior de Ingeniería. Universidad 

Autónoma de Barcelona, 08193 Cerdanyola del Vallès (Bellaterra). Barcelona. Spain 

Abstract: This paper introduces an adaptive controller based on the online genetic estimation of the parameters of the 

system. The main novelty of the paper relies on the fact that the stability of the genetic adaptive scheme is fully tackled 

proving the boundedness of all systems signals under weak conditions on the genetic population evolution. Thus, the pro-

posed set-up is flexible enough to be integrated within a great variety of genetic estimation algorithms. The goal is 

achieved by using a certain Two-Degree-of-Freedom (2-DOF) based implementation of the control law. The procedure for 

the genetic controller synthesis is described while its properties and requirements are stated. 
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1. INTRODUCTION 

 Genetic Algorithms (GAs) have been revealed as power-

ful tools for solving a wide variety of problems since their 

introduction by Holland in 1975 [1]. Basically, they act as 

optimization tools able to tackle complex problems which 

are practically intractable from an alternative (analytically) 

point of view. Several areas in Science and Engineering have 

benefited from its approach such as Economics, Structural 

Design, Network Design, Game Theory and Operations Re-

search for citing few of them [2]. Moreover, the GA has also 

found application in the area of automatic control systems 

design [3]. Typically, for this, the controller is formulated by 

using a set of parameters which the GA tries to optimize in 

some sense by using simulation of the potential operation of 

each set of candidate values in the closed-loop scheme. GA 

based approaches to controller design can be condensed into 

three major categories. 

i) The first one consists in integrating GAs with fuzzy 

or neuro-fuzzy controllers with the aim at improving 

(or decreasing) the set of rules necessary to design the 

fuzzy subsystem (see, for instance [4-6]). 

ii) The second one consists in using the GA in the offline 

optimization of the controller or observer composing 

the closed-loop [7]. There are several works covering 

this topic, including the observer design [2], state 

feedback control laws [8,9], PID control [7,10] and 

 
H  optimization [3]. 

iii) Finally, the third approach consists in the use of GAs 

to the online (and, hence, time-varying) determination 

of the controller. Thus, this approach fits in well with 

the adaptive control frame. 
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 There are several works pointing out the advantages of 

using GA in the online estimation of the controller parame-

ters [10-13]. Reported advantages include the fast conver-

gence to adequate controller parameters [12,14], direct iden-

tification of poles and zeros instead of plant coefficients and 

improved robustness properties in comparison with tradi-

tional recursive estimation schemes [10,12,15]. The conclu-

sion of these works is that GAs are powerful tools to be in-

cluded within an adaptive control framework. 

 Nevertheless, most of these works (even the most recent 

ones) do not tackle explicitly the stability issue in their de-

velopment [12]. Main reason for this relies on the fact that 

GAs are heuristic algorithms whose evolution is basically 

dictated by probabilistic rules which makes difficult to pre-

dict the evolution of the controller parameters used to im-

plement the control law. Hence, works covering the genetic 

adaptive control of systems do not usually include the stabil-

ity analysis of the resulting closed-loop but just a demonstra-

tion, through simulation or experimental work, of the advan-

tages provided by this kind of controllers [10,12]. Further-

more, those exploring the stability issue usually include a 

number of probabilistic-type hypotheses on the parameter 

evolution in order to guarantee the closed-loop stability (see, 

for instance [11]). 

 In this paper, a Two Degree of Freedom (2-DOF) ap-

proach to implement genetic adaptive control laws is pro-

posed. The main interest of the proposed approach relies on 

the fact that main advantages of the genetic estimation can 

be taken into account when designing the scheme while the 

stability of the closed-loop system can be explicitly tackled 

and guaranteed. Indeed, the stability of the closed-loop is 

proved under weak feasible conditions on the parameter evo-

lution. This benefit is obtained by using a certain implemen-

tation of a 2-DOF control law introduced in [16,17]. In this 

way, stability is mainly guaranteed by an internal fixed feed-

back controller while the tracking performance is achieved 

by genetically modified external compensators. Thus, the 

stability of the complete scheme is displaced to the internal  
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compensator being weakly influenced by the evolution of the 

genetic population. Hence, basic advantages of GA can be 

linked with guaranteed stability properties. 

 The paper is organised as follows. Section 2 introduces 

the problem formulation and main objectives. In Section 3, 

the genetic design of the controller is commented. Section 4 

states the stability properties of the resulting closed-loop 

system. Section 5 is devoted to simulation examples while 

conclusions end the paper. 

2. PROBLEM FORMULATION 

 We consider the problem of controlling a LTI continu-

ous-time system described by: 

  

G(s) =
M (s)

N (s)
              (1) 

where M(s) and N(s) are polynomials in the Laplace variable 

s, with unknown parameters, satisfying the following as-

sumption. 

 Assumption 1. Upper-bounds for the plant polynomial 

degrees are known: 

  deg N (s) n,deg M (s) m  

with   n m 0  known.          

 Thus, we are considering the nominal model affected of 

parametric uncertainty while no unmodeled dynamics are 

taken into account. 

 Since it is very common nowadays to control in practical 

engineering a continuous-time process using a discrete-time 

controller, we will consider a discrete model of the plant in 

order to synthesize a discrete-time controller. Therefore, the 

design procedure proposed in this paper will apply to both 

discretized continuous systems and to purely discrete ones 

just avoiding the previous discretization step. This setup is 

preferred rather than an original continuous-time one in or-

der to incorporate into a theoretical framework the way in 

which control systems are usually now implemented in prac-

tice. 

2.1. Discrete Plant Model 

 A discrete model of (1) is obtained using a zero order 

hold (ZOH) with sampling period 
s

T  according to: 

   

Z
1 e

sT
s
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with 
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where  Z  denotes the zeta-transform and 
  
z

1
q

1
 (while 

 
z q ) is equivalent to the one sampling period backward 

operator (one sample period ahead operator). Moreover, 

upon Assumption 1 holds, the following degree relations 

appear in the discrete plant (2): 

  
deg D

p
(z) n,deg N

p
(z) m             (3) 

since a ZOH has been used to obtain the corresponding dis-

crete-time model [18]. The knowledge of these orders allows 

specifying the size of the chromosomes in the GA formula-

tion. Hence, the original problem is reformulated into the 

control of a discrete-time linear system with parametric un-

certainty. Thus, since the plant parameters are unknown a 

genetic estimation algorithm will be used to estimate the 

value of the polynomials 
  
N

p
(z), D

p
(z)  converting them 

into time-varying, denoted 
  
N̂

pk
(z), D̂

pk
(z) . The GA will be 

used to obtain such estimated polynomials in such a way that 

its use within an online adaptive control scheme results into 

an asymptotically stable closed-loop system. Nevertheless, 

its utilization within an adaptive controller usually lacks 

from stability considerations as commented in Section 1. In 

the sequel, an implementation of a 2-DOF control law allows 

linking the advantages of the genetic estimation along with 

guaranteeing stability properties under weak conditions on 

the evolution of the genetic population which is the main 

contribution of the paper. 

3. CONTROLLER DESIGN PROCEDURE 

 This Section describes the control scheme proposed to 

assess the stability within a genetic adaptive estimation 

scheme framework for the plant with parametric uncertainty 

(1) through its discrete-time counterpart (2). Firstly, the basic 

topology of the control scheme, is introduced in the follow-

ing section. 

3.1. Two Degree of Freedom (2-DOF) Control Law Im-
plementation 

 In this section we concentrate on the basic 2-DOF control 

law implementation introduced in [16,17] and displayed in 

Fig. (1) for convenience. 

 There are several implementations of the general two 

degree of freedom controller. However, as pointed out in 

[19], not all of them possess the same closed-loop properties. 

Thus, the above topology is the most adequate to be used 

within the genetic algorithm context. Within this configura-

tion, the transfer function from the reference 
 
r

k
 to the output 

 
y

k
 is computed to be (dropping z hereafter for the sake of 

simplicity): 

  

T
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p
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for a feedback controller realization 
  
C

0
= S R  where a 

pole-zero polynomial cancellation has been explicitly indi-

cated in the closed-loop calculation in order to show the role 

played by each compensator in the closed-loop properties. 

Thus, the pole-zero cancellation can be performed in (4) 

when 
 
RD

p
+ SN

p
 is Schur. Note that this polynomial repre-

sents the dynamic equation of the closed-loop system ap-

pearing when a single degree of freedom configuration (i.e., 

setting 
  
C

1
= 0;C

2
= 1  in Fig. (1)) is used. Hence, the com-

pensator 
  
C

0
 can be designed to stabilize the system as it 

were the unique controller in the closed-loop (stabilising 

compensator). Having stabilized the inner-loop, the pole-

zero polynomial cancellation in (4) can be finally performed 

leading to an output only conditioned (in the steady-state) by 

the external transfer function 
 
N

p
C  according to: 

   
y

k
= Z

1 N
p
Cr +

k
            (5) 

where 
 k

 is an exponentially vanishing signal associated 

with potential non-zero initial conditions of the cancelled 

poles. Hence, the steady-state output of the closed-loop is 

determined by the choice of the compensator C in 
 
N

p
C  

regardless the value of 
  
C

0
stabilizing the inner-loop. Thus, 

within this control configuration, both controllers can be 

designed according to a differentiate design criteria, pointing 

out their independence during the controller design process. 

Therefore, the problem is decomposed into the design of a 1-

DOF robust stabilising compensator, followed by the design 

of a tandem of external compensators which are aimed at 

selecting the behaviour of the output. The above scheme is 

enhanced when parametric uncertainty in the nominal model 

is taken into account in the following Section. 

3.2. 2-DOF Control Topology in the Presence of Para-
metric Model Uncertainty 

 If a nominal model of the plant, denoted by 
  
N̂

p
, D̂

p
, is 

known instead of the actual plant 
  
N

p
, D

p
, the original 

closed-loop control diagram (Fig. 1) becomes: 

which implies a closed-loop transfer function 

  

T
yr

= N
p
C

RD̂
p

+ SN̂
p

RD
p

+ SN
p

             (6) 

 Therefore, in the case when a parametric mismatch be-

tween the plant model and the actual plant is taken into ac-

count, the above separation principle is no longer valid since 

the pole-zero polynomial cancellation in (4) cannot be per-

formed in (6). Hence, the closed-loop response is impacted 

(and, in general, degraded) by the poles of the inner control 

loop. 

 Moreover, it can be concluded from (6) that the compen-

sator 
  
C

0
 is still playing the same role as before: it has to 

stabilize the inner loop but now, the performance is associ-

ated to all compensators
  
C

0
,
  
C

1
 and 

  
C

2
 (involving 

  
D̂

p
 and 

  
N̂

p
respectively) losing the differentiate design criteria. 

 Nevertheless, by converting the external compensators 

into adaptive, we will be able to correct the (potential) mis-

match between the nominal model and the real system pro-
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Fig. (1). 2-DOF control law implementation. 
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Fig. (2). 2-DOF control scheme in the presence of uncertainty. 
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viding the approximate pole-zero cancellation in (6) achiev-

ing a certain level of performance of the closed-loop while 

the stability is (mainly) guaranteed by the internal compensa-

tor. 

 In particular, we will consider the scenario where a stabi-

lizing fixed (time-invariant) controller 
  
C

0
 is obtained some-

how from the nominal plant model 
  
N̂

p
, D̂

p
 while converting 

the external compensators 
  
C

1
,C

2
 into time-

varying
  
C

1k
,C

2k
. Thus, the following structure is considered 

for the external compensators obtained by setting the values 

of the estimated polynomials 
  
N̂

pk
, D̂

pk
 in 

  
C

1k
,C

2k
while 

maintaining the same transfer function C in Fig. (2): 

  
C

1k
= D̂

pk
C , 

  
C

2k
= N̂

pk
C            (7) 

 The polynomials 
  
N̂

pk
, D̂

pk
 are to be estimated taking the 

advantages of the GAs. In this way, the stability of the 

closed-loop is achieved by the internal feedback compensa-

tor while the genetic estimation is to be used to update the 

out-of-the-loop ones through the plant identified polynomi-

als. Thus, a stable adaptive scheme able to achieve adequate 

closed-loop performance is proposed while incorporating the 

advantages of a genetic estimation. Hence, within this con-

trol configuration, the stability problem is displaced to the 

design of the stabilizing controller while the advantages of 

the genetic estimation are used in the external compensators 

design. Thus the stability problem is separated from the de-

sign of the genetic algorithm leading to a modular way to 

design the genetic control law. 

 Note that, in this scenario, we do not worry about the 

design of the internal controller: it is obtained using any of 

the robust design procedures proposed in the literature for 1-

DOF control configurations (see, for instance [20,21]). The 

unique requirement on 
  
C

0
 is that it has to stabilize the in-

ner–loop system. Thus, the following Assumption is made in 

order to carry out the stability proof: 

 Assumption 2. The fixed feedback controller 
  
C

0
 stabi-

lizes the actual inner loop.              

3.3. Genetic Estimation of the Plant 

 The genetic estimation of the plant acts modifying the 

external compensators. In order to subsequently state the 

stability of the closed-loop with time-varying external sub-

systems, the following slight technical assumption on the 

GA population evolution is made: 

 Assumption 3. The population of the genetic algorithm is 

bounded at all time.                

Remarks. 

 1. This boundedness property is typical in many genetic 

algorithms used in identification (see, for instance [10,12]), 

and hence, is a very slight assumption on applications of 

GAs to control. 

 The above assumption is needed to guarantee closed-loop 

stability and enables the use of any genetic algorithm pro-

posed in the literature satisfying Assumption 3 to perform 

the identification process. This makes the proposed setup of 

great flexibility and interest. However, in order to show 

some simulation examples showing the usefulness of the 

proposed scheme, the following genetic estimation algorithm 

is proposed, following the steps given in [14]. 

3.4. Genetic Estimation Algorithm 

 This Section contains an estimation algorithm inspired 

from GAs. Its main purpose relies on the fact of showing, in 

examples, the behaviour of the proposed 2-DOF scheme. 

Thus, in the following, a description of the algorithm is 

stated without proving that Assumption 3 is satisfied while 

testing it through simulation examples. 

3.4.1. Codification 

 Chromosomes (individuals) will be real-valued vectors 

with size 
  
(n + m +1)  from Assumption 1. The chromo-

somes will be denoted by 
  k

( i)
 at each sampling time 

   
t = kT

s
,k  for 

  
i = 1,2,...,n

c
, where 

 
n

c
 is the total 

number of chromosomes (or size of the population). These 

vectors are selected in such a way that the corresponding 

output of the plant could be written for each chromosome as: 

  
y

k

( i)
=

k

T

k

( i)
             (8) 

   k

T
= y

k 1
y

k 2
y

k n
u

k n+m
u

k n+m 1
u

k n
 

   k

( i)
= a

n
a

n 1
a

0
b

m
b

m 1
b

0
 

where 
 k

 is the so called regressor, containing input-output 

measured data form the system. In other words, chromo-

somes are selected to fit in with the typical inner product 

realization of the discrete-time plant proposed, for instance, 

in [22]. 

3.4.2. Fitness Evaluation 

 The fitness of each individual is evaluated using the de-

viation of each potential chromosome output (8) from the 

actual output of the plant 
 
y

k
. In particular, the fitness meas-

ure at time 
   
t = kT

s
,k  is: 

  

J
k

( i)
=

1

y
k

y
k

( i)( )
2

+

; 
  
i = 1,2,...,n

c
           (9) 

where 
  
J

k

( i)
 denotes the fitness of individual 

  k

( i)
 and  > 0  

is a small positive offset used to guarantee the well-

posedness of (9). Note that the best individuals are those 

with the largest fitness (Fig. 9), since those reveal a closer 

behaviour of them to the behaviour of the actual system. In 

[14], interested reader can find a number of alternative fit-

ness functions. 
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3.4.3. Offspring Generation and Mutation 

 The new individuals for the next generation (offspring) 

are obtained from the previous generation (parents) using the 

algorithm 1, where 
 

best  denotes that the element labelled 

as ‘best’ has been removed from the ‘for’ loop and p is a 

random number belonging to 
 

1,1 . 

 The algorithm works as follows. The designer initializes 

the tentative chromosomes either in a random way or taking 

into account the available ‘a priori’ information on the sys-

tem. Then, at each sampling time, the potential set of plant 

parameters are evaluated according to their fitness evaluation 

index (9). Then, the best individual is selected from the set 

of potential candidates. This element is used to parameterize 

the external compensators at time ,
s

t kT k= �. Moreover, 

from the original set of individuals, the offspring is obtained 

by guiding the remaining elements in the direction of the 

best one with a gain proportional to the weighted distance 

from the original individual to the best one. The weight is 

proportional to the difference in their evaluation functions. 

The best individual is not modified in this step. This process 

is schematically described in Fig. (3). 

 Finally, as Fig. (4) below shows, the best individual is 

randomly mutated with amplitude proportional to its distance 

to the second best vector. Convergence properties are not 

analytically stated, but simulation examples will show that 

population finally converges to a finite fixed value of the 

estimated parameters as required by Assumption 3. 

 Best
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•

•

•

•

•
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•

•

• •

•
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•
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•
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Fig. (3). Generation of the offspring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1. Generation of offspring 

{ , 0> ,
( )

0 , 1, 2,...,i

c
i n=  provided by the designer} 

for 1k >  

 { }( )arg max i

k
best J  

 { }( )

1,2,..., ...,
arg max

c

i

k
i best n

SecondBest J
=

 

 for 1,2,..., ,...,
c

i best n=  do 

  if 
( ) ( ) 0best i

k k
>  

   

( ) ( )

( ) ( ) ( ) ( )

1 ( ) ( )

best i

i best best i k k

k k k k best i

k k

J J
+

= +  

  else 

   
( ) ( )

1

i best

k k+
=  

  end_if 

 end_for 

 ( )( ) ( ) ( ) ( )

1 1best best SecondBest best

k k k kp
+

= +  // Mutation 

 
( )ˆ ˆ, best

pk pk kN D // Updating of the external compensators 

end_for 

{
( )i

k
, ˆ ˆ,pk pkN D  at each time ,

s
t kT k= � 



98    The Open Cybernetics and Systemics Journal, 2008, Volume 2 Asier Ibeas 

 Best

Individual
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Fig. (4). Random perturbation (mutation) of the best individ-

ual. 

3.5. Control Law 

 The discrete-time control law composed of the sequence 

of control inputs { }
0k k

u
=

 is generated according to the dia-

gram shown in Fig. (2) by compensators 
0 1 2
, ,

k k
C C C . In 

order to guarantee the adequate behaviour of the scheme, the 

following feasible technical assumptions are considered. 

 Assumption 4. The reference signal r is bounded.      

 Furthermore, since the external controller C  determines 

the behaviour of the closed-loop response (4),(6) it must sat-

isfy the following assumption to guarantee closed-loop sta-

bility. 

 Assumption 5. The compensator C  is strictly stable.   

 There are several ways to generate the control law de-

pending on the design of the compensators. Interested reader 

can consult, for instance [16,22]. Finally, the continuous-

time control law is obtained by using a zero-order hold: 

( )
k

u t u= , [ ), ( 1)
s s

t kT k T+           (10) 

4. CLOSED-LOOP STABILITY 

 With the above definitions for the plant and control law 

implementation, we are able to state the stability result. 

 Theorem 1. The feedback control system for the plant (1) 

through its discretized model (2) described in Fig. (2) with 

compensators satisfying Assumptions (2),(5) is globally sta-

ble provided that genetic estimation and reference signal 

satisfy Assumptions (3),(4).              

 The proof of this theorem is contained in Appendix I. In 

particular, in order to use the above stability result, the evo-

lution of the population of the GA has to be bounded at all 

time. The key property to asses the stability of the closed-

loop despite any probabilistic GA (satisfying Assumption 3) 

being used is the particular implementation of the control 

law which allows displacing the stability of the system to the 

internal controller while using the genetic estimation algo-

rithm, with all his advantages, in the design of the external 

compensators. 

 The proof is organised into three steps: 

1. The output of the first compensator 
1

C  is proved to 

be bounded provided Assumptions 3, 4 and 5 hold. 

2. Similarly, the output of the second compensator 
2

C  

is proved to be bounded provided Assumptions 3, 4 

and 5 hold. 

3. Finally, the closed-loop system is written as the inter-

nal-loop with two external bounded input signals, 

namely, 
1
r  and 

2
r  as shown in the following Fig. (5). 

 Hence, the stability is deduced from the corresponding 

closed-loop calculation provided that Assumption 2 holds by 

using the (previous proved) facts that 
1
r  and 

2
r  are bounded. 

Technical details are contained in Appendix I. Furthermore, 

in the following Section a simulation example showing the 

usefulness of the proposed approach is presented. 

5. SIMULATION EXAMPLES 

 This section contains some simulation examples concern-

ing the genetic estimation algorithm described in the previ-

ous Section 3. The system to be controlled is the discrete-

time plant: 
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Fig. (5). System with external signals. 
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2

3 2

0.6 0.0875
( )

1.9 0.195 0.73

z z
H z

z z z

+
=

+ +
 

with associate parameter vector 

[ ] [ ]1 6
1.9 0.73 0.195 1 0.6 0.0875

T
= =  

 The population is composed of 250 individuals randomly 

initialized, while the updating of the offspring is done by the 

algorithm proposed in the previous Section 3. The internal 

controller used to stabilize the inner loop (and, hence, satis-

fying Assumption 2) is selected to be: 

2

0 2

1.4286 0.5714 0.1429
( )

0.4286 0.0857

z z
C z

z z

+
=

+
 

 The reference signal is 

( ) sin(4 ) 3sin(6 ) 2sin(8 )r t t t t= + +  

with a sampling period of 0.02sec
s

T = . The following 

simulations are obtained for the output of the control scheme 

(Fig. 6) and the evolution of the parameters of the best indi-

vidual (Fig. 7): 

 

Fig. (6). Comparison of outputs between genetic 2-DOF scheme 
and conventional adaptive one. 

 As shown in Fig. (6), the output of the system with the 

genetic estimation improves the use of a single traditional 

estimation algorithm tracking the non-constant reference 

signal stated below. This property is not surprising due to the 

relationship between multi-estimation controllers and GA 

pointed out, for instance, by the authors in [14]. Moreover, 

Fig. (6) shows the appropriate working of the control system 

with the genetic estimation introduced in Section 3.3 where 

the estimation of the parameters of the system converges to a 

finite limit. Furthermore, Fig. (7) shows, as an example, the 

boundedness of the best estimator, leading to adequate 

closed-loop performances as shown in Fig. (6). 

6. CONCLUSIONS 

 In this paper, a genetic adaptive control scheme capable 

of guaranteeing closed-loop stability is proposed. The  

 

 

Fig. (7). Evolution of the parameters of the best individual. 

control law is based on a 2-DOF scheme which displaces the 

stability requirements to an internal stabilizing compensator 

while using the genetic estimation to improve the behaviour 

of the scheme by modifying the set of external compensa-

tors. The closed-loop is proved to be stable under weak con-

ditions on the population evolution, which is only required to 

be bounded at all time, in comparison with previous works 

where the evolution of the chromosomes influenced the sta-

bility properties being difficult or even impossible to guaran-

tee. Moreover, the proposed approach is flexible enough to 

be integrated with a variety of genetic estimation algorithms 

proposed in the literature. 

APPENDIX I 

Proof of Theorem 1 

 Proof of Theorem 1. The proof is organised into different 

steps according to Section 4. 

1.- Proof of the boundedness of 
1
r . 

Consider the transfer function 

1

ˆ ( ) ( )
ˆ

( )

pk n

pk

d

D z C z
r D Cr r

C z
= =       (AI.1) 

where r denotes the reference input which is bounded by 

Assumption 4. Therefore there exists 0>  such that 

r . The state-space discrete-time representation of 

(AI.1) is: 

   

x
k+1

= A
1
x

k
+ B r

1
r

k

r
1k

= C
1

T
x

k
+ D

1
r

k

       (AI.2) 

with ( )1 1 1 1, ( ), ( ), ( )k k kA B C D  where 
  
A =

1
 is a constant 

strictly stable matrix whose eigenvalues are the constant 

strictly stable zeroes of ( )
d

C z  from Assumption 5 [22]. 

However, 
1
r  might still diverge due to presence of the time-

varying polynomial operator ˆ
pkD  [23]. The solution to (AI.2) 

is: 
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1
1

1 0 1 1

0

( )
k

k k j

k j

j

x x j r
=

= +A A B        (AI.3) 

 Upon Assumption 3 holds, there is 0b > , such that 

1 1 1( ) , ( ) , ( )k k k b<B C D  0k  

 Moreover, there are constants 1C >  and 0 1< <  such 

that 
1

k
k

CA  since 
1

A  is strictly stable. Hence, (AI.3) 

can be upper-bounded as: 

1

1

0

0

k
k k j

k

j

x C x b C
=

+  

or, equivalently: 

0

1

1

k

k

k
x C x b C+ <  0k  

provided 
0

x < , since 0 1< <  and 0
k

 as k . 

In conclusion, 
k

x < , 0k  and, hence, 

1 1 1k k k k
r x r b x b+ + <

T
C D  

 Finally proving in the boundedness of 
1
r . 

2.- Proof of the boundedness of 
2

r . 

 The relation between 
2

r  and the reference signal r is: 

2

ˆ ( ) ( )
ˆ

( )

pk n

pk

d

N z C z
r N Cr r

C z
= =  

 We consider the state-space description of the above sys-

tem given by ( )2 2 2 2, ( ), ( ), ( )k k kA B C D . As a result of the 

structure of the state-space realization being the same as in the 

previous item and the properties of the estimation algorithm 

still hold, the boundedness of 
2k

r  is obtained by repeating the 

same steps as in the first point. Thus, we have already proved 

that the signals 
1 2
,r r  are both bounded. 

3.- Representation of the closed-loop system as a system with 

exogenous inputs 

 Thus, we consider the control system with external signals 

represented in Fig. (5). The output is then computed to be: 

2 1

p p

p p p p

N S N R
y r r

D S N R D S N R
= +

+ +
 

 Since Assumption 2 holds and 
1 2
,r r  are bounded signals 

from the previous steps, the output of the above LTI system is 

also bounded. Thus, the stability of the discrete-time closed-

loop system is finally proved. Hence, provided the stability of 

the discrete-time system and considering that there is no finite 

escape time since the plant is linear, it can be concluded from 

[22] the boundedness of the continuous-time original system. 

Furthermore, since Steps 1 and 2 below hold for any 
0

x < , 

the stability is global, finally proving Theorem 1.        
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