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Abstract: In this paper, we develop algorithms for calculation of fractal measures and characteristic exponents for 

modeling of chaotic systems evolution. Using temporal localization along phase trajectories of a chaotic attractor 

reconstructed from nonlinear time series, we achieve the essential reduction of required computer resources that allows 
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1. INTRODUCTION 

 The problem of chaotic systems (CSs) investigation 

while their temporal evolution simulated on data measured 

or obtained from respective differential equations has 

become a problem of great significance in various fields of 

physics [1], as well as in medicine and engineering [1-3]. 

Time series (TS) obtained from a CS are essentially 

nonlinear [1-3]. and often lead to a multidimensional 

attractor in a relevant phase space [3-7]. Namely, it occurs at 

investigation of highly-developed turbulence where higher-

order modes become important for increasing reliability [7]. 

 The challenge of CS’ synchronization deals with their 

stability and predictability, both characteristic exponents and 

fractal dimensions describing a CS’ attractor and being used 

at development of synchronization methods [4]. The 

algorithms of the fractal analysis of chaotic attractors [1-7] 

involve approximation methods of finite sets consideration 

and provide an opportunity to detect self-similar properties 

of CS’ temporal evolution through digital processing of 

phase trajectories data. But it is worth noting that the main 

problem of numerical analysis of TS in such high-

dimensional cases is that the computation complexity of 

nonlinear analysis algorithms essentially increases with 

enlarging a dimension m (as a rule exponentially [1-5]) that 

makes them hardly to implement. So, in this paper we 

develop algorithms providing the essential reduction of 

computation time and required memory due to the properties 

of temporal localization in relation to points of an attractor. 

2. THE FRACTAL MEASURES CALCULATION 

 For reconstruction of phase trajectories forming an 

attractor 
m

T
R , let us use the method of delayed coordinates 

[1,5,8]. 
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where jtj =)( , j = N,...,2,1  is a TS of a kinetic variable 

measured from the CS with a fixed time interval t , 

tp=  is the delay time, p is an integer. The points 

m)m(

i
Rx , 

m
R  is an Euclidean phase space with a 

dimension m, i =
)m,p(L,...,,21 , the common quantity of the 

attractor points is given by )1(),(
= mpNL

mp
. In 

accordance with (1), phase trajectories forming the attractor 
m

T
R  can be represented as a superposition of p rarefied 

sequences p,,, …
21

 shifted by one sample with 

respect to each other, those are defined as 
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 As it was recently shown, rarefying on attractor points is 

reasonable at numerical simulation of fractal-topological 

analysis [9] for creating a subset of points with decorrelated 

components. Otherwise, using points that are too close 

together in time leads to aggravating accuracy of the fractal 

analysis. So, we use only one pX  for numerical experiments 

and denote the components of p  for brevity as 

},,,{ 21
pN

p …= . 

 At the realization of Grassberger - Procaccia algorithm 

(GPA) [1,5], the center of a cell (m-dimensional ball with a 

radius l) just coincides with a point 
)(m

i
x  of a phase 

trajectory. At the same time, the direct use of the GPA leads 

to a multiple mutual covering of such cells that has the 

explicit difference in comparison with the initial 

consideration of a fractal analysis, namely regarding the box-

count method where segmentation cells do not cover each 

other at all [4]. So, additional rarefying at the fractal analysis 
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in this section allows to reduce the above mentioned 

covering. 

 Since 
jiij
rr =  and 0=

ii
r  for distances on 

p
, so the 

square distance matrix LL  can be reduced to the upper 

triangle one )(~ m  as follows: 
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where we denote ),( mp

pLL = , while distances are calculated 

as 

2
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 Taking into consideration cyclic (in other words, sift-by-

one coordinate property) within one sequence 
s

 (that can 

be obtained from (3), see ref. [10]), one can write the 

formula for transformation of distances along the diagonals 

of (2) 

qi+1, j+1 = qi, j ( i j )
2
+ ( m+ i m+ j )

2
,         (4) 

where 
2

,
)(
jiji
rq = . The proposed algorithm for calculation 

of a fractal dimension implies detailed calculation of an 

Euclidean norm (3) for the upper row of (2) only. All other 

rows are calculated along the diagonals of (2) taking into 

account the following expression being obtained from (4): 

22

,1,1
)()(

++++++++
+=

imimiiiiii
qq ,        (5) 

where ij=  is constant for all elements of the certain 

lateral diagonal: 2,...,2,1= L . In this process, one passes 

successively through all diagonals of (2) (both main and 

lateral ones) in the order of decreasing a total number of their 

elements. As usually L>1000 for supplying comprehensive 

statistical investigation, so proposed approach provides that 

calculation complexity for 
ji
r  determination practically does 

not depend on m (because the main quantity of 

computational operations for calculation of distances is 

implemented by means of (5)), in contrast to direct 

application of the box-count method or the GPA [1, 5]. 

 Such modification has the advantage comparing the 

introduction of the "supreme" norm [11]. (where the 

replacement of a vector norm by the largest coordinate 

occurs) because in our case the norm of a vector does not 

change and therefore we use the real distances on phase 

trajectories that provides the better accuracy of calculation 

process. 

 The further realization of proposed approach is as 

follows. After calculation of all distances composing the 

matrix 
)(~ m
, samples for l  are obtained as lll

kk
+=

+1
, 

where 
l
Nk ,...,2,1=  and initial size is chosen as 

lnal +=
111

,            (6) 

the interval value is l =
a2 a1
N1

;  }{min
,1 ijji
ra = ; 

}{max
,2 ij
ji
ra = . For calculation of correlation integral C( l ) 

3
, 

one can use the property that C( l ) is just averaged 

probability of the event that the distance between two 

arbitrary chosen points of 
m

T
R  is less than l . So, the 

following is valid 

C( l )=
r
L

ln )(
,            (7) 

where )(ln  is the number of distances involved by (2) 

(except zeros) whose value is less than l , and the value 

2

)1(
=

LL
L
r

 is the total number of nonzero elements in (2). 

According to the proposed computer algorithm, )(ln  is 

calculated successively along every lateral diagonal 

simultaneously with calculation of 
+ii

r
,

 by (5). Estimation 

of )(
k
ln  within a certain diagonal includes the following 

stages allowing minimization of comparison operations: (i) 

sorting the string }{ , +ii
r  in the order of increasing their 

elements resulting in }{ )(

,

sort

ii
r

+
; (ii) calculation of a number of 

distances )(
k
ln  whose magnitude is less than 

k
l  that is 

implemented by the following recurrent relationship (see the 

code in the Appendix below, the part of the program called 

as THE COUNT OF HITS ON DIAGONALS): 
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k
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where )(
1
ln  is found by successive comparison of 

)(

,

sort

ii
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+
 

and 
1
l , while at estimation of )(

2
ln  the comparison process 

begins from 1)(
1
+= lni  (similarly this process is running 

for subsequent values of 
k
l ) that reduces a number of 

operations. When all 1L  diagonals have been passed, the 

total quantity of hits is )(
k
ln = )(

k
ln . 

 The parameters 
11

,, NNn
l

 in (6) are chosen so that the 

following property would be valid at the range of changing 

l : ln ( )l ) C(l ln , and hence the correlation dimension is 

given by 

2
D =

( )l
) C(l

ln

ln
.            (9) 

 It should be noted that the calculation complexity of 

developed algorithm increases with enlarging time series 

length N as 2 , where 
N

NN +
=  describes the growth of 
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N (because of quadratic growth of a number of elements in 

(2). This property is characteristic of all methods operating 

with 
ji
r  involved by the attractor. But due to minimization 

of operations according to (5), enlarging N results in far less 

calculation complexity than in a case of direct use of the 

correlation integral method, inasmuch as the initial 

calculation complexity of proposed algorithm is reduced due 

to rarefying TS and application of the localized approach to 

calculation of distances. 

3. NUMERICAL SIMULATIONS 

 As a model TS, we use the TS obtained after 

discretization of the Mackey-Glass equation by the direct 

Euler approximation 

1+i
= )(t

n~ii
+ ,          (10) 

where =1- tb; =n
~

t

T
; =)(

n~i c

n~i

n~i

)(

a

+1

, and 

parameters in it and initial conditions have been fixed as well 

as in [5,6]. The equation (10) really provides the behavior 

whose complexity and chaos measures increase with the 

delay time T  (see ref. [6] where calculated TS are 

represented). In this paper, we also construct phase 

trajectories of 
3

T
R  by (1) at =6, 5.0=t  (Fig. 1). 

Evidently, for 17=T where the system is at the beginning 

of its chaotic behaviour (since transition to chaos proved to 

occur at 8.16=T ), the evolution of the system proceeds on 

the quasiperiodic trajectories. From the other hand, at 

100=T  (Fig. 1b) the trajectories acquire irregular 

behaviour and after elapsing a certain time fill some 

restricted region of the phase space. Thus, in spite of its 

approximate character, this construction really reflects 

transition to the fully developed chaos with increasing 

dimension. 

 Next, we implemented the calculation of the fractal 

dimension by (1)-(10) for T =30 and T =100 using (for 

better accuracy) the following parameters of (10) 

discretization: t =0.25, p=24, while 5000=pN  and 

20000  for integer dimensions 6
0
=m  and 18 respectively. 

The pN  value defines the length of TS really used for 

calculations (i.e. after rarefying), while initial length 

pNpN = . The results of calculations are shown in Figs. 

(2, 3). One can see that log-log renormalization really 

linearizes the dependence  ) C(l  versus l . The values of 
2
D  

determined from calculated dependencies are as follows: 

2
D =2.9; 9.4 respectively for T =30 and 100, that is 

similarly to results obtained in ref [5]. 

 The values of parameters in (6) for our computer 

experiments were 1000
1
=N , 1,50 nN

l
= =5. Evidently 

the boundaries of fractal dimensions tend to enlarge with 

growth of T  as follows from Fig. (3). 

 

 At the computer realization of the code (see the 

Appendix), the largest time was expended for calculation of 

the initial TS (the part CALCULATION OF THE MODEL 

TIME SERIES), approximately 90%. At growing N, we  

detected that the time of fractal analysis grows more slowly 

than the time 
TS
t  of TS calculation. Since Nt

TS
, one can 

conclude that the time of fractal analysis using this code 

grows with N even more slowly than linearly. 

 

 

Fig. (1). Phase trajectories of the chaotic attractor for the system 

with nonlinear time delay: ( ) T =17; (b) T =100. 

 The time of additional calculations (i.e., the fractal 

dimension itself through distances comparison as described 

in section 2) is reduced due to localized properties along 

diagonals in (2). Such localized approach is used in the code 

twice: at calculation of EPS and probabilities of points 

vicinity. It is worth noting that permutation properties of 

cycles in the part “THE COUNT OF HITS ON 

DIAGONALS” are also used that leads to additional 

reduction of computer resources. 
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Fig. (2). The plot of C( l ) vs l  for different delay times, namely (a) 

30=T ; (b) T = 100.  

4. INSTABILITY ESTIMATION OF THE MAPS 
UNDER INVESTIGATION 

 In this section, we calculate the characteristic exponents 

of instability by the analytical scheme developed in [6, 12]. 

This approach based on the consideration of a functional 

matrix for the local map allows us to consider all functional 

dependencies that arise at construction of the complete TS 

by (10). Some other analytical schemes involving the 

restricted functional relations in Takens’ phase space are also 

investigated. 

 In the complete scheme of discrete approximation [6,12], 

the characteristic exponents are calculated as follows: 

kk
M
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1
ln += ,         (11) 
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 are the eigenvalues of the internal product which 

is of the form 
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1
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while its components are UFV = ; 
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~
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t

k

k
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U  and F are the binary matrices: lower triangle matrix 

=jiU ,)(
;,0

;,1

otherwise

jiif
  

and permutation matrix providing the cyclic shift [12]. 

 

 

Fig. (3). The plot of ln C( l ) vs ln l  for different delay times (log-

log renormalization of dependencies displayed in Fig. (2)): a) 

30=T ; b) 100=T . 

 At the numerical simulations of developed analytical 

scheme, M=100 and t=0.25, while the corresponding 

derivatives have been calculated from the samples obtained 

of the TS using the relationship derived in ref. [6], N =M n
~

. 

The complete spectrum of the characteristic exponents is 
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shown in Fig. (4). These numerical results really prove that 

the quantity of positive characteristic exponents increases 

with T . Since 
k

 are considered as topological invariants 

of the attractor [1], those can reflect the temporal evolution 

of the system and its averaged instability. 

 

 

Fig. (4). The plot of the characteristic exponents 
k

: a) 30=T ; 

b) 100=T ; the displayed region of k is restricted proportionally 

T . 
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one can see that it reflects a shift by one sample and 

therefore is of Frobenius form, where 

i
= i

nmp )1
~
( +

. After numerical calculations of the 

eigenvalues of the inverse multiplication 
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and its averaging, we detected that the accuracy of this 

approach of describing instability is less than used above 

(see (11) – (12)), because it provides less smooth curve of 

the spectrum and reduced quantity of characteristic 

exponents, for the reason of reduction of the map dimension. 

 One more approach that is worthy of exploration is the 

map corresponding to the minimal shift along the phase 

trajectory (1), namely 
)(

1

)( m

i

m

i
xx

+
. Taking into account (1), 

(10), one can show similarly to 
6
 that the functional matrix of 

the map is of the triangle Toeplitz form, i.e. 
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where 
i
=

i

l )( , while 
i

l )(  does not depend on the 

point number. The inverse multiplication 
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can be calculated for such a case in the exact analytical form, 

namely 
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where 
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jM  is the multiplication of the triangle 

matrixes 
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and =
i
ˆ 1)1(/ +pm

i , while the matrix 
)( p

B  is the diagonal 

one consisting of the polynom on . But using this 

approach, the characteristic exponents corresponding to 

integrated map can not be expressed through eigenvalues, 

and singular values calculation with additional 

transformations would be useful. For solving this problem 

through eigenvalues, the shift properties as in (13) should be 

taken into account. 
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5. CONCLUSIONS 

 Thus, the algorithms based on temporal localization 

regarding points of attractor is developed. It allows the 

essential reduction of required experimental resources at the 

expense of minimization of computational operations. 

Numerical simulations with the CS containing the nonlinear 

delayed feedback described by a nonlinear differential 

equation with retarded argument (that is very typical for 

cybernetics and automatic control) proved high accuracy of 

determination of topological characteristics (the fractal 

dimension and characteristic exponents). The represented 

algorithm is applicable for the sake of characterization of 

complex systems under investigation. In particular, within 

tasks of modeling of turbulent flows the method can be 

applied for the characterization of the fully developed 

turbulence, mainly for estimation of turbulent energy 

dissipation and the complexity of the process. 

 It should be noted that the developed algorithms can be 

easily generalized for the calculation of all spectrum of 

fractal dimensions (e.g., in generalized correlation integral 

method [13]). Then the approach described in section 2 can 

be applied for calculation of distances along the diagonals, 

those should be retained in storage for further calculation (at 

successive enlargement of the order of related moments 

defining the averaged probabilities). 

APPENDIX: THE CODE FOR FRACTAL ANALYSIS 

 The program is written and used for the MATLAB V 

software (see below). The program implies the processing of 

diagonals of (2) in the order of enlarging a number of 

elements involved by each diagonal. This allows the 

successive enlargement of the working space for every 

diagonal array and proper sorting of the array. At this 

condition, avoiding excessive elements is attained because of 

complete replacement of diagonal array at transition to every 

subsequent diagonal. 

function HL=vd(EPS) 

%----------------------------------- 

%         VICTOR DAILYUDENKO, 2008 

%---------------------------------- 

%CALCULATION OF THE MODEL TIME SERIES 

id=input('id=') 

N=input('N=') 

 

% N-time series length; id=/Delta T; 

L1=2; 

DT=1/L1; 

b=0.1; 

bet=1-b*DT; 

id=id*L1; 

id1=id+1; 

id2=id1+1; 

disp(id); 

 

%initial conditions 

        for i=1:id1 

 X(i)=0.9; 

 end 

 

 for i=id2:N 

        XH=X(i-id1); 

 XD=X(i-1); 

 F=(DT*0.2*XH)/(1.+XH^10); 

        X(i)=bet*XD+F; 

 end 

%----------------------------------- 

%       REDUCING TIME SERIES 

%----------------------------------- 

IT=input('IT='); 

IT=IT*L1; 

%NT- length of reduced TS 

        NT=floor(N/IT) 

         for i=1:NT 

        XR(i)=X(IT*i); 

         end 

 

 

%----------------------------------- 

% PHASE TRAJECTORIES ANALYSIS 

%----------------------------------- 

%L-quantity of attractor points;  

%M1-an integer dimension; DN-resoluiton 

M1=input('M1=') 

DN=input('DN=') 

        L=NT-M1+1; 

%----------------------------------- 

%       CALCULATION OF EPS 

%----------------------------------- 

            for j=1:L-1 

          DXR1=0; 

            for k=1:M1 

     DXR1=DXR1+(XR(k)-XR(L-j+k))^2; 

            end 

        RQ(j)=DXR1; 

        DXR(j)=sqrt(DXR1); 

                         end 

            for i=1:L-2 

    RQ1(1)=RQ(i+1);                    

    DX(1)=DXR(i+1);  

            for j=1:i 

      L1=L+j-i-1; 

RQ1(j+1)=RQ1(j)-(XR(j)-

XR(L1))^2+(XR(j+M1)-XR(L1+M1))^2; 

        DX(j+1)=sqrt(RQ1(j+1)); 

             end 

       A1(i)=min(DX); 

        A2(i)=max(DX); 

              end 

 

       A2(L-1)=DXR(1); 

        A1(L-1)=A2(L-1); 

 

        A11=min(A1); 

        A12=max(A2); 

 

        DEPS=(A12-A11)/DN; 

 

N1=input('N1=') 

%N1-length of the working range for %EPS 

%----------------------------------- 
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% THE ARRAY FOR VICINITY DEFINITION 

%----------------------------------- 

        EPS(1)=A11+5*DEPS 

 EPSMIN=EPS(1) 

 EPSMAX=EPSMIN+N1*DEPS 

        EPSL(1)=log(EPSMIN) 

        EPSL(N1)=log(EPSMAX) 

 DEPSL=(EPSL(N1)-EPSL(1))/N1 

       for i1=1:N1-1 

        EPSL(i1+1)=EPSL(i1)+DEPSL 

 EPS(i1+1)=exp(EPSL(i1+1)) 

      HEPS(i1)=0;            

             end 

           HEPS(N1)=0; 

%----------------------------------- 

%       CALCULATION OF PROBABILITIES 

%----------------------------------- 

               for i=1:L-2 

    RQ1(1)=RQ(i+1);                    

    DX(1)=DXR(i+1);  

              for j=1:i 

      L1=L+j-i-1; 

        RQ1(j+1)=RQ1(j)-(XR(j)-

XR(L1))^2+(XR(j+M1)-XR(L1+M1))^2; 

        DX(j+1)=sqrt(RQ1(j+1)); 

               end 

%----------------------------------- 

%     THE COUNT OF HITS ON DIAGONALS 

%----------------------------------- 

   DX=sort(DX); 

         j=1;         

                 for i1=1:N1 

      while   DX(j)<EPS(i1)&j<(i+2) 

                j=j+1; 

               end 

           HEPS(i1)=HEPS(i1)+j-1; 

% end of i1 

    end           

                   end 

%----------------------------------- 

%THE COUNT OF HITS REGARDING THE 

%CORNER ELEMENT 

%----------------------------------- 

         for i1=1:N1 

 if DXR(1) < EPS(i1)         

      HEPS(i1)=HEPS(i1)+1; 

         end       

%H1(i1)-probability of a hit into 

%EPS(i1)-vicinity of an attractor 

%point 

H1(i1)=HEPS(i1)/(0.5*L*(L-1));        

     HL(i1)=log(H1(i1));                     

% end of i1 

   end           

 

save fre1 H1 -ascii; 

save fre2 EPSL -ascii; 

save fre3 EPS -ascii; 

plot (EPSL,HL) 
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