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1. INTRODUCTION 

 The Dynamic Programming approach elaborated 50 
years ago remains the most powerful method for solving 
optimal control problems. For example, the whole issue N.3 
of journal "Control and Cybernetics" was devoted to it in 
2006. There exist many excellent monographs on stochastic 
optimal control with discrete time, e.g. [1-6]. Such models 
are traditionnally called Markov Decision Processes. 
Dynamic Programming can be adjusted even to constrained 
optimal control [7]. On the other side, one should be very 
accurate when dealing with infinities. Several authors 
formulate and prove their statements without mentioning that 
their results are valid only if expressions of the type 
“+ ”+” ” do not appear. Even the excellent monograph 
[3] contains such typos (see e.g. Theorem 3.2.1). Of course, 
specialists understand those difficulties, but recent article [4] 
shows that the questions under study are interesting for 
applied researchers. The goal of the present work is to 
indicate clearly what can and what cannot happen if the loss 
functions are unbounded (Lemma 1), and to present several 
academic counterexamples illustrating that many common 
statements can fail to hold if “+ ” and ” ” meet together. 

 In Sections 2 and 3 we give general ideas about Markov 
Decision Processes and Dynamic Programming. Although 
we mainly consider the models with at most countable state 
and action spaces, Lemmas 1 and 2 and Corollaries 1 and 2 
are formulated for general Borel models. In the main Section 
4, examples are provided which show  

• that Markov and non-randomized strategies are not 
sufficient for solving optimal control problems;  

• that the Bellman's principle can fail, i.e. the final (or 
the starting) part of an optimal trajectory can be not 
optimal;  

• that a uniformly optimal strategy can also be not 
optimal;  

• that a solution to the optimality equation can 
provide no boundaries to the performance 
functional.  
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 Example 4 is the discussion of possible conventions 
about mathematical expectation and adding together the 
infinities. It turns out that standard conventions are most 
natural although they can also lead to inconveniences. The 
proofs are collected in Appendix. 

 As far as possible, we use bold letters for spaces and 
capital letters for random variables. I{

.
} is the indicator 

function;  = (“ ”,“+ ”), 
*
 = [ ,+ ]. 

2. MODEL DESCRIPTION  

 Let us consider the Markov Decision Process {X, A, T, p, 
r, R} with the finite time horizon T and total expected loss. 
Here X and A are (Borel) state and action spaces, pt(dxt | xt 1, 
at) is the transition probability, rt(xt 1, at) and R(xT) are the 
real-valued loss functions. 

 As usual, a control strategy (policy)  is a sequence of 

measurable stochastic kernels t(dat | ht 1) on A, where ht 1 = 

(x0, a1, x1,…,at 1, xt 1) is a history. A strategy is called 

Markov if it has the form t(dat | ht 1) = 
 t

m
(dat | xt 1). In 

case t t(da | h) is concentrated at a single point t(h), the 

strategy is called a selector (non-randomized strategy). 

Markov selector has the form t(xt 1). 

 Suppose the initial distribution P0(dx) is fixed. If a 

control strategy  is fixed, too, then there exists a unique 

probability measure 
  

P
P
0

 on the space of trajectories  

    
H = {(x

0
,a

1
, x

1
,…,a

T
, x

T
)}  

defined in the usual way:  

   

P
P
0

{d(x
0
,a

1
, x

1
,…,a

T
, x

T
)}

= P
0
(dx

0
)

1
(da

1
| x

0
) p

1
(dx

1
| x

0
,a

1
)

2
(da

2
| x

0
,a

1
, x

1
)… p

T
(dx

T
| x

T 1
,a

T
)

 (1) 

 The integral wrt the measure 
  

P
P
0

 is denoted by 
  

E
P
0

. For 

each   h H , the (realized) total loss equals  

  

w(h) =
t=1

T

r
t
(x

t 1
,a

t
) + R(x

T
).  

 It is convenient to say that H is the sample space and 
consider the trivial projections h xt, h at and other 
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functions on H as random elements. Thus, 
  
w(h)  defines the 

random total loss W. In what follows, random variables are 
denoted with capital letters; small letters are used to show 
arguments of functions. If all the spaces are countable, no 
measurability problems arise, and we always have in mind 
the collections of all subsets of such spaces as -algebras. 

 The performance of control strategy  is given by  

  
v = E

P
0

[W ]= E
P
0

[W
+
]+ E

P
0

[W ],  (2) 

 where
  
W

+ = max{0,W} , 
  
W =min{0,W}  and  

 "+ " + " " = "+ ".  (3) 

  The aim is to solve problem  

  

v = E
P
0

t=1

T

r
t
( X

t 1
, A

t
) + R( X

T
) inf ,  (4) 

i.e. to construct an optimal control strategy. 

3. DYNAMIC PROGRAMMING APPROACH  

 The Bellman principle leads to the following equation  

    

v
T

(x) = R(x);

v
t 1

(x) =
a A

inf r
t
(x,a) +

X

v
t
( y) p

t
(dy | x,a){ },   t = T ,T 1,…,1

(5) 

called "optimality/Bellman" equation. Its solution t(x) is 
called Bellman function. (Note, it can take values ± ). 

 Suppose loss functions r(.) and R(.) are simultaneously 
bounded below or above. Then a control strategy * is 
optimal in problem (4) if and only if for all t = 1,2,…,T  

   

v
t 1

( X
t 1

) =

A

r
t
( X

t 1
,a) +

X

v
t
( y) p

t
(dy | X

t 1
,a){ } t

*(da | H
t 1

)  P
P
0

*

a.s.

(6) 

(Here Ht 2 = (X0, A1, X1,…,At 1, Xt 1) is a random history).  

   
v

*

= infv =
X

v
0
(x)P

0
(dx).  (7) 

 Suppose a history ht  Ht, 0 <  < T is fixed. Then we 

can consider the controlling process At and the controlled 

process Xt as developing on the time interval {  + 1,  + 

2,…,T} which is empty if  = T. If a control strategy  (in the 

initial model) is fixed then one can build the strategic 

measure on H, denoted as 
 

P
h

, similarly to (1), satisfying the 

"initial condition" 
   
P

h
(h (A X)T ) = 1 . The most 

important case is  = 0; then we have just
  

P
x
0

. Note that 
  

P
x
0

 

is another denotation for 
  

P
P
0

 in case 
  
P

0
( )  is concentrated at 

point 
  
x

0
. We introduce 

  
v

h
= E

h t= +1

T

r
t
( X

t 1
, A

t
) + R( X

T
)  

and call a control strategy * uniformly optimal if  

    

v
h

*

= infv
h

for all h

t=0

T

H
t
.  

 The dynamic programming approach leads to the 
following statement: if the loss functions are bounded (below 
or above), then a control strategy * is uniformly optimal if 
and only if equality  

   
v

t 1
(x

t 1
) =

A

r
t
(x

t 1
,a) +

X

v
t
( y) p

t
(dy | x

t 1
,a){ } t

*(da | h
t 1

)  (8) 

holds for all 
   t = 1,2,…,T  and 

   
h

t 1
H

t 1
. . In this case,  

).(=
*

xvv
h

 (9) 

 Note that we use the capital letters for random variables 

in (4) and (6), so that mathematical expectation and 

expression 
  

P
P
0

*

a.s.  make sense. On the opposite, formulae 

(5), (7), (8), (9) represent equations and statements regarding 

functions vr,  and so on, for all values of arguments; thus 

we use small letters for the arguments here. 

 Very often, the infimum in (5) is provided by a mapping 
a = t(x), so that Markov selectors form a sufficient class for 
solving problem (4). Another general observation: usually, a 
uniformly optimal strategy is also optimal, but not vice 
versa. More detailed description of the Dynamic 
Programming approach is presented in [1-6]. 

 If loss functions r(.) and R(.) are not bounded (neither 
below nor above), the situation becomes more complicated. 
The following lemma can be helpful.  

Lemma 1. For any control strategy , ht = (x0, a1,…,xt) 

 Ht, t = 0, 1,…,T, inequality 
  
v

h
t

v
t
(x

t
)  is valid. 

 In case strategy * satisfies equality (8) and 
  

v
h
t

*

< +  

for all ht   Ht, t = 0, 1,…,T, we have equality  

  
v

h
t

*

v
t
(x

t
) = inf v

h
t

,  

so that * is uniformly optimal.  

Corollary 1.  

   
     v

X

v
0
(x

0
)P

0
(dx

0
),  

so that * is optimal if 
   
v

*

=
X

v
0
(x

0
)P

0
(dx

0
) .  

Corollary 2. If a strategy * satisfies equality (8),   v
*

< + , 

and 
  

v
h
t

*

< +  for all ht   Ht, t = 0, 1,…,T, then control 

strategy * is optimal and uniformly optimal.  

 Even if equality (6) or (8) holds, it can happen that 
strategy * is not (uniformly) optimal. The lemma presented  
 

and corollaries provide sufficient conditions of optimality. 
On the other hand, a control strategy can be optimal even if 
equalities (6) and (8) are violated. 

4. COUNTER EXAMPLES  

 Further, spaces X and A are countable (or finite). 
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Example 1. Only a non-Markov randomized strategy can 
satisfy equalities (6) and (8) and be optimal and uniformly 
optimal.  

Let 
   
X = {0,±1,±2,…} , 

   
A = {0, 1, 2,…} ,   T = 3 , 

  
P

0
(0) = 1 .  

  

p
1
( y | x,a) =

3

| y |2 2
, if y 0;

0, if y = 0,

   p
2
(0 | x,a) = p

3
(0 | x,a) 1,  

  
r
1
(x,a) 0 , 

  
r
2
(x,a) = x , 

  
r
3
(x,a) = a ,

  
R(x) = 0 . (See  Fig. (1)). 

Since actions A1 and A2 play no role, we shall consider only A3. 

 

Fig. (1). Example 1: only a non-Markov randomized strategy can 

satisfy equalities (6) and (8) and be optimal and uniformly optimal. 

 The dynamic programming approach results in the 
following  

  
v

3
(x) = 0,   v

2
(x) = ,   v

1
(x) = ,   v

0
(x) = .  

 Consider Markov control strategy * with
  3

*(0 | x
2
) = 0 , 

  
3

*(a | x
2
) =

6

| a |2 2
 for a < 0. Here equalities (8) hold 

because  

  i=1

( i) 6

i
2 2

= = v
2
(x),     x + v

2
(0) = = v

1
(x),  

  

0 +

|y|=1

3

| y |2 2
" " = = v

0
(x).  

 On the other side, for any Markov strategy 

 
m ,  v

m

= + . Indeed, let
  
â = max{ j : 

3

m ( j | 0) > 0} ; 

  0 â >  and consider random variable
  
W

+ = ( X
1
+ A

3
)+

. 

It takes values 1,2,3, … with probabilities not smaller than  

  

p
1
( â +1| 0,a)

3

m (â | 0) =
3

3

m (â | 0)

| â +1|2 2
,  

  

p
1
( â + 2 | 0,a)

3

m (â | 0) =
3

3

m (â | 0)

| â + 2 |2 2
,  

  

p
1
( â + 3 | 0,a)

3

m (â | 0) =
3

3

m (â | 0)

| â + 3 |2 2
,  

…  

 (The expressions come from trajectories 

  
(x

0
= 0, x

1
= â + i,a

1
, x

2
= 0,a

2
= â, x

3
= 0) ). That means  

  

E
P
0

m

[W + ]
3

m (â | 0)
i=1

3i

| â + i |2 2
= +  

and
  
v

m

= E
P
0

m

[W ] = + . In particular   v
*

= + . 

 At the same time, there exist optimal non-Markov 

strategies providing   v = . For example put  

  

a
3

=
3
(x

1
) =

x
1
, if x

1
> 0;

0, if x
1

< 0.
 (10) 

  Then 
  
W = X

1
+ A

3
= X

1
0  and 

  
E

P
0

[W ] = . Note 

that
  
x

0
= 0 ; so 

  
inf v

x
0

= inf v =  meaning that no-one 

Markov control strategy (including  
* ) can be optimal or 

uniformly optimal. 

 Optimal control strategy  presented satisfies neither 

equalities (6), nor (8). Indeed, 
  
v

2
(0) = , and, for example, 

for history 
  
ĥ

2
= (0,a

1
,1,a

2
,0)  having positive 

  

P
P
0

-

probability, on the righthand side of (6) and (8) we have  

  
r
3
(x

2
= 0,a

3
=

3
(1)) + 0 =

3
(1) = 1.  

 Since for this history 
  

v
ĥ
2

= 1  and
  
inf v

ĥ
2

= , optimal 

control strategy  is not uniformly optimal. This reasoning is 

correct for an arbitrary selector, so that non-randomized 

strategies cannot satisfy equalities (6) and (8) and cannot be 

uniformly optimal. 

 Therefore, only a non-Markov randomized strategy can 
satisfy equalities (6) and (8) and be optimal and uniformly 
optimal. As an example, take  

  

3
( j | x

1
) =

6

(x
1
+ j 1)2 2

, if j x
1

and x
1

> 0;

6

j2 2
, if j < 0 and x

1
< 0;

0 otherwise.

 

 In the model investigated, for every optimal control 

strategy  we have 
  
v

x
0

= v
0
(x

0
) . It can happen that this 

statement is false. Consider the following modification of the 

MDP studied:  

   

A = {0},  p
3
( y | x,a) =

6

| y |2 2
, if y < 0;

0 otherwise,

  r
3
(x,a) = 0,  R(x) = x.  

(See Fig. (2)). 
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Fig. (2). Example 1:
  
v

0
(x

0
) = < + = v

x
0

= inf v
x
0

. 

 Actually the process is not controlled and can be 

interpreted as the previous MDP under a fixed Markov 

control strategy with distribution 
  3

( | x) = p
3
( | x,a) . We 

know that the total expected loss here equals + . Thus, in 

this modified model for the optimal control strategy (which 

is unique: 
  t

(x) 0 ) we have
  

v
x
0

= + . At the same time, 

optimality equation (5) still give s
  
v

2
(x) = , 

  
v

1
(x) = , 

and
  
v

0
(x

0
) = . 

 Another similar example illustrating that 
  
v

0
(x

0
) =  

and 
  
inf v

x
0

= +  at some 
  
x

0
 is presented in [1], 3.2, ex.3. 

 

Fig. (3). Example 2: The Bellman principle fails. 

Example 2. The Bellman principle fails.  

 Consider the negative modification of Example 1, Fig. (1), 

i.e. put 
   
X = {0, 1, 2,…} ,

  
A = { 1, 2} ,

  

p
1
( y | x,a) =

6

| y |2 2
 

(see Fig. (3)). One can easily show that selector 
  3

(x
2
) 1  

gives   v =  and so is optimal (like any other control 

strategy). But this selector does not satisfy equalities (6) and 

(8) The point is that the Bellman principle is violated: action 

  
a

3
= 1  is definitely not optimal at state 

  
x

2
= 0 , and 

nevertheless it is optimal for the whole process on time 

horizon   t = 0,1,2,3 . The very big negative loss 
  
r
2
(x

1
,a

2
) = x

1
 

on the second step improves the performance up to .  

Example 3. Uniformly optimal, but not optimal strategy.  

  We can slightly modify Example 1 Fig. (1): ignore the 
initial step and put  

  

P
0
(x) =

3

x2 2
, if x 0;

0 otherwise.

 

 The numbers of time moments decrease by 1 and   T = 2 . 

We still have that, for any Markov strategy  
m ,   v

m

= + , 

so that all of them are not optimal. Simultaneously, now the 

non-optimal strategy  
*  is uniformly optimal. In the 

example below, function 
  
v

t
(x)  is finite. 

 Let 
   
X = {±1,±2,…} , 

  
A = {0,1} ,   T = 1 ,  

  

P
0
(x) =

6

| x |2 2
, if x > 0;

0 otherwise,

 

  

p
1
( y | x,1) = I{y = x},     p

1
( y | x,0) =

1/ 4, if y = 2x;

3 / 4, if y = 2x;

0 otherwise.

 

  
r
1
(x,a) = x ,

  
R(x) = x . (See Fig. (4)) 

  
I{}  stands for the 

indicator function. 

 

Fig. (4). Example 3. 

 The dynamic programming approach results in the 

following: 
  
v

1
(x) = x , 

  
v

0
(x) = 0 , and the both actions 

provide the equality in equation (5). 

 Consider action 1: 
  1

1(x) = 1 . This control strategy 
 

1  is 

uniformly optimal since  

  
v

x
0

1

= 0 = v
0
(x

0
) = infv

x
0

.  

 It is also optimal because only trajectories 

  
(x

0
,a

1
= 1, x

1
= x

0
)  are realized, for which 

  
W = X

0
X

0
= 0 , so that  v

1

= 0 . 

 Consider now action 0:
  1

0 (x) = 0 . This control strategy 

 

0  is also uniformly optimal since  
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v

x
0

0

= x
0

+
1

4
(2x

0
) +

3

4
( 2x

0
) = 0 = v

0
(x

0
) = infv

x
0

.  

 It also satisfies equality (8). But it is not optimal because  

  

E
P
0

0

[W + ] =
i=1

3i 1/ 4
6

i
2 2

= + ,   E
P
0

0

[W ]

=
i=1

( i) 3 / 4
6

i
2 2

= ,

 

so that  v
0

= + > v
1

= 0 . 

 This example shows that condition   v
*

< +  in Corollay 

2 is important.  

Example 4. Conventions about expectation and infinities.  

  Some authors (rather seldom, actually) suggest the 
following formula to calculate the performance criterion [8], 
4.1:  

  

v = E
P
0

t=1

T

r
t

+ ( X
t 1

, A
t
) + R

+ ( X
T

)

+ E
P
0

t=1

T

r
t

( X
t 1

, A
t
) + R ( X

T
)

 (11) 

still accepting the rule  "+ "+ " " = "+ " . (We adjusted 

the model of maximizing rewards studied in [8] to our basic 

case of minimizing the losses.) Clearly, in this situation the 

value of  v  can only increase meaning that most of the 

statements in Examples 1 and 3 still hold. On the other side, 

in the basic model presented on Fig. (1), any control strategy 

gives   v = +  simply because  

  
E

P
0

r
2

+ ( X
1
, A

2
) = E

P
0

X
1

+ = + .  

 (The same happens to Example 3). Thus, any control 

strategy can be called optimal! But it seems intuitively clear 

that selector  given in (10) is better than many other 

strategies because it compensates positive values of
  
X

1
. 

(Similarly, it is natural to call optimal the selector 
 

1
 in 

Example 3.) 

 If we accept (11) then it is easy to elaborate an example 
where optimality equation (5) has a finite solution and 
nevertheless only a control strategy for which criterion (8) is 
violated, is optimal. 

Put 
   
X = {0,1,2,…} , 

  
A = {0,1} ,   T = 2 , 

  
P

0
(0) = 1 , 

  

p
1
( y | x,0) = I{y = 0},  p

1
( y | x,1) =

6

y2 2
, if y > 0;

0, if y = 0,

 

  
p

2
( y | x,a) = I{y = x},  

  
r
1
(x,a) = 1 a,   r

2
(x,a) = x,   R(x) = x.  

 Since action 
  
A

2
 plays no role, we shall consider only

  
A

1
. 

(See Fig. (5)). 

 

Fig. (5). Example 4: 
  
v

t
(x)  is finite, but

  
inf v

x
0

= v
x
0

*

= 1 >  

  
v

0
(x

0
) = 0 . 

 The dynamic programming approach results in the 

following:  

  

v
2
(x) = R(x) = x,   v

1
(x) = x x = 0,   

v
0
(x) = min{1+ 0, 0 + 0} = 0,

 

and action 
  
a

1
= 1  provides this minimum. At the same time, 

for control strategy 
  1

(x
0
) = 1  we have  

  
E

P
0

r
2

+ ( X
1
, A

2
) = E

P
0

X
1

= + ,  

so that (11) gives   v = + . Hence control strategy 

  1

*(x
0
) = 0  resulting in   v

*

= 1  must be called optimal. On 

the opposite, 
  1

(x
0
) = 1 is optimal if we accept formula  

  
v = E

P
0

W
+

+ E
P
0

W ,  (12) 

where 
  
W =

t=1

T

r
t
( X

t 1
, A

t
) + R( X

T
)  is the total realized 

loss. The big loss 
  
X

1
 on the second step is totally 

compensated by the final (negative) loss  R . 

 Now let us discuss the possible conventions about 

infinity. Basically, if in (12) expression  "+ "+ " "  

appears then random variable W  is said to be not integrable. 

We have seen in Examples 1, 2, and 3 that convention  

 "+ "+ " " = +  (13) 

leads to the violation of the Bellman principle and to other 
problems. One can show that all those principal difficulties 
appear also if we put "+ "+ " " = . But convention 
(13) is still better. 

 Assume for a moment that "+ "+ " " = . Then in 

Example 1 Fig. (1), any Markov strategy  
m  provides 

  v = , so that all of them are equally optimal, as well as 

all the other control strategies. But again selector  given by 

(10) seems better, and we want this to be mathematically 

confirmed. In a nutshell, if we meet  "+ "+ " "  in (12), it 

is better to say that all such strategies are equally bad than to 

accept that they are equally good. 
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 Lemma 1 and Corollary 1 provided the lower boundary 

for the performance functional. That will be not the case 

if "+ "+ " " = , as the following example shows. 

(Compare with Example 3). 

Let 
   
X = {0,±1,±2,…} , 

  
A = {0,1} ,   T = 1 ,  

  

P
0
(x) =

6

x2 2
, if x > 0;

0 otherwise,

 

  

p
1
( y | x,0) =

1/ 4, if y = 2x;

3 / 4, if y = 2x

0 otherwise,

     p
1
( y | x,1) = I{y = x},  

  
r
1
(x,a) = x + a,     R(x) = x.  

(See Fig. (6)). 

 

Fig. (6). Example 4: no boundaries for  v . 

 The dynamic programming approach results in the 
following:  

  
v

1
(x) = x,     v

0
(x) = 0,  

and 
  
a

1
= 0  provides the minimum in formula  

  
v

0
(x

0
) =

a

min{x
0

+ a x
0
} = 0.  

At the same time, for control strategy 
  1

0 (x
1
) = 0 , we have 

for 
  
W = X

0
+ X

1
 

  

E
P
0

0

W
+ =

i=1

3i 1/ 4
6

i
2 2

= + ,  

E
P
0

0

W =
i=1

( i) 3 / 4
6

i
2 2

= ,

 

so that 
  
v

0

= < v
0
(x

0
) = 0 . By the way, for selector 

  1

1(x
1
) = 1  we have  

  
W = X

0
+1+ X

1
= X

0
+1 X

0
= 1,  

and 
  
v

1

= 1 > v
0
(x

0
) = 0 . Thus, solution to optimality 

equation (5) provides no boundaries to the performance 

functional. 

5. CONCLUSION  

 When using the Dynamic Programming approach one 

must be careful about infinities. Actually, almost all the 

pathological situations in the presented examples appear 

only because we meet expressions  "+ "+ " "  when 

calculating expectations. That is why people impose the 

following conditions: for every strategy , 
  

x
0
,  t  

  
E

x
0

[r
t

+ (x
t 1

,a
t
)] < + and E

x
0

[R
+ (x

T
)] < +  

or  

  
E

x
0

[r
t

(x
t 1

,a
t
)] > and E

x
0

[R (x
T

)] > .  

(See e.g. [1], 8.1). 

 To guarantee this, one can restrict himself to "negative" 
or "positive" models with  

  
r
t
(x,a) K ,   R(x) K , or with r

t
(x,a) K ,   R(x) K .  

 Another possibility is to consider "contracting" models, 

where, for some positive function 
  

(x)  and constant K,  

   
X

( y) p
t
(dy | x,a) K (x) and

| r
t
(x,a) |

(x)
K ,   

R(x)

(x)
K  

for all
  
t, x,a . 

 There is no doubt that one can construct counter-

examples also for discounted models and processes with 

long-run average loss. The classical optimal control theory 

for them is developed in [1-3, 6], again under conditions 

which exclude expressions  "+ "+ " " . 

APPENDIX  

Lemma 2. Let X and Y be two Borel spaces, 
  
Q(dx) be a 

probability measure on X and 
  
q(dy | x)  be a (measurable) 

stochastic kernel on Y given X. Put 

  
P(dx dy)=Q(dx)q(dy | x)  be the probability measure on 

 X Y . Suppose
  
f (x, y) = f

1
(x) + f

2
(x, y) , where  

    
f
1

: X = ( ,+ ),     f
2

: X Y
*

= [ ,+ ]  

are measurable functions of their arguments. Then  

   

X Y

f (x, y)P(dx dy)

X

f
1
(x) +

Y

f
2
(x, y)q(dy | x) Q(dx).

 (14) 

 In a nutshell, integrating by the compound measure can 

only enlarge the result, compared with the sequential 

integrating. Note that according to the proof, inequality in 

(14) cannot be strict if the expression on the left is finite, i.e. 

it can be strict only if we have  "+ "  on the lefthand side. 

Proof. According to the definition and using Lemma 7.11 
from [1] we have  

   

X Y

f (x, y)P(dx dy) =
X Y

f + (x, y)P(dx dy)

+
X Y

f (x, y)P(dx dy)
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=
X Y

f + (x, y)q(dy | x) Q(dx)

+
X Y

f (x, y)q(dy | x) Q(dx)

 

   X Y

f + (x, y)q(dy | x) +
Y

f (x, y)q(dy | x) Q(dx)  

   
=

X Y

f (x, y)q(dy | x) Q(dx).  

 If we calculate integral 
   Y

f (x, y)q(dy | x)  for a 

particular value of x we see that it equals 

   
f
1
(x) +

Y

f
2
(x, y)q(dy | x)  simply because expression 

   Y

f
1
(x)q(dy | x) = f

1
(x)  is finite.  

 Inequality (14) can be strict indeed as the following 
example shows. (See Fig. (7)). 

 
Fig. (7). Strict inequality (14). 

 Let 
   
X = {1,2,3,…} , 

   
Y = {±2,±4,±6,…} ,  

  

Q(i) =
6

2 i2
;     q( j | i) =

1/ 4, if j = 2i;

3 / 4, if j = 2i;

0 otherwise,

 

  
f
1
(i) = i ,

  
f

2
(i, j) = j . 

 Now in the lefthand part of (14) we have  

   i X j Y

(i + j)+
q( j | i) Q(i) +

i X j Y

(i + j) q( j | i) Q(i)  

   

=

i X

3i
1

4

6

2
i

2
+

i X

i
3

4

6

2
i

2
= "+ "+ " " = + .  

 At the same time, on the right we obviously have zero 
since  

   

i +

j Y

j q( j | i) = i + i / 2 3i / 2 = 0.  

Proof of Lemma 1. We use the mathematical induction. If 

  t = T  then 
  
v

h
T

= R(x
T

) = v
T

(x
T

) . Suppose Lemma is valid 

for   0 < t T . Then   a A  
   

x
t 1

X  

   
v

t 1
(x

t 1
) r

t
(x

t 1
,a) +

X

v
t
( y) p

t
(dy | x

t 1
,a).  

Hence, for any 
    
h

t 1
= (x

0
,a

1
,…, x

t 1
) H

t 1
 

   
v

t 1
(x

t 1
)

A

r
t
(x

t 1
,a) +

X

v
t
( y) p

t
(dy | x

t 1
,a)

t
(da | h

t 1
)  

   A

r
t
(x

t 1
,a

t
) +

X

v
{h

t 1
,a

t
,y}

p
t
(dy | x

t 1
,a

t
)

t
(da

t
| h

t 1
).  

 For a fixed
    
h

t 1
= (x

0
,a

1
, x

1
,…, x

t 1
) H

t 1
, measure 

  

P
h
t 1

 

on the remaining part of trajectory 
   
h

t
= (a

t
, x

t
,a

t+1
,…, x

T
)  

can be disintegrated, so that it is just the product of 

  
Q(da

t
)=

t
(da

t
| h

t 1
)  and

  
q(dx

t
dh

t+1
| a

t
) = P

h
t 1

(dh
t+1

| a
t
,  

  
x

t
) p

t
(dx

t
| x

t 1
,a

t
) . Note that 

  
P

h
t 1

(h | a
t
, x

t
) = P

{h
t 1

,a
t
,x

t
}
(h)  

according to the definition of a strategic measure. To 

distinguish 
 
x

t
 in the lower index which is fixed, from the 

element of a history (or part of a history) h that can be 

arbitrary, we use also denotation 
   
h = (x

0
,a

1
,…, x

T
) . Now we 

can rewrite the last obtained inequality in the form  

    

v
t 1

(x
t 1

)
A

r
t
(x

t 1
,a

t
) +

X X A … X
i=t+1

T

r
i
(x

i 1
,a

i
) + R(x

T
)  

  
P

{h
t 1

,a
t
,x

t
}
(dx

t
dh

t+1
) p

t
(dx

t
| x

t 1
,a

t
)

t
(da

t
| h

t 1
).  

 But measure 
  
P

{h
t 1

,a
t
,x

t
}
(dx

t
)  is concentrated at point 

t
x , 

so that we omit the bars and obtain  

    

v
t 1

(x
t 1

)
A

r
t
(x

t 1
,a

t
) +

X A … X
i=t+1

T

r
i
(x

i 1
,a

i
) + R(x

T
)  

  
P

{h
t 1

,a
t
,x

t
}
(dh

t+1
) p

t
(dx

t
| x

t 1
,a

t
)

t
(da

t
| h

t 1
)  

    
A

r
t
(x

t 1
,a

t
) +

X A … X
i=t+1

T

r
i
(x

i 1
,a

i
) + R(x

T
)  

  
q(dx

t
dh

t+1
| a

t
) Q(da

t
).  

 In the last inequality and below, we use Lemma 2. 
Finally  

    

v
t 1

(x
t 1

)
A X A …X

r
t
(x

t 1
,a

t
) +

i=t+1

T

r
i
(x

i 1
,a

i
) + R(x

T
) P

h
t 1

(h
t
)  

  

= v
h
t 1

.  

 The last statement of the lemma can be proved in the 

similar way: when analysing the inequalities starting from 

  

v
h
t 1

*

 and finishing with 
  
v

t 1
(x

t 1
) , we see that actually all of 

them are equalities, according to the remark after Lemma 2. 

(Value  "+ "  never appears).  
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Proof of Corollary 1. We know that  

    

v
x
0

=
A X A … X

t=1

T

r
t
(x

t 1
,a

t
) + R(x

T
) P

x
0

(dh
1
) v

0
(x

0
).  

 Here 
   
h

1
= (a

1
, x

1
,a

2
,…, x

T
) . Measure 

  
P

x
0

(dh
1
) =  

  
q(dh

1
| x

0
)  can be considered as a (measurable) stochastic 

kernel on   A X A … X  given X. If initial distribution 

  
P

0
 is given then 

  
P

P
0

(dh) = P
P
0

(dx
0

dh
1
) =

  
P

0
(dx

0
)  

  
q(dh

1
| x

0
) . Now one can use Lemma 2 for 

  
f (h) = f

2
(h)  

  
= w(h) =

t=1

T

r
t
(x

t 1
,a

t
) + R(x

T
) :  

    
v =

H

w(h)P
P
0

(dh)
X A X A … X

w(h)q(dh
1

| x
0
) P

0
(dx

0
)

 

   
=

X

v
x
0

P
0
(dx

0
)

X

v
0
(x

0
)P

0
(dx

0
)  

and 
   X

v
0
(x

0
)P

0
(dx

0
)  provides the lower boundary for v , 

indeed.  

Proof of Corollary 2. It is sufficient to note that all 
inequalities in the proof of Corollary 1 are actually 
equalities, according to the remark after Lemma 2. Strategy 

* is optimal according to Lemma 1.  
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