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Abstract: This note gives results about the preservation of some dissipative properties of systems under a change of 

variables. In the textbooks it is not mentioned explicitly the relationship between the equations associated with the 

dynamics of a system and the selected Lyapunov function to establish its stability property, when a change of coordinates 

is used. Based on the fact that Lyapunov stability is preserved under these changes of variables, it is shown that various 

forms of dissipativity can be preserved. In addition, we will show that the input-state stability (ISS), integral input-to-state 

stability (iISS) and input/output to state stability (IOSS) can be preserved under this class of transformation. Some 

examples are given to show these results. 
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1. INTRODUCTION 

 The notion of dissipativity in dynamical systems was 

introduced in the early 1970s. This concept was originally 

stated by Willems in the seminal papers [1, 2] and it was 

later extended and explored in [3]. This concept generalizes 

the idea of a Lyapunov function and has found applications 

in diverse areas such as stability theory, chaos and 

synchronization theory, system norm estimation, and robust 

control. 

 Dissipativity is one of the most important concepts in 

systems and control theory, both from the theoretical point of 

view as well as from the practical perspective. Dissipativity 

theory is based on a characterization of open systems by a 

dissipation inequality between the storage variation and a 

supply rate. The storage reflects the energy stored in the 

system’s internal components. The supply rate governs the 

exchange of energy with the external world. In many 

mechanical and electrical engineering applications, 

dissipativity is related to the notion of energy. This 

fundamental ideas are strongly related with concepts like 

passivity and finite gain, see [1-4], and constitute a 

fundamental basis of the development of the robustness 

analysis [5-8], for applications of the dissipativity ideas on 

power systems, and for further developments on dissipativity 

and input-to state stability, see [9-14]. 

 Now days there are several definitions uses for 

dissipativity in the literature, in this work we used the 

definitions given in [14, 15]. We aim our study at the 

conditions needed for a change of coordinates to leave  
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invariant the property of dissipativity of a nonlinear 

dynamical system, such a study has not been pursued as can 

be seen in books like [13, 15, 16] or in specialized articles on 

the topic like [10, 11, 14]. Here westudy this invariance for 

different definitions of dissipativity and the input-state 

stability (ISS), integral input-to-state stability (iISS) and 

input/output to state stability (IOSS). Our objective is to 

clarify and contribute for a better understanding of the 

preservation of some types of stability when using 

diffeomorphism and also to motivate new venues of study to 

this topic. 

2. PRESERVING LYAPUNOV STABILITY 

 Usually it is not stated explicitly on text books how a 

Lyapunov function associated to a dynamical system is 

transformed by a change of coordinates, i.e., a 

diffeomorphism (in general, any mapping such that its 

Jacobian matrix is invertible), of the dynamical system. It is 

therefore important to know what class of change of 

coordinate’s leaves invariant a particular definition of 

stability. In this work we will consider the following class of 

change of coordinates: 

 Definition 1. Let us consider a smooth map 

 
:

n n
, with  an open domain in Rn

 that 

contains the origin, i. e., 0 ; also (0) = 0 , v(t)( ) 0  

for v(t) 0  in ; the inverse of the Jacobian matrix 

1v(t )( )
v( )  exists in ; all of these conditions imply that  

is a diffeomorphism [17, 18]. 

 The set of all smooth maps that satisfies Definition 1 will 

be denoted by n,Diff . 

 In what follows we present examples on how a 

diffeomorphism preserves some types of stability. For 

example, we consider the standard definition of stability for 
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a linear time invariant system. Let us consider a linear time 

invariant system described by 

 
x(t) = Ax(t)  (1) 

where x(t) n
. The system (1) is stable in the sense of 

Lyapunov if and only if for the Lyapunov function 

 V x(t)( ) = x� (t)Px(t) , its time derivative along the 

trajectories of (1) is such that 

  
V x(t)( ) = x� (t) PA + A�P( ) x(t) 0,  

for all 
 
x(t) n

 and P = P� 0 . 

 Now consider the change of variable defined by 

x(t) = (v(t)) , with ( ) n,RnDiff , such that system (1) is 

transformed into a nonlinear system 

 

v(t) =
1

v(t)( )
v

A ( v(t)( ).  (2) 

 Then the stability property of system (1)is preserved for 

the transformed system given in (2) as long as the following 

properties are satisfied 

 

V v(t)( )( ) =
� v(t)( )P v(t)( ) 0,

V v(t)( )( ) =
� v(t)( ) PA + A�P v(t)( ) 0.

 

 Similar results can be drawn for asymptotic stability with 

the corresponding hypothesis [16]. 

 For the case of a stable autonomous nonlinear system of 

the form 

 
x(t) = f x(t)( ),  (3) 

where f ( )  is a differentiable function, with Lyapunov 

function V x(t)( ) , i.e. V ( )  satisfies the conditions of 

Lyapunov’s second theorem for stability [16]. Consider a 

mapping x(t) = (v(t))
 
with ( ) n,Diff , then the system 

in (3) can be transformed into the following nonlinear 

system 

 

v(t) =
1

v(t)( )
v

f v(t)( ).  (4) 

 Now, by the chain rule applied to the Lyapunov function 

V ( (v(t))) , with 

 
v
�V ( (v)) =

x= (v)x
�V (x)

(v)

v
,  (5) 

for its gradient, with 
  v

�V (v) : n 1 n
 and 

x
�V (x) : n 1 n

 row vectors. Again the Lyapunov 

stability is preserved, because the following inequality is 

satisfies in a neighborhood of the origin 

V ( (v(t))) = v
�V ( (v))v(t),

=
(v)x

�V (x) f ( (v(t))) 0,
 (6) 

since the substitution of x(t)  by the map (v(t))  preserves 

the following inequality in a neighborhood of the origin 

 
V (x(t)) = x

�V (x) f (x(t)) 0.  

 Also, the asymptotic stability can be preserved under 

suitable conditions and the proof is similar. 

3. PRESERVATION OF DISSIPATIVE SYSTEMS 

 In this section we present some results, for a class of 

well-known dynamical systems, on preservation of 

dissipativity. Consider the following state-space representat-

ion affine in the input and output: 

 

x(t) = f (x(t)) + g(x(t))u(t),

y(t) = h(x(t)) + j(x(t))u(t),
 (7) 

where 
 
x(t) n

, 
 
u(t) m

, y(t) m
, and f : n n

, 

 
g : n n m

, 
 h :

n m , 
 
j : n m m

, are smooth 

functions of x(t)  with f (0) = 0  and h(0) = 0 . 

 Definition 2. [15] The system (7) is dissipative with 

respect to the supply rate w(u, y)  and energy storage 

function V x(t)( ) , if for all admissible u( )  and all t1 t0  

one has 

t0

t1
w u(t), y(t)( )dt V x t1( ) V x t0( ) ,  

along the trajectories of the system (7), with x t0( ) = 0 . 

 The following assumptions are made for this paper: (i) 

The state space of the system (7) is reachable from the 

origin; (ii) The available storage function V ( ) , when it 

exists, is a differentiable function of x ; (iii) the supply rate 

considered is the following: 

w(u, y) = y�Qy + 2y�Su + u�Ru,

= y� u�
Q S

S� R

y

u
,

 (8) 

with Q
 
 and R  symmetric matrices. 

 The following fundamental theorem is known as the 

nonlinear Kalman-Yakubovich-Popov Lemma. 

 Lemma 3. [15] The nonlinear system (7) is dissipative in 

the sense of Definition 2 with respect to the supply rate 

w(u, y)  in (8) if and only if there exists functions 

 V :
n , 

 L :
n q , 

 W :
n q m  (for some 

integer q ), with V ( )  differentiable, such that: 

V (x) 0,

V (0) = 0,
�V (x) f (x) = h� (x)Qh(x) L� (x)L(x),

1

2
g� (x) V (x) = �

Ŝ (x)h(x) W � (x)L(x),

R̂(x) =W � (x)W (x),

 (9) 
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where 

  

Ŝ(x) Qj(x) + S,

R̂(x) = R + j� (x)S + S� j(x) + j� (x)Qj(x).
 (10) 

 For the transformation x(t) = (v(t)) , induced by the 

map (v(t)) n,Diff , i. e., if x(t) = (x1(t), x2 (t),… , xn (t))  

and (v(t)) = ( 1(v(t)), 2 (v(t)),… , n (v(t)))  then 

xi (t) = i (v(t))  for i = 1,… ,n . The system (8) is 

transformed in: 

(v)

v
v(t) = f ( (v(t))) + g( (v(t)))u(t),

z(t) = h( (v(t))) + j( (v(t)))u(t),

 (11) 

where 
(v)
v  is the Jacobian matrix of (v) . 

 Lemma 4 is the basic result from which Proposition 5 is 

proved. 

 Lemma 4. The nonlinear system (7) is dissipative with 

respect to the supply rate(8), and n,RnDiff . Then 

V ( (v(t))) 0,

V ( (0)) = 0

(v)

�V (x) f ( (v)) = h� ( (v))Qh( (v)) L� ( (v))L( (v)),

1

2
g� ( (v))

(v)
V (x) =

�
Ŝ ( (v))h( (v)) W � ( (v))L( (v)),

R̂( (v)) =W � ( (v))W ( (v)),

 (12) 

and 

  

Ŝ( (v)) Qj( (v)) + S,

R̂( (v)) = R + j� ( (v))S + S� j( (v)) + j� ( (v))Qj( (v)),
 (13) 

where the notation 
 (v)

�V (x)  means the gradient 
�V (x)  

evaluated at (v) . 

 Proof. Making the substitution x(t)  by the map (v(t)  

in the equations (9) and (10), taking into account that 

n,RnDiff , this substitution is also an automorphism in the 

commutative ring of the differentiable functions 

 
f : n n

, and recalling that an automorphism preserves 

product of functions, addition of functions, constant 

functions and identities, we obtain the equations (12) and 

(13). 

 The following proposition shows that the dissipativity 

property of a system presented in Definition 2 is preserved 

under diffeomorphism. 

 Proposition 5. Consider the same hypothesis of the 

Lemma 3, and n,RnDiff . The system (7) is dissipative 

with respect to the supply rate w(u, y)  in (8) if and only if 

the system 

v(t) =
1

(v)

v
f ( (v(t))) + g( (v(t)))u(t)[ ],

z(t) = h( (v(t))) + j( (v(t)))u(t),

 (14) 

is dissipative with respect to the supply rate 

w(u, z) = z�Qz + 2z�Su + u�Ru . 

 Proof. To simplify the notation we will drop the 

dependence on t  in the following. Using (8)-(14), Lemma 3 

and Lemma 4, we have 

w(u, z) = z�Qz + 2z�Su + u�Ru,

=
�

h( (v)) + j( (v)))u( ) Q h( (v)) + j( (v)))u( )

+2
�

h( (v)) + j( (v)))u( ) Su + u�Ru,

=
(v)

�V (x) f ( (v)) + L� ( (v))L( (v))

+u�W � ( (v))W ( (v))u

+u�g� ( (v))
(v)

V (x)

+2u�W � ( (v))L( (v)).

 

 Since 

vV
� ( (v(t))) =

(v)

�V (x)
(v)

v
,  

we have 

w(u, z) =
(v)

�V (x) f ( (v(t))) + g( (v))u[ ] +

�
L( (v)) +W ( (v))u( ) L( (v)) +W ( (v))u( ),

= vV
� ( (v))v +

�
L( (v)) +W ( (v))u( ) L( (v)) +W ( (v))u( ),

vV
� ( (v))v =

d

dt
V ( (v)).

 

 Integrating the last term, we obtain 

0

t
w(u(s), z(u(s),v(s)))ds V ( (v(t))) V ( (v(0))).  

 Therefore the system (14)is dissipative with respect to 

the supply rate w(u, z) . 

 For the converse the procedure is very similar. 

4. PRESERVATION OF ISS, IISS AND IOSS VIA 

DISSIPATIVITY 

 Based on [9, 10, 14, 16] it is shown that input-to-state 

stability (ISS), integral input-to-state stability (iISS) and 

input/output to state stability (IOSS) can be preserved via its 

dissipativity characteristics. To this end let us introduce the 

notation and definitions needed for this section. 

 Defintion 6. [14, 15] 

1. A continuous function 
 
g : + +

 is said to be of 

class K  ( g K ) if 

(a) g(0) = 0 , 

(b) g(l) > 0   l +
, 

(c) g( )
 
is non decreasing. 

Statements 1b) and 1c) can also be replaced with the 

following item  

1b’) g( )  is strictly increasing so that the inverse function 

g 1( )  is defined. 
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2. The function g  is said to be of class K  ( g K ) 

if g K  and g(l)
 
when l . 

3. A function g( )  is positive definite if g(s) > 0  for 

all s > 0 , and g(0) = 0 . 

4. A function 
 
p : + + +

 is a KL -function 

( p KL ) if: 

(a) for each fixed t 0  the function p( , t)  is a 

K -function, and 

(b) for each fixed s 0  the function p(s, )  is 

decreasing to zero as t . 

 Defintion 7. [14, 15] We will say that a continuous 

function V :
n  is a storage function if it is positive 

definite, that is, V (0) = 0  and V (x) > 0  for x 0 , and 

proper, that is, V (x)  as | x | . This last property is 

equivalent to the requirement that the sets V 1([0,A])  should 

be a compact subsets of  
n

, for each A > 0 , and in the 

engineering literature it is usual to call such functions 

radially unbounded. It is well-known [14] that V  is a storage 

function if and only if there exist functions , K  such 

that 

( x ) V (x) ( x ).  

 The notation V :
n m  is the function: 

 
V (x,u) := �V (x) f (x,u),  

which provides, when evaluated at (x(t),u(t)) , the derivative 

dV / dt  along solutions of 
 
x = f (x,u) . 

 Now let us consider a dynamical system as follows 

 
x(t) = f (x(t),u(t)), x(0) = x0 ,  (15) 

with f ( , )  locally Lipschitz such that f (0,0) = 0 , and 

u(t) U  where U  is a set of measurable locally essentially 

bounded functions from  
+

 into  
m

. Let us also consider a 

change of coordinates, x(t) = (v(t))  as in Definition 1, then 

we can write system (15) as 

v =
1

(v)

v
f ( (v),u).  (16) 

 We are interested in the input-to-state mapping 

x0 ,u( )( ) x( )  stability in the following sense 

 Defintion 8. [15] The system (15) is ISS if: 

1. For each x0  there is a unique solution in 

 
C 0 +

,
n
.  

2. The map 
 

n U C 0 +
,

n
, x0 ,u( ) x( )  is 

continuous at 0,0( ).  

3. There exists a nonlinear asymptotic gain ( )  of class 

K  such that 

 
t +

lim sup x t, x0 ,u( ) u( ),  

uniformly on x0  in any compact set and all u U , where 

 
 denotes the standard Euclidian norm. 

 Equivalently [14, 16], the system (15) is ISS if there exist 

some functions KL  and K  such that 

x t( ) ( x0 , t) + u( ),  

holds for all solutions i.e., this estimate is valid for all inputs 

u( ) , all initial conditions x0 , and all t 0 . 

 Defintion 9. [14] A storage function V ( )  as in 

Definition 7 is an ISS-Lyapunov function if there exists two 

class- K  functions ( )  and ( )
 
and there exist two class-

K  functions 1 ( )  and 2 ( )  such that 

1 x( ) V x( ) 2 x( ),  (17) 

holds for all x n
 and 

x u( ) �V (x) f (x,u) x( ),  (18) 

holds for all x n
 and all u m

. 

 Defintion 10. [14] The system (15) is iISS if there exist 

functions K , μ KL  and K , such that, for all 

 

n
 and all u U , the solution x t, ,u( )  is defined for 

all t 0 , and 

x t, ,u( )( ) μ , t( ) +
0

t
u(s)( )ds,  (19) 

for all t 0 . 

 Notice that the system (15) is iISS if and only if there 

exist functions KL  and 1, 2 K  such that 

x t, ,u( ) , t( ) + 1 0

t

2 u(s)( )ds( ),  

for all t 0 , all 
n

 and all u U . 

 Defintion 11. [14] A continuously differentiable function 

V  as in Definition 7 is called an iISS-Lyapunov function for 

the system (15) if there exists functions K , and a 

continuous positive definite function 3 , such that 

1 x( ) V x( ) 2 x( ),  

for all  x
n

 with 1, 2 K , and 

xV
� (x) f (x,u) 3 x( ) + u( ) = w(u(t), y(u(t), x(t))),  

for all  x
n

, and all  u
m

. 

 Defintion 12. [14] A system is input/output to state 

stable (IOSS) if, for some KL  and 1, 2 K  

x(t) ( x0 , t) + 1 u[0,t ] + 2 y[0,t ] ,  
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for all initial states and inputs, and all t [0,T
,u ] . IOSS is 

stronger than zero-detectability. 

 Defintion 13. [14] An IOSS-Lyapunov function is a 

smooth storage function such that 

V (x) f (x,u) 1( x ) + 2 (u ) + 3( y ),  

for all x n
, u m

, y p
 with 1, 2 , 3 K . 

 Using the same hypothesis of the last section, it is 

possible to generalize the previous results as long as a more 

general supply rate w(u, y)  with a special structure is used. 

We need the following lemma. 

 Lemma 14. Given V  a in Definition 7, and n,RnDiff  

there exist functions μ1,μ2 K  such that 

μ1( v(t) ) V (v(t))( ) μ2 ( v(t) ),  

for all  v
n
. 

 Proof. It is well-known [14] that given a diffeomorphism 

n,RnDiff  there exist functions , K  

(r) min
v r

(v) and (r) max
v r

(v) ,  

such that 

( v ) (v) ( v ),  

for all  v
n
. It is well-known [14] that V  is a storage 

function if and only if there exist functions 1, 2 K  such 

that 

1 x( ) V x( ) 2 x( ).  

 In consequence, 

1( ( v )) 1 (v)( ) V (v)( ),

V (v)( ) 2 (v)( ) 2 ( ( v )).
 

 Since the set K  is closed under composition of 

functions, then 

μ1( v ) V (v)( ) μ2 ( v ),  

where 
 
μ1 = 1  and 

 
μ2 = 2  are K  functions, and 

for all  v
n
. 

 In Proposition 15 we present a generalization from 

Proposition 5 with regard to the supply rate w(u, y) . In this 

instance we do not suppose a particular structure for the 

supply rate w(u, y)  the only restriction is that it is a known 

function that is invariant under diffeomorphism. 

 Proposition 15. Consider the same hypothesis of the 

Proposition 5 for the supply rate w(u, y)  and energy storage 

function V (x)  such that 

d

dt
V (x(t)) w(u(t), y(u(t), x(t))),  

for all  x
n

 and for all  u
m

. Then for each 

n,RnDiff  such that  preserves the structure of the 

supply rate w(u(t), y(u(t), x(t)))  (the transformed new 

function supply rate is denoted by w(u(t), z(u(t),v(t)))  ), and 

we have that 

d

dt
V ( (v(t))) w(u(t), z(u(t),v(t))),  

is satisfies for all v n
 and for all u m

 where 

z(u(t),v(t)) = y(u(t), (v(t))) . 

 Proof. Since 

vV
� ( (v(t))) =

(v)xV
� (x)

(v)

v
,  

and taking account that the system x = f (x,u)  under the 

coordinate change x  by (v)  take the following form 

 

v =
1

(v)

v
f ( (v),u),  

then we have that 

 

d

dt
V ( (v(t))) = vV

� ( (v(t)))v(t),

=
(v)xV

� (x) f ( (v(t)),u(t)).
 

 In consequence 

d

dt
V ( (v(t))) =

(v)

d

dt
V (x(t)) ,

=
(v)xV

� (x)
(v)

f (x,u) .

 

 On the other side the inequality 
d
dt V (x(t)) w(u(t), y(u(t), x(t)))  for all  x

n
 and for all 

 u
m

, is equivalent to the following identity 

d

dt
V (x(t)) + (x(t),u(t)) = w(u(t), y(u(t), x(t))),  

for some continuous function (u(t), x(t)) 0  for all  x
n

 

and for all u m
. Since the substitution x  by (v)  is an 

homomorphism, this preserves identities, and taking account 

that the last identity is forall x n
 and for all u m

, and 

 :
n n . Then 

d

dt
V ( (v(t))) + (u(t), (v(t))) =

(v)

d

dt
V (x(t))

+
x= (v)

(u(t), x(t)) ,

=
x= (v)

w(u(t), y(u(t), x(t))) ,

= w(u(t), z(u(t),v(t)))

 

is satisfies for all  v
n
 and for all  u

m
. Therefore, for 

each n,RnDiff  we have that 

d

dt
V ( (v(t))) w(u(t), z(u(t),v(t))),  



58    The Open Cybernetics & Systemics Journal, 2011, Volume 5 Fernández-Anaya and Flores-Godoy 

is satisfied for all  v
n
 and for all  u

m
. 

 In the following Corollaries, we present the results on 

preservation of the properties ISS, iISS and IOSS. 

 Corollary 16. If the system (15) is ISS, then for each 

n,RnDiff  the system (16) is also ISS. 

 Proof. By Theorem 5 in [14], the system 
 
x = f (x,u)  is 

ISS, if there exists a smooth storage function V  for which 

there exist functions , K  so that 

 
V (x,u) ( x ) + ( u ),  

for all  x
n

 and for all  u
m

. In this case the structure 

of w  is given by 

w(u(t), y(u(t), x(t))) = ( x ) + ( u ).  

Using the Lemma 14 and that for each n,RnDiff  there 

exist functions , K  so that 

( v ) (v) ( v ),  

by arguments established in the Proposition 15, we have that 

V ( (v),u) ( (v) ) + ( u ),  

and as 

( (v) ) + ( u ) ( ( v )) + ( u ).  

 Then 

 
V ( (v),u) ( ( v )) + ( u ),  

where 
 

 is a K  function. Again for the Theorem 5 in 

[14], the system 

 

v =
1

(v)

v
f ( (v),u),  

is also ISS. 

 Corollary 17. If the system (15)is iISS, then for each 

n,RnDiff  the system (16) is also iISS. 

 Proof. The proof is similar to Corollary 16. Using the 

Theorem 9 in [14], the system 
 
x = f (x,u)  is iISS, if there 

exists a smooth storage function V  for which there are a 

function K  and a function gma : 0,+[ ) 0,+[ )  

which is positive definite (that is, (0) = 0  and (r) > 0  for 

r > 0 ) such that 

 
V (x,u) ( x ) + ( u ),  

holds for all  x
n

 and for all  u
m

. Now the prove is 

similar to the Corollary 16, but noting that the composition 

of functions 
 

 with K  is only a positive definite 

function, since in this case  is a positive definite function.  

 Notice that the function norm  is a K  function. In 

this case the structure of w  is given by 

w(u(t), y(u(t), x(t))) = ( x ) + ( u ),  

with  a positive definite function and K . 

 Note that the results in this section can be generalized by 

considering a change of variables in the space of inputs also. 

 Corollary 18. If the system (15) is IOSS, then for each 

n,RnDiff  the system (16) is also IOSS. 

 Proof. Using the Theorem 22 in [14], the proof is similar 

to that of Corollary 16.  

5. EXAMPLES OF PRESERVATION 

 In this section some examples are presented for to 

illustrated the results about different classes of dissipative 

systems. 

 Example 1. Consider the dissipative system in [16] 

L 1x = u R2x1 x2 ,

C 2x = x1
1

R3
x2 ,

y = x1 +
1

R1
u.

 (20) 

 A Lyapunov function for this dissipative system is 

V (x) = 1
2 Lx1

2
+

1
2 Cx2

2
. Now taking the diffeomorphism 

x = (x1, x2 ) = (v(t)) = arctan v1,v2( ) , with Jacobian 

(v(t))

v
=

1

v1
2
+1

0

0 1

,  

the transformed system 
 
v(t) =

1(v(t ))
v( ) f ( (v(t)),u(t))  is 

 

L 1v = v1
2
+1( ) v2 u + R2 arctan v1( ) ,

C 2v = arctan v1
1

R3
v2 ,

z = arctan v1 +
1

R1
u.

 (21) 

 In this case the Lyapunov function is 

V ( (x)) = 1
2 L arctan

2 v1 +
1
2 Cv2

2
 and its derivative is 

 

V ( (v)) = L arctan v1
1v

v1
2
+1( ) + Cv2 2v . Hence 

 

zu = V ( (v)) +
u2

R1
+ R2 arctan

2 v1 +
v2
2

R3
,

zu V ( (v)).

 

 Example 2. Based on the system (20) with a new 

diffeomorphism given by x = (v(t)) = v1
3
+ v1,v2  and 

Jacobian 

(v(t))

v
=

3v1
2 0

0 1
.  

 We obtain the transformed system 
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L 1v =
1

3v1
2
+1

R2 v1
3
+ v1 u + v2

1

2
,

C 2v = v1
3 1

R3
v2 ,

z = v1
3
+ v1 +

1

R1
u.

 (22) 

 In this case the Lyapunov function is 

V ( (v)) =
1

2
L

2
v1
3
+ v1 +

1

2
Cv2

2
,  

and its derivative with respect to time 

 
V ( (v)) = L v1

3
+ v1 3v1

2
+1( ) 1v + Cv2 2v ,  

then 

V ( (v)) = R2
2

v1
3
+ v1

v2
2

R3
+ u v1

3
+ v1 .  

 In consequence 

zu = V ( (v)) + R2
2

v1
3
+ v1 +

v2
2

R3
+
u2

R1
,

zu V ( (v)).

 

 Example 3. Consider the following nonlinear system 

L 1x =
1

3x1
2
+1

R2 x1
3
+ x1 u + x2 ,

C 2x = x1
3 1

R3
x2 ,

y = x1
3
+ x1 +

1

R1
u,

 (23) 

with the change of coordinates given by 

x = (v(t)) = v1
3
+ v1,v2 , then the transformed system is 

 

L 1v =
v1
2
+1( ) R2 arctan

3 v1 + arctan v1 u + v2

3arctan2 v1 +1
,

C 2v = arctan3 v1
1

R3
v2 ,

y = arctan3 v1 + arctan v1 +
1

R1
u.

 (24) 

 The Lyapunov functionis 

V ( (v)) =
1

2
L

2
arctan3 v1 + arctan v1 +

1

2
Cv2

2
,  

and its time derivative along the trajectories of (ex2ex3a;) 

are 

 

V ( (v)) = R2
2

arctan3 v1 + arctan v1 +

u arctan3 v1 + arctan v1( )
v2
2

R3
.
 

 Therefore 

 

zu = V ( (v)) +
u2

R1
+ R2

2
arctan3 v1 + arctan v1

v2
2

R3
,

zu V ( (v)).

 

 Example 4. Consider the ISS system in [16], 

 x = x3 + u  

with the diffeomorphism x = (y) = arctan y , then the 

transformed system is given by 

 
y = y2 +1( ) 3

arctan y( ) + y2 +1( )u,  

and Lyapunov function V =
1
2 y

2
, such that 

 
V = yy = y2 +1( ) y 3

arctan y( ) + y2 +1( ) yu.  

 Notice that y2 +1( ) y 3
arctan y( ) < 0  for all 

 
y , in 

consequence 

 

V 1( ) y2 +1( ) y 3
arctan y( ) , y tan

1
3u
,  

with (a) = tan
1
3a( )  and 0 < < 1.  

 Example 5. Using the system from Example 4, we take 

the mapping x = (y) = y3 , note that it is not a smooth 

diffeomorphism. The transformed system is given by 

y =
y7

3
+
y 2u

3
,  

and Lyapunov function V =
1
2 y

2
 we obtain that 

V
1( )
3

y8 , y

1
9u
,  

with (a) =
1
9a( )  and 0 < < 1.  

 In this last example we can see that there exist a more 

general type of functions than diffeomorphism such that 

some types of stability and dissipativity area preserved. 

CONCLUSIONS 

 In this paper, we presented a preliminary investigation of 

preservation of dissipativity, input-state stability (ISS), 

integral input-to-state stability (iISS) and input/output to 

state stability (IOSS) under change of coordinates. In 

general, it is not clear that any class of dissipative systems 

can be preserved under an arbitrary change of variables, but 

in this note we show the preservation of some dissipative 

systems and forms of stability for a class of smooth 

diffeomorphism. Our main goal in this paper was to attract 

attention to preservation of dissipativity, ISS, iISS and IOSS 

rather than give complete recipes for preservation of this 

properties. 
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