
 The Open Cybernetics & Systemics Journal, 2012, 6, 1-10 1 

 

 1874-110X/12 2012 Bentham Open 

Open Access 

Perturbation-Based Spectral Stochastic Meshless Local Petrov-Galerkin 
Method in Predicting Probabilistic Settlements 

Guang Yih Sheu
*,§

 

Department of Accounting Information System, Chang-Jung Christian University, Kway-Jen, Tainan 714, Taiwan 

Abstract: In an attempt of solving stochastic boundary-value problems sufficiently accurately without creating a finite 

element discretization, a previous study (Comput. Geotech. 2011, vol. 38, No. 4, pp. 407-415) developed the spectral 

stochastic meshless local Petrov-Galerkin (SSMLPG) method. Some different approaches of deriving an SSMLPG 

formulation have been developed using various random field discretization methods. This study presents the SSMLPG 

formulation composed of perturbation expansions of random fields and a 2D meshfreee weak-strong (MWS) form in 

elasticity. A performance evaluation of this SSMLPG formulation is implemented through a stochastic elastostatic 

problem in which probabilistic settlements are predicted with the uncertainty in the spatial variability of Young`s 

modulus. The evaluation results demonstrate that SSMLPG-based predicted probabilistic settlements approach more close 

to the Monte Carlo simulation (MCS) results than spectral stochastic finite element-based predicted probabilistic 

settlements do. In addition, generating the SSMLPG results is time-saving than completing the MCS does. In conclusion, 

the SSMLPG method can be an efficient alternative tool to solve stochastic boundary-value problems. 

Keywords: Spectral stochastic meshless local Petrov-Galerkin method, perturbation expansion, meshfree weak-strong 
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1. INTRODUCTION 

 Solving computational mechanic problems may 

encounter the uncertainties contributed by such as the spatial 

variability of material properties and complex scenarios of 

imposed loadings. Accounting for such uncertainties is 

necessary, since these uncertainties can cause unreliable 

numerical results for the design purpose. 

 One of the approaches for solving computational 

mechanic problems with accounting for the possible 

uncertainties is assuming random fields to represent those 

uncertainties and regarding the corresponding computational 

mechanic problem as a stochastic boundary-value problem. 

To solve a stochastic boundary-value problem, we can apply 

the spectral stochastic finite element (SSFEM) method [1]. 

Briefly, deriving an SSFEM formulation couples a 

conventional finite element formulation with the 

representations of random fields. These representations of 

random fields can be derived by such as the perturbation and 

Karhunen-Loève expansions. 

 A number of SSFEM formulations are available for some 

branches of engineering. References [2-3] are two recent 

examples. However, some other studies; for example, Ref. 

[4], reported deficiencies, such as mesh distortion under  
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large deformations or re-meshing around the crack tip in the 

crack propagation, in applying the SSFEM method. To 

eliminate these deficiencies thereby improve the 

computational efficiency, a previous study [5] extended the 

meshless local Petrov-Galerkin (MLPG) method [6] to the 

SSMLPG method. Applying the SSMLPG method does not 

need a finite element discretization. Therefore, the time spent 

to create a finite element discretization or background cells 

for the numerical integration can be saved. Nonetheless, the 

SSMLPG results of two elastostatic problems approach more 

satisfactorily to the MCS results than the SSFEM results of 

the same problems do [5]. 

 Some different approaches of deriving the SSMLPG 

formulation have been developed using various random field 

discretization methods. The succeeding study presents the 

SSMLPG formulation containing perturbation expansions of 

random fields and the 2D MWS form in elasticity [7]. In 

addition, the radial basis function (RBF) is used to construct 

the meshfree shape function. A performance evaluation of 

this perturbation-based SSMLPG formulation is 

implemented through a stochastic elastostatic problem in 

which probabilistic settlements are predicted subjected to the 

uncertainty in the spatial variability of Young`s modulus. 

 The remainder of this study is organized into 4 sections. 

In Sec. 2, deriving a 2D MWS form in elasticity is reviewed. 

In Sec. 3, equating the perturbation expansion of Young`s 

modulus and deducing the perturbation-based SSMLPG 

formulation is presented. In Sec. 4, a performance evaluation 

of resulting SSMLPG formulation is implemented. Discus-

sing the evaluation results to draw some conclusion is 

presented in Sec. 5. 
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2. TWO-DIMENSIONAL MESHFREE WEAK-
STRONG FORMULATION IN ELASTICITY 

 Assume linearly elastic and isotropic material and the 

infinitesimal strain assumption holds. Suppose  is a 

problem domain, x = (x1, x2) is a vector of spatial 

coordinates, and  is an event in the probability space. 

Describe each physical parameter within  as functions of x 

and . This study derives the 2D MWS form in elasticity by 

the following differential equation: 

ij , j + bi = 0  (1) 

where ij are the stress fields corresponding to the 

displacement fields ui, bi are the body forces, and ( ), j =
( )
x j

. 

The boundary conditions are given by 

ti = ijn j = ti      on the natural boundary T  (2a) 

u = ui      on the essential boundary U  (2b) 

where the overbar represents the prescribed data, ti are the 

tractions, nj are the components of a unit vector n outward 

normal to , and  = U T. 

Meshfree Strong Form 

 Suppose there are NT nodes within . In addition, S is a 

local quadrature domain for a node xI (I = 1 to NT) and S is 

its boundary. If S for a node xI does not interact with T, a 

meshfree strong form of Eq. (1) is applied at this node. We 

can derive this meshfree strong form by first simplifying ij 

by specific stress-strain and strain-displacement relation-

ships. The resulting expressions are next substituted into Eq. 

(1). For simplicity, the succeeding study focuses on the plain 

strain condition; therefore, ij are simplified by 
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where ij (i, j = 1 to 2) is the strain field. Substituting Eq. (3) 

into Eq. (1) results in 
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Local Weak Form 

 If S for a node xI (I = 1 to NT) interacts with T, a local 

weak form of Eq. (1) is applied at this node. Deducing this  

 

 

 

local weak form initiates from the following equation: 

ij , j + bi( ) I d
S

= 0  (5) 

where I (I = 1 to NT) is the test function associated with xI. 

The succeeding study intends to construct the meshfree 

shape function  by the RBF; therefore, the resulting  

satisfies the Kronecker delta function property ( IJ = 0 for I  

J, IJ = 0 for I = J, and I, J denote two nodes). Consequently, 

neither Lagrangian multipliers nor penalty parameters are 

required in Eq. (5) for imposing the essential boundary 

condition. Meanwhile, simplifying Eq. (5) by the divergence 

theorem yields 

 

ij I , j d
S

I ti dLS
I ti d

SU

= I ti d
ST

+ bi I d
S

 (6) 

where ST = S T, SU = S U, and LS = S - ST - SU. 

Theoretically speaking, the shape of S can be arbitrary in 

integrating Eq. (6). However, S can be a rectangle centered 

at xI (I = 1 to NT) for integrating Eq. (6) more easily. In 

addition, s for xI may be different from Q for the same 

node. Fig. (1) outlines the difference between S and Q. 

Moreover, interpolating the distribution of an unknown or a 

random field can be based on different interpolation domains 

or points. 

 Next, I (I = 1 to NT) is set by 

I (x) =
RI (rI )     x s

0             otherwise
 (7) 

 Substituting Eq. (7) into Eq. (6) leads to 

 

ij [RI (rI )],j  d
S

[RI (rI )] ti dLS
[RI (rI )] ti d

SU

                           = [RI (rI )] ti d
ST

+ bi[RI (rI )] d
S

 (8) 

 Furthermore, ti (i = 1, 2) are simplified by Eqs. (2a) and 

(3). Thus 
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 Substituting Eq. (9) into Eq. (8) yields 

 

VI
TDBud

S

WInDBudLS
WInDBud

SU

 

= WI t d
ST

+ WIb d
S

 (10) 

where u = [u1, u2]
T
, t = [t1, t2 ]

T
, b = [b1, b2]

T
, and 
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n =
n1 0 n2

0 n2 n1
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E (1 )

(1+ )(1 2 )

1 1 0
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2(1 )

,   
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0 x2
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 (11) 

Discrete Equations 

 Similarly manipulating the published RBF interpolation 

formula [5], we can approximate ui (i = 1, 2) over Q for xI 

(I = 1 to NT) by 

ui (x, ) = (x)U = j (x)ui, j (x, )
j=1

N

 (12) 

where N is the total number of nodes within Q, (x) = 

[ 1(x), 2(x)… N(x)], U = [ui,1(x1, ), ui,2(x2, )…ui,N(xN, )]
T
. 

Construction of  for further details can be seen in Ref. [5]. 

Based on Eq. (12), Eqs. (4) and (10) can be re-written more 

succinctly in matrix algebra as 

K IuI = FI  (13) 

where uI = [u1,u2 ....uN ]I
T

 and KI and FI are the stiffness and 

force matrices for xI (I = 1 to NT). KI and FI are derived by 

K I = B
T ( )D(x)B( )

FI = b(x) 
 ( Q T = ) (14a) 
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TDB( )d
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+ WIb d
S

( Q T  ) (14b) 

in which B( ) =

( )
x1

0

0 ( )
x2

( )
x2

( )
x1

 

(14c) 

 Repeat the derivation of Eq. (13) for all NT nodes and 

assemble all the resulting equations according to the global 

numbering system result in 

K(2NT 2NT )
u(2NT 1) = F(2NT 1)  (15) 

 Eq. (15) is not ready for use, since the uncertainty in the 

spatial variability of E has not been treated. In the next 

section, representing the spatial variability of E by the 

perturbation method is presented. 

3. THE PERTURBATION METHOD 

 Theoretical backgrounds of the perturbation method can 

be consulted with Ref. [8]. Interested readers may refer to 

this reference. 

 The first step of deriving the perturbation expansion of E 

is simulating E as a random field and equating Taylor 

expansions of K and u in terms of fluctuations of E. 

 Suppose E1,E2 ...ENT
 are the nodal values of E and small 

fluctuations Ej = Ej - μE (j = 1 to NT) in which μE is the 

mean value of E. The Taylor expansions of K and u at Ej = 

0 (j = 1 to NT) are given by 

 

 

 

Fig. (1). Difference between S and Q. 
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K = K0 + K,i Ei
i=1

NT

+
1
2 K,ij Ei E j

j=1

NT

i=1

NT

+  (16a) 

u = u0 + u,i Ei
i=1

NT

+
1
2 u,ij Ei E j

j=1

NT

i=1

NT

+  (16b) 

where

K0 = K(E = μE ),      K,i =
K
Ei

(E = μE ),      K,ij =
2K

Ei Ej
(E = μE )

u0 = u(E = μE ),        u,i =
u
Ei

(E = μE ),        u,ij =
2u

Ei Ej
(E = μE )

 (17) 

 Note that the Taylor expansion of F does not appear here, 

since the expression of F does not contain E. 

 Substituting Eqs. (16a) and (16b) into Eq. (15) and 

collecting the terms of the same order yield 

 

K0u0 = F

K0u,i = K,iu0
K0u,ij = K,iju0 K,iu,i K, ju, j

 

or 

 

u0 = K0
1F

u,i = K0
1 K,iu0( )

u,ij = K0
1 K,iju0 K,iu,i K, ju, j( )

 (18) 

 Eq. (18) is the SSMLPG formulation of Eq. (1). 

Applying this equation follows four steps: (1) Compute F 

and K0 by setting EJ = μE (J = 1 to NT); (2) Compute 

u0 = K0
1F ; (3) Compute K,i, K,ij,….. using EJ = μE (J = 1 to 

NT); and (4) Solve u,i, u,ij... by the resulting u0. In addition, 

with setting EJ = μE (J = 1 to NT), any MLPG program can be 

used to complete the first three steps. An additional module 

can be appended to this MLPG package for solving u,i, u,ij.... 

 Furthermore, observing Eq. (18) can understand that the 

stability of Eq. (18) depends upon whether K,i, K,ij,…. can 

be obtained. For the current study, obtaining K,i, K,ij,…. is 

easy, since only a linear elastic stress-strain relationship is 

introduced. 

 After accumulating the resulting u0, u,i, u,ij..., a first-order 

perturbation approximation of u is 

u = u0 + u,i Ei
i=1

NT

 (19) 

with the expected value: x[u] = u0  (20) 

and the covariance matrix: 

Cov[u,u] = x[(u x[u])(u x[u])T ] = u,i (u, j )
T x[ Ei Ej ]

j=1

NT

i=1

NT

 (21) 

in which x[ Ei Ej] can be determined analytically by the 

autocorrelation function of E. In addition, a second-order 

perturbation approximation of u is 

u = u0 + u,i Ei
i=1

NT

+
1
2 u,ij Ei E j

j=1

NT

i=1

NT

 (22) 

with the expected value:  

x[u] = u0 +
1
2 u,ij x[ Ei Ej ]

j=1

NT

i=1

NT

 (23) 

and the covariance matrix: 

Cov[u,u] = u,i (u, j )
T x[ Ei Ej ]

j=1

NT

i=1

NT

+
1
4 u,ij (u,ij )

T
x[ Ei El ] x[ Ej Ek ]

+ x[ Ei Ek ] x[ Ej El ]l=1

NT

k=1

NT

j=1

NT

i=1

NT
 (24) 

 In addition, observing Eqs. (19) and (22) can understand 

that the posterior errors of perturbation method are caused by 

truncating u,ijk, u,ijkL…(i, j, k, L = 1 to NT) in equating these 

two equations. Additionally computing these u,ijk, u,ijkL… can 

estimate those posterior errors. 

4. RESULTS 

 Implement the performance evaluation of proposed 

perturbation-based SSMLPG formulation through a 

stochastic elastostatic problem in which a strip loading bears 

on a field foundation clay layer. As a comparison, an 

SSFEM package FERUM [9] is additionally applied to this 

stochastic elastostatic problem. Eqs. (19), (22) and the 

FERUM package are used to predict Ex[u] and standard 

deviation Std[u] with the uncertainty in the spatial variability 

of E. Note that the FERUM package does not include any 

module for compute the perturbation expansion of a random 

field. Therefore, an additional module is appended to the 

FERUM package for providing the perturbation-based 

SSFEM results. 

 For simplicity, the performance evaluation of 

perturbation-based SSMLPG formulation focuses on three 

aspects: 

a. Comparing the agreements between the MCS and 

SSMLPG or SSFEM results. 

b. Evaluating the influence of the spatial variability of E 

on the agreements between the MCS and SSMLPG 

results. 

c. Studying the agreements between the MCS and 

SSMLPG results when discrete nodes are used. 

 Fig. (2) displays the layout of  and boundary conditions 

in which B is the half of foundation width, H is the thickness 

of the clay layer, and 0 is the magnitude of the foundation 

loading. In addition, assume the spatial variability of E 

follows two probabilistic distributions (named by 

Distributions A and B). The first probabilistic distribution is 

E = μE [1+ (x)]  (25) 

where μE is independent of x and (x) is a zero-mean, scalar, 

homogeneous random field with its autocorrelation function 

( ) equal to 
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(Distribution A) ( ) = SE
2 exp 1

b1B
+ 2

b2H( )  (26)

 
where b1 and b2 are two constants, SE is the standard 

deviation of E, ( 1, 2) = x2 – x1, and xi, i = 1 to 2 are two 

nodes. Based on Eq. (26), Ex[ Ei Ej] is derived by 

Ex[ Ei Ej ] = SE
2 exp

xi ,1 x j ,1
b1B

+
xi ,2 x j ,2
b2H( )  (27) 

where xi,1 and xi,2 are the components of xi, xj,1 and xj,2 are 

the components of xj. Similarly manipulating Eq. (27) can 

obtain Ex[ Ei El], Ex[ Ej Ek], Ex[ Ei Ek], and 

Ex[ Ej El]. 

 The second probability distribution is similar to Eq. (25) 

except that ( ) is 

(Distribution B) ( ) = SE
2 1 1

b1B( ) 1 2

b2H( )  (28) 

 Based on Eq. (28), Ex[ Ei Ej] is re-derived by 

Ex[ Ei Ej ] = SE
2 1

xi ,1 x j ,1
b1B( ) 1 xi ,2 x j ,2

b2H( )  (29) 

 However, since E varies according to a random field 

(x), the analytical solutions of u don’t exist. We should 

generate an MCS to provide the standard for comparing the 

SSMLPG and SSFEM results. Implementing an MCS 

requires three steps: (a) Generate a number of samples of E 

according to Eq. (26) or (28); and (b) Substitute each sample 

of E into Eq. (15) and the FERUM package to predict u. (c) 

Compute Ex[u] and Std[u] values of the resulting u. If the 

total number of samples of E is sufficiently large, the 

resulting Ex[u] and Std[u] values approach their exact values 

(but are still not exact values). Such Ex[u] and Std[u] values 

can be the standard for comparing the SSFEM-based and 

SSMLPG-based predicted Ex[u] and Std[u]. Essential 

parameters for this comparison are listed below 

a. Set 0 = 1 kN/m
2
,  = 0.3, B = 10 m, and H = 4.3 m. 

Define  as 0  x1  3B and 0  x2  H. Generate 

15000 samples of E to implement an MCS. Adopt 16 

quadrature points in calculating the numerical 

integration over an S. 

b. Set c = 4.0, q = 1.03, and dc = 3.0 in computing the 

MQ RBF. These c, q, and dc values come from a 

published reference [10] in which the most proper c, 

q, and dc values for applying this MQ RBF are 

studied. As a consequence, setting c = 4.0, q = 1.03, 

and dc = 3.0 results in satisfactory interpolation errors. 

c. Intentionally choose a complete monomial basis of 

order 3 to construct . Observe the agreement 

between the corresponding MCS and SSMLPG 

results with respect to such a lower order value. 

d. Choose Q for any point as a circle centered at this 

point. Set the radius of each Q equal to 2.58 m. 

Choose S for a node as a rectangle centered at this 

node. Set the width and length of each S both equal 

to 2.58 m. Such sizes of Q and S are set according 

to a previous study [10] and a pilot test evaluating the 

time spent to complete an MCS. Accordingly, the size 

of Q or S should be larger than 1.5 times the 

spacing of any two connecting nodes for obtaining 

less interpolation errors [10]. Meanwhile, the pilot 

test identified the time spent to complete an MCS 

using 15000 samples is acceptable
1
. 

e. Generate two cases (named by Discretizations A and 

B) of meshless discretization. Fig. (3a, b) illustrate 

these two cases of the meshless discretization. Fig. 

(3c) shows the finite element discretization for 

executing the FERUM package. 

f. Define the accuracy standard is {Ex[ui]}  10 %, 

{Std[ui]}  10 %, {Ex[ui]}  10 %, and {Std[ui]} 

 10 % where Ex[ui] and Std[ui] are; respectively, the 

components of Ex[u] and Std[u],  and  are the error 

estimators quantifying the agreements between MCS 

and SSMLPG or SSFEM results.  and  are defined 

by 

{Ex[ui ]}(%) = Ex[ui ]MCS Ex[ui ]SSMLPG
Ex[ui ]MCS

, (Std[ui ])(%) = Std[ui ]MCS Std[ui ]SSMLPG
Std[ui ]MCS

 (30a) 

{Ex[ui ]}(%) = Ex[ui ]MCS Ex[ui ]SSFEM
Ex[ui ]MCS

, {Std[ui ]}(%) = Std[ui ]MCS Std[ui ]SSFEM
Std[ui ]MCS

 (30b) 

 In Eqs. (30a) and (30b) Ex[ui]MCS and Std[ui]MCS are 

computed by 

Ex[ui ] =
1
Ns

ui, j
j=1

Ns

, Std[ui ] =
1
Ns

ui, j Ex[ui ]{ }
2

j=1

Ns

 (31) 

                                                             
Using an Intel® CoreTM 2 Duo CPU. 

 

Fig. (2).Benchmark problem for implementing a performance evaluation of the perturbation-based SSMLPG formulation (not to scale). 
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where, Ns is the total number of samples of u, and the 

subscript j denotes the j-th sample of E. In addition, 

Ex[ui]SSMLPG and Ex[ui]SSFEM can be calculated by Eq. (20) or 

(23). However, Std[ui]SSMLPG and Std[ui]SSFEM are computed 

by 

Var(u) = diag Cov[u,u]{ } , Std[ui ] = Var(ui )  (32) 

where Var(u) is the variance of u, Var(ui) are its 

components, and diag is the diagonals of Cov[u,u]. 

Agreements Between the Monte Carlo Simulation and 
Spectral Stochastic Meshless Local Petrov-Galerkin 

Results 

 Figs. (4a-d, 5a-d) compare variation of (Ex[ui]), 

(Std[ui]), (Ex[ui]), and (Std[ui]) (i = 1 to 2) with respect 

to xi. Table 1 further lists the ranges of (Ex[ui]), (Std[ui]), 

(Ex[ui]), and (Std[ui]). 

 

 

Fig. (3).Meshless and finite element discretizations for analyzing the benchmark problem (not to scale). 

 

Fig. (4).Variation of (Ex[ui]) and (Std[ui]) (i = 1 to 2) versus xi (Discretization A, SE/μE = 0.12, b1 = b2 = 1, Ns = 15000). 
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 Surprisingly, Fig. (4a-d) identify that (Ex[ui]) and 

(Std[ui]) computed based on Eq. (19) satisfy the accuracy 

standard. In addition, comparing Table 1, Figs. (4a-d, 5a-d) 

indicates that the SSMLPG results approach more closely to 

the MCS results than the SSFEM results do, since (Ex[ui]) 

and (Std[ui]) are; respectively, less than (Ex[ui]) and 

(Std[ui]). Note that generating the SSMLPG results spends 

about 300 seconds; while completing the MCS requires 

about 1.5 hr. 

Influence of the Spatial Variability of Young’s Modulus 

on the Spectral Stochastic Meshless Local Petrov-

Galerkin Results 

 Discuss first the necessity of accounting for the spatial 

variability of E in predicting u. As an example, Fig. (6a, b) 

display variation of ui(x2 = H  0  x1  3B)/H (i = 1 to 2) vs 

x1 with and without accounting for the spatial variability of 

E. In these two figures, u is predicted by Eq. (19). 

 As compared to SSMLPG-based predicted u1(x2 = H)/H, 

Fig. (6a, b) demonstrate that SSMLPG-based predicted u2(x2 

= H)/H varies within a wider range. As a consequence, 

obtaining unreliable predicted u2(x2 = H) is more possible 

than obtaining unreliable predicted u1(x2 = H), if the spatial 

variability of E is neglected. 

 Next, study the influence of different spatial variability of 

E on the accuracy of SSMLPG results. Since Eqs. (26) and 

(28) show that adjusting the spatial variability of E is 

equivalent to using different b1, b2, and SE values, we turn to 

study the influence of different b1, b2, and SE values on the 

agreements between the MCS and SSMLPG results. Fig. 

(7a, b) show variation of (Ex[ui]) and (Std[ui]) (i = 1 to 2) 

vs xi, b1 = 1, and b2 = 2. Fig. (8a, b) show variation of 

 

Fig. (5).Variation of (Ex[ui]) and (Std[ui]) (i = 1 to 2) versus xi (SE/μE = 0.12, b1 = b2 = 1, Ns = 15000). 

Table 1. Ranges of (Ex[ui]), (Std[ui]), (Ex[ui]) and (Std[ui]) (i = 1 to 2) 

 

  (Ex[u1]) (Ex[u2]) (Std[u1]) (Std[u2]) (Ex[u1]) (Ex[u2]) (Std[u1]) (Std[u2]) 

Distribution A 1.31 ~ 1.72 1.3 ~ 1.71 6.49 ~ 9.43 6.49 ~ 9.44 5.97 ~ 7.92 6.23 ~ 8.28 12.1 ~ 22.1 10.7 ~ 20.8 
1st-order (%) 

Distribution B 0.63 ~ 0.82 0.62 ~ 0.81 4.03 ~ 6.73 4.02 ~ 6.73 8.13 ~ 21.4 8.13 ~ 21.3 4.1 ~ 26 4.44 ~ 26.1 

Distribution A 0.59 ~ 1.01 0.6 ~ 1.01 3.84 ~ 8.08 3.85 ~ 8.09 3.38 ~ 3.86 3.48 ~ 3.95 9.89 ~ 14.6 9.41 ~ 13.7 
2nd-order (%) 

Distribution B 0.13 ~ 0.32 0.12 ~ 0.31 3.42 ~ 6.41 3.42 ~ 6.41 7.65 ~ 21 7.64 ~ 20.9 4.03 ~ 21 4.03 ~ 22.1 
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(Ex[ui]) and (Std[ui]) vs xi and SE/μE = 0.24. In these four 

figures, u is computed by Eq. (22). 

 Comparing Figs. (4c, d, 7a, b) identifies that (Ex[ui]) 

and (Std[ui]) values decrease when b2 values increase. 

Comparing Figs. (4c, d, 8a, b) indicates that doubling the SE 

value increases the (Ex[ui]) and (Std[ui]) values. In Fig. 

(8a, b), (Ex[ui]) values still satisfy the accuracy standard, 

whereas some of (Std[ui]) values don’t. 

Spectral Stochastic Meshless Local Petrov-Galerkin 
Results vs Discrete Nodes 

 Using Eq. (22) and Discretization B, Fig. (9a, b) display 

variation of (Ex[ui]) and (Std[ui]) (i = 1 to 2) vs xi. These 

two figures indicate that the proposed perturbation-based 

SSMLPG formulation can provide sufficiently accurate 

numerical results, even if nodes are randomly distributed. 

(Ex[ui]) and (Std[ui]) values in Fig. (9a, b) satisfy the 

accuracy standard. 

5. DISCUSSIONS AND CONCLUSION 

 This study presents an SSMLPG formulation containing 

perturbation expansions of random fields and a 2D MWS 

formulation in elasticity. In Sec.4, the performance of this 

SSMLPG formulation is evaluated. Some discussions are 

drawn from the evaluation results: 

a. Even if the first-order perturbation approximation of 

u is used, Fig. (4a-d) show that SSMLPG-based 

predicted Ex[u] and Std[u] are still sufficiently 

 

Fig. (6).Comparison of predicted u(x2 = H  0  x1  3B)/H with and without accounting for the uncertainty contributed by the spatial 

variability of E (using Eq. (19)). 

 

Fig. (7).Variation of (Ex[ui]) and (Std[ui]) (i = 1 to 2) versus xiand b1 = 1, b2 = 2 (Using Eq. (22) Discretization B, SE/μE = 0.12, and Ns = 

15000). 
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accurate. Such experience was not mentioned in 

applying other stochastic numerical methods. For 

example, a previous study [11] concluded that the 

accuracy of stochastic element-free Galerkin 

(SEFGM)-based predicted Ex[u] and Std[u] is 

unsatisfactory, if the first-order perturbation 

approximation of u is used. Consequently, Fig. (4a-d) 

encourage the further application of perturbation-

based SSMLPG formulation to three-dimensional 

problems. Solving a three-dimensional problem is 

usually time-consuming; whereas computing the first-

order perturbation approximation is time-saving. If 

using the first-order perturbation approximation of u 

can result in sufficiently accurate predicted Ex[u] and 

Std[u], we are more willing to apply the SSMLPG 

method to three-dimensional problems. 

b. Comparing Fig. (4a-d) with Fig. (5a-d) identifies that 

the SSMLPG results approach more closely to the 

MCS results than the SSFEM results do. The better 

accuracy of SSMLPG results may attribute to the 

difference between meshfree and finite element shape 

functions, since other parameters for plotting Figs. 

(4a-d, 5a-d) are almost identical. Nevertheless, 

further applying the SSMLPG and SSFEM methods 

to other types of stochastic boundary-value problems 

is suggested. 

c. Figs. (7a, b, 8a, b) show that b1, b2, and SE values do 

affect the accuracy of SSMLPG results. To obtain 

more proper b1, b2, and SE values, we may compute 

different b1, b2, and SE values for each Q. Such an 

idea can be tested in solving a practical stochastic 

boundary-value problem. The SSMLPG method gives 

 

Fig. (8).Variation of (Ex[ui]) and (Std[ui]) (i = 1 to 2) with respect to xi and SE/μE = 0.24 (Using Eq. (22) Discretization A, b1 = b2 = 1, and 

Ns = 15000). 

 

Fig. (9).Variation of (Ex[ui]) and (Std[ui]) (i = 1 to 2) versus xi (Using Eq. (22) Discretization B, SE/μE = 0.12, b1 = b2 = 1, and Ns = 

15000). 



10    The Open Cybernetics & Systemics Journal, 2012, Volume 6 Guang Yih Sheu 

more freedom to support this idea, since each Q is 

arbitrary. We can freely adjust any Q but fix other 

Q for obtaining more proper b1, b2, and SE values. 

d. Fig. (9a, b) display that the proposed perturbation-

based SSMLPG formulation still provides satisfactory 

numerical results when discrete nodes are used. Such 

performance facilitates solving practical stochastic 

boundary-value problems. In a practical stochastic 

boundary-value problem, data of material properties 

are measured at discrete nodes. The SSMLPG method 

can directly incorporate with such data to produce 

sufficiently accurate numerical results. If the SSFEM 

and SEFGM methods are applied for the same 

stochastic boundary-value problem, additional nodes 

are required to create a finite element discretization or 

background cells. 

 In conclusion, the SSMLPG method can be an efficient 

alternative for solving stochastic boundary-value problems. 
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