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Abstract: In this paper , for the nonlinear Cahn-Hilliard equation, we give its symmetry group by the approximate 

generalized conditional symmetry. As the application of approximate generalized conditional symmetry, the initial-value 

problem of the partial differential equations can be reduced to perturbed initial-value problem for a system of perturbed 

first-order ordinary differential equations. By solving the reduced ordinary differential equations, we obtain the 

approximate solutions of the initial-value problem of research equations. At the last, some exaples be given to show the 

reduction procedure. 
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1. INTRODUCTION 

 There are many nonlinear partial differential equations 

(PDEs) with small parameters or perturbed equations arising 

from the real world, so it is of great importance and interest 

to find approximate solutions and extend the scope and depth 

of the perturbation theory [1, 2]. There are ordinary methods 

for studying the approximate solutions of perturbed 

equations by the perturbation methods in combination with 

the Lie group theory [3]. Recently, several symmetry based 

perturbation methods have been developed to deal with the 

perturbation properties of perturbed equations [4-8]. 

Actually, these methods are effective ways investigating 

perturbed PDEs [9]. In ref. [10-12], the authors successfully 

handle with the initial-value problem by the generalized 

conditional symmetry (GCS) which was introduced by 

Fushchych and Zhdanov [13], and independently by Fokas 

and Liu [14]. In ref. [15], we have solved the approximate 

symmetry reduction for initial-value problems of the 

extended KdV-Burgers equations with perturbation. 

 In this paper, we intend to study the initial value problem 

of the nonlinear Cahn-Hilliard equation [16] with 

perturbation 
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 Here xt, are two independent variables and u  is a 

scalar dependent one. The Cahn-Hilliard equation was 

propounded by Cahn and Hilliard in 1958 as a mathematical 

 

 

 

model which describes the diffusion phenomena in phase 

transition. Then the equation can characterize the process in 

the context of the continuum theory of phase transitions, the 

nonlinearity F(u) is the derivative of a double-well potential 

with wells of equal depth and 10  shows the 

thickness of an interface separating the two preferred states 

of the system. Later, many mathematicians considered the 

Cahn-Hilliard type equation and have done lots of 

remarkable results [17, 18], such as the perturbation of 

solutions [19], the existence, stability and uniqueness of 

solutions [20], etc. So this paper mainly researches the 

initial-value problem of the Cahn-Hilliard equation by 

approximate generalized conditional symmetry (AGCS). 

If we treat the perturbed PDE 
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as an Nth-order ordinary differential equations (ODEs) with 

respect to variable x , where 
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its general integral can be expressed (locally) in the form 
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where ),...,1(),( Njtj =  are arbitrary smooth functions. 

 In order to integrate Eq. (3), it would be natural to 

consider higher-order AGCSs which are linear in the 

variables 
n
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After the AGCSs are found, Eq. (3) can be integrated to an 

ansatz of the following form 
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2. MAIN RESULTS 

 In what follows, the cases 5.4.3,2=N  of AGCSs (5) 

are studied, and all the possible inequivalent forms of Eq. (1) 

which admit AGCSs (5) are described. Here we show the 

classification results of Eq. (1) admitting second, third-, 

fourth- and fifth-order AGCSs (5) as follows: 

Theorem 1. Eq. (1) admits the second-order AGCSs of the 

form 
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if and only if it is equivalent to one of the following ones: 
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Here 
321

,, fff  are arbitrary constants and functions 

)1,0)(,(),,( =ixtbxta
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 satisfy the following systems of 

PDEs respectively. 
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In the following, we will give the computational procedure. 

 According to the approximate generalized conditional 

symmetry, we obtain the determining equation 
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 Eq. (11) stands for infinitesimals of the same order 

for
2

, so we omit the value of
5432

,,, FFFF . Here 
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,FF  are polynomials of the derivative of u.  
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Set 
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 In above equations, the coefficients of the derivative of 

u  are equal to zero, so the theorem 1 is proved. 

Theorem 2. Eq. (1) admits the third-order AGCSs of the 

form 
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Here functions )2,1,0)(,(),,( =ixtbxta
ii

 satisfy the 

following systems of PDEs respectively. 
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 The computational procedure of Theorem 2 is similar to 

Theorem 1, so we omit it. 

 When Eq. (1) admits the fourth- and fifth-order AGCSs, 

the linear equations can be obtained, so we leave out the two 

cases. The following examples show the reduction 

procedure. 

 Example 1. Approximate reduction of Eq. (7) to Cauchy 

problem. 

 Integrating Eq. (8) yields the ansatz );,( xtu  

).()();,( 21 txtxtu +=          (16) 
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 Solving above equations, we obtain 
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conditions for Eq. (7) 
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By inserting (16) into the initial-value problem (7) and (17) , 

we have the following Cauchy problem: 
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The following two approximate solutions are given by 

solving the Eqs. (18) 
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 Then the two approximate solutions are obtained by 

substituting the above expressions for functions 

)(),( 21 tt  into (16). 

 Example 2. Approximate reduction of Eq. (14) to Cauchy 

problem. 

 Integrating Eq. (15) yields the ansatz );,( xtu  
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1 txtxtxtu ++=  (19) 

 Applying the above algorithm, we can get the perturbed 

initial-value conditions for Eq. (14) 
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 By inserting (19) into the initial-value problem (14) and 

(20), we have the following Cauchy problem: 
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iii NBQ ,,  are the constants which are related to 

)14,...,1( =iC
i

. 

CONCLUSION 

 In summary, the AGCS method is successfully used to 

classify and construct approximate solutions of initial-value 

problem for Cahn-Hilliard equations which admit certain 

types of AGCSs. Therefore, it is interesting to study other 

types of nonlinear PDEs with perturbation term by AGCSs 

and we believe that some new results will be obtained. 
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