
Send Orders for Reprints to reprints@benthamscience.ae 

128 The Open Cybernetics & Systemics Journal, 2014, 8, 128-138  

 

 1874-110X/14 2014 Bentham Open 

Open Access 

Double Layer Based Multi-label Classifier Chain 

Tao Guo
*
 and Guiyang Li 

College of Computer Science, Sichuan Normal University, Chengdu, Sichuan, 610101, P.R. China 

Abstract: In multi-label learning, each training example is associated with a set of labels and the task is to predict the 

proper label set for each unseen instance. The widely known binary relevance method (BR) for multi-label classification 

considers each label as an independent binary problem. It is ignored in the literature due to inadequacy of not considering 

label correlations. In this paper, we present our double layer based classifier chains method (DCC), which overcomes dis-

advantages of BR and inherits the benefit of classifier chain method (CC). This algorithm decomposes the multi-label 

classification problem into two classification processes to generate classifier chain. Each classifier in the chain is respon-

sible for learning and predicting the binary association of the label given the attribute space expanded by all prior binary 

relevance predictions in the chain. This chaining allows DCC to take into account correlations in the label space. We also 

extend this approach further in an ensemble framework. An extensive evaluation covers a broad range of multi-label 

datasets with a variety of evaluation measures specifically designed for multi-label classification. Experiments on bench-

mark datasets validate the effectiveness of proposed approach comparing with state-of-art methods in terms of average 

ranking. 
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1. INTRODUCTION 

Traditional single-label classification is concerned with 
learning from a set of examples that are associated with a 
single-label from a set of disjoint labels. Multi-label learning 
is concerned with learning from instances, where each in-
stance is associated with multiple labels. The main task from 
multi-label learning is to predict the label sets of unseen in-
stances through analyzing training examples with known 
label sets. These known sets belong to a predefined set of 
labels [1-3]. Each example in the training set is represented 
by a feature vector and associated with one set of labels. 
Generally, multi-label learning can be categorized into multi-
label classification and multi-label ranking [3]. The goal of 
multi-label classification is to construct a classifier or predic-
tive model to provide a list of relevant labels for unseen in-
stance. However, the purpose of the multi-label ranking is to 
build a predictive model that provides a list of preferences of 
the labels from the set of possible labels [3].  

Early research on learning from multi-label data focused 
on automated document categorization [4]. As the ability to 
collect and store large sets of data increased in recent years, 
multi-label learning has recently received significant atten-
tion from machine learning community [5]. It motivated an 
increasing number of new applications and involved a wide 
variety of domains, including text classification [6], scene 
and video classification [7], and bioinformatics [8]. The al-
gorithms for multi-label classification can be categorized 
into two different groups [5]: problem transformation meth-
ods and algorithm adaptation methods. 

 

 

 
 

Problem transformation methods transform the multi-
label classification task into one or more single-label classi-
fication, regression or raking tasks [6]. Prior problem trans-
formation approaches have employed algorithms such as 
Support Vector Machines, Naïve Bayes and K-Nearest 
Neighbor methods [7]. These approaches can be grouped 
into three categories: binary relevance, label power-set and 
pair-wise methods [8]. Algorithm adaptation methods extend 
specific learning algorithms in order to deal with multi-label 
data directly [6]. Some well-known approaches involve deci-
sion trees, AdaBoost [7]. This paper we focus on the prob-
lem transformation methods.  

The most common and widely-used problem transforma-
tion method is the BR [8]. It learns one binary classifier for 
each different label, such that each binary classifier is trained 
to predict the relevance of one of the labels. For the classifi-
cation of a new instance, BR outputs the union of the labels 
that are predicted by the classifiers positively. However, dur-
ing the learning processing, BR simply learns independent 
binary classifiers for each label, and ignores the correlations 
existing between labels in the training data  

Label power-set (LP) [9] multi-label learning method 
takes label correlations into consideration. It considers each 
unique set of labels that exits in a multi-label training set as 
one of the classes of a new single-label classification task. 
The output of LP for a new instance is the most probable 
class that is a set of label [10]. It can achieve better perform-
ance compared with BR [8]. However, LP is challenged by 
application domains with large number of labels and training 
examples [11]. It also suffers from the data deviation since 
only small number of training examples is contained [12].  

To handle these problems, G. Tsoumakas proposed ran-
dom k-labelsets (RAKEL) approach [8]. This method breaks 
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the original set of labels into a number of small random sub-
sets which is named labelsets and employs LP to train a cor-
responding classifier. The labelsets can be either disjoint or 
overlapping depending on which of two strategies is used to 
construct them [8]. The k in RAKEL is a parameter that 
specifies the size of the subsets. RAKEL takes the label cor-
relations into account and avoids the LP’s problem effec-
tively. However, in order to achieve optimal performance, 
some parameters, such as subset k, number of models, 
threshold, must be perform internal cross validation. It is a 
harsh work to find the optimal parameters [12].  

Godbole [13] presents meta-MR algorithm (MBR) which 
extends the SVM binary classifiers with two stages. In this 
algorithm, the authors stacked BR classification outputs 
along with the full original feature space into a separate meta 
classifier to create a two-stage classification process. This 
process takes label correlations into consideration, but the 
meta classifier implies an extra iteration of both training and 
testing data as well as internal classifications on the training 
data to acquire the label outputs for this meta step [4, 14]. 

Proposed in [4], the classifier chains method has become 
one of the most popular methods for taking label correlations 
into account. CC offers a general problem transformation 
method that inherits the efficiency of BR and overcomes the 
disadvantages of BR. The CC consists of q training binary 
classifiers, one for each label. These classifiers are connected 
at random order in a chain, such that the classifier connected 
with the instance can be used as input features not only the 
instance, but also the output predictions of the previous clas-
sifiers.  

Although CC computes with the high accuracy of more 
computationally complex methods, it still has a drawback in 

that the label ordering in CC is composed at random. Edu-
ardo [15] demonstrated that the label ordering of CC has a 

strong effect on predictive accuracy. To deal with this prob-
lem, [15] proposed a genetic algorithm for optimizing the 
label ordering in classifier chains. Since some of the parame-

ters in genetic algorithm are sensitive, the manually parame-
ters setting may reduce the predictive performance. Also, in 

CC, the first binary classifiers will possibly generate wrong 
predictions and course significant error propagation along 

the chain [14, 15]. To solve this problem, the authors of CC 
propose combining random orders through an ensemble of 

classifier chains (ECC) in [4, 14]. ECC trains m CC classifi-
ers. Each classifier is trained with a random chain ordering 

of L or a random subset of D and makes label predictions. 
The predictions are summed by label so that each label re-

ceives a number of votes. A threshold is used to select the 
most popular labels, which form the final predicted label set. 
The experimental results performed in [14] show that the 

ECC performed high prediction as compared with other 
multi-label methods. The notable potential issue of ECC is 

that a potentially very large number of instances must be 
processed when an ensemble of binary transformations. This 

process is timing consume and memory complexity [14]. 
The other disadvantages of the ECC approach lies in the fact 

that it cannot be applied when the goal is to build interpret-
able classifiers. These kinds of classifiers explain their clas-

sification decisions and are mainly represented by decision 
trees [16] and associative classifiers [17].  

In this paper, we outline the advantages of BR-based 

methods and present our double layer based classifier chains 

method, which overcomes disadvantages of the binary 

method and inherits the benefit of classifier chain method. 

An ensemble framework for classifier chains called EDCC is 

also introduced. The performances of proposed methods are 

compared with familiar multi-label classification methods on 

a wide range of datasets under four state-of-art multi-label 

evaluation metrics.  

The rest of paper is organized as follows. In section 2, we 

proposed the DCC algorithms in training and testing stages. 

The procedures for BR, CC, MBR, and DCC are also dia-

gramed for further comparison. In section 3, we present the 

implementation of ensembles classifier chains (EDCC). Sec-

tion 4 describes datasets, experimental setups and evaluation 

measures involved in the experiments. The results of com-

parative experiments and analysis are presented in section 5. 

Finally, we conclude the paper in section 6.  

2. DOUBLE LAYER BASED CLASSIFIER CHIAN  

2.1. Preliminaries 

Let   X
d

  be the input domain of all possible attribute 

values. An instance Xx  is represented as a vector of d 

attribute values [ ]
1 d
x , ,x=x . The set {1, , }L=L  is the 

output domain of possible labels. Each instance x is associ-

ated with a subset of these labels. This subset is represented 

by a L -vector [ ]
1 L
y , , y=y , where 1

j
y = , if label j is as-

sociated with instance x , and 0 otherwise. We also  

define a set of training data D  of N  labeled  

examples {( , ) | 1, , }i i
D i N= =x y . ( )f f f

1 Lh , ,h=h  and 

( )s s s

1 L
h , ,h=h  are the classifiers constructed in the first 

layer and second layer respectively. The final output 

ˆ {0,1}Ly  is induced for any instance x .  

2.2. The DCC Framework  

The method sets two layers to decompose the multi-label 

classification problem into independent binary classification 

problems. In first layers, DCC model involves L binary 

transformations-one for each label and each binary model is 

trained to predict the relevance of one of the labels [4]. In 

second layer, the instance with attribute space for each bi-

nary model is extended with label relevance of all previous 

classifiers to form a classifier chain. The algorithm follows 

the advantage of CC in that higher predictive performance is 

achieved by passing label correlation information along a 

chain of classifiers. But it is different from CC in that the 

attribute space for each binary model in second layer is aug-

mented with the 0/1 label prediction coming from first layer 

classifiers and all prior binary relevance prediction from sec-

ond layer in which the classifier chain is built. Each classi-

fier in the chain is responsible for learning and predicting the 

binary association of the label given the attribute space. The 

classification process is composed of training and testing 

stages. The algorithms for the two stages of DCC are defined 

in the followings. 
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2.2.1. Training Stage 

In the training stage, the training data involving in the 
first layer for each classifier is defined in (1): 

{( , ) |1 }f i

j i jD y i d= x            (1) 

For any multi-label training example ( , )i i
x y , some bi-

nary algorithmB is used to induce a binary classi-

fier : {0,1}f

jh X , i.e. ( )f f

j jh DB . 

The training data involving in the second layer for each 

classifier
s

jh is defined in (2): 

1 1 1{([ , , , , , , ], ) |1 }s i i i i i

j i j j L jD y y y y y i d
+

= x       (2) 

In this stage, we denote the binary classi-

fier { }
1

: 0,1 {0,1}
Ls

jh X   , i.e. ( )s s

j jh DB .  

The pseudo-code of DCC algorithm for a training dataset 
D is presented in Algorithm 1.  
 

Algorithm 1. DCC’s training phase for training set D and label set L  
of L  labels. 

TRAINING( {( , ) | 1, , }i i
D i N= =x y ) 

1 for j = 1,…, L 

2 Construct the first layer training set 
f

jD  according to Eq.(1); 

3 ( )f f

j jh DB  

4 Endfor 

5 for j= 1,…, L  

6 Construct the second layer training set 
s

j
D  according to Eq.(2); 

7 ( )s s

j jh DB  

8 Endfor 

 
After training, the classifiers ( )f f f

1 Lh , ,h=h  and 

( )s s s

1 L
h , ,h=h

 
are constructed respectively. 

2.2.2. Testing Stage 

During the processing of testing stage, all instances with 
d attribute space are firstly classified by the classifier 

f

jh  in 
the first layer.  

In second layer, the attribute space for each binary model 

is extended with the label relevance from first layer linking 

with the label relevances from all previous classifiers in sec-

ond layer. The correlation for each label is fully considered 

after the procedure of the second layer. Also a chain 

( )s s s

1 L
h , ,h=h of binary classifiers is formed to induce final 

output ˆ ˆ ˆ[ ]
s s

1 L
y , , y=y . The pseudo-code of DCC algorithm 

for the testing stage is presented in Algorithm 2.  

The output of each classifier for unseen instance x in the 
first layer is shown in (3):  

ˆ ( )=
f f

j jy h x
               

(3) 

In second layer, instance x combined with label rele-
vances of all previous classifiers is used as input for each 

individual classifier. The output of each classifier is shown 
in (4):  

1 1 1
ˆ ˆ ˆ ˆ ˆ([ , , , , , , ])s s s s f f

j j j j Ly h y y y y
+

= x
       

(4) 

The final output for instance x is presented in (5): 

ˆ ˆ ˆ ˆ[ ]
s s s

1 Ly , , y= =y y
             

(5) 

where, classifier h  is consisted of L binary classifiers 

1,
,...,

L
h h , and each jh learns from D to predict the relevance 
of ˆ {0,1}y . The pseudo-code of DCC algorithm for a test 
instance is presented in Algorithm 2. 

 
Algorithm 2. DCC’s prediction phase for a test instance x. 

CLASSIFY(x) 

1 global ( )f f f

1 Lh , ,h=h , ( )s s s

1 L
h , ,h=h  

2 for j = 1,…, L  

3 Generate the first layer output ˆ
f

jy  according to Eq.(3);  

4 Endfor 

5 for j = 1,…, L  

6 Generate the second layer output ˆ
s

j
y  according to Eq.(4); 

7 Endfor 

8 ˆ ˆ ˆ[ ]
s s

1 L
y , , y=y  

9 return ŷ  

 
In this procedure, a binary classifier chain h

s
 = 

( )s s

1 L
h , ,h  is formed. Each classifier 

i
h in the chain is re-

sponsible for learning and predicting the binary association 

of the jth label given the attribute space, augmented by all 

prior binary relevance predictions in the chain. The classifi-

cation process begins at 
1
h and propagates along the chain. 

This chaining method passes label information among classi-

fiers, allowing DCC to take label correlations into considera-

tion in the label space in the second layer, thus overcoming 

the label independence problem of BR.  

2.3. Comparison of Related Binary Relevance Classifiers 
in the Procedure of Testing Stage 

In order to demonstrate the procedure of DCC and under-
stand the different algorithm ideas which are relate to binary 
relevance more clearly, the following section performs the 
comparison of the schemes for BR, CC, MBR, and DCC in 
testing stage. Figs. (1-4) show the procedure of transforma-
tions with an example under each method for (x, y), where 
unseen instance x contains three attribute spaces and the out-
put for prediction ˆ {0,1}y . 

 

Fig. (1). The procedure of BR in testing stage. 
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(Fig. (1)) shows the procedure of BR. In Fig. (1), the 
multi-label learning problem is decomposed into three inde-
pendent binary classification problems, where each binary 
classification problem corresponds to a possible label. The 
binary classifiers 

1 2 3
[ , , ]h h h induced by some binary learning 

algorithm B in the training stage is utilized to perform pre-
diction for unseen instance x and generate final prediction 

1 2 3
ˆ ˆ ˆ[ , , ]y y y without considering correlation among labels.  

 

Fig. (2). The procedure of CC in testing stage. 

(Fig. (2)) presents the scheme of CC. In Fig. (2), the un-

seen instance x is used as input to generate the first binary 

classifier h1 under BR firstly. The corresponding binary test-

ing set is constructed by appending each instance x with its 

relevance to the labels predicted by preceding classifier(s). 

Then, the subsequent binary classifier h2 is built upon this 

binary testing set. Following this procedure, for any instance 

x, its associated label set 
1 2 3
ˆ ˆ ˆ[ , , ]y y y  is predicted by travers-

ing the classifier chain iteratively.  

 

Fig. (3). The procedure of MBR in testing stage. 

(Fig. (3)) shows the procedure of meta-BR (MBR) pro-

posed by Godbole [13]. The method stacks BR classification 

outputs along with the full original feature space into a sepa-

rate meta classifier to create a two-stage classification proc-

ess. In base layer (or first layer), unseen instance x is the 

input for each of the three classifiers 
1 2 3
[ , , ]

f f fh h h , then pre-

label prediction set 
1 2 3
ˆ ˆ ˆ[ , , ]
f f fy y y is obtained. In the meta 

layer (or second layer), the corresponding input dataset is 

constructed by appending each instance x with all labels pre-

dicted by preceding classifiers. The binary classifiers are also 

utilized to generate final prediction set 
1 2 3
ˆ ˆ ˆ[ , , ]
s s s
y y y . During 

this procedure, the label correlations are took into account.  

 

Fig. (4). The procedure of DCC testing stage. 

(Fig. (4)) shows the procedure of proposed DCC method. 

From Fig. (4), we may see that the proposed method sets two 

layers to decompose the multi-label classification problem 

into independent binary classification problems. The proce-

dure completed in the first layer is similar as BR. In this 

layer, the model involves L binary transformations-one for 

each label without considering label correlations and a pre-

prediction label set 
1 2 3
ˆ ˆ ˆ[ , , ]
f f fy y y

 
is induced. Same as CC, the 

unseen instance with attribute space for each binary model is 

extended with 0/1 label relevance of all previous classifiers 

to form a classifier chain
1 2 3
[ , , ]

s s s
h h h  in the second layer. 

Each classifier in the chain is responsible for learning and 

predicting the binary association of each label by traversing 

the classifier chain iteratively. Finally, the prediction set 

1 2 3
ˆ ˆ ˆ[ , , ]
s s s
y y y  is generated under this chain.  

3. ENSEMBLES OF DCC 

Since the label ordering in CC is composed at random [4, 

14, 15], we design ensembles classifier chains under double 

layer to train L DCC classifiers 
1
,...,

L
h h . Each classifier is 

unique and able to give different multi-label predictions. 

These predictions are summed by label so that each label 

receives a number of votes. Pcard1 [14] is used as threshold 

to select the most popular label that form the final predicted 

label sets.  

4. EXPERIMENTS 

4.1. Data Sets 

We try to include a considerable variety and scale of 
multi-label datasets, thus the proposed algorithm are evalu-
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ated on 9 different benchmark datasets obtained from [18] 
with dimensions ranging from 6 to 374 labels. The main 
characteristics of each dataset are shown in (Table 1). The 
values in the second column (N) represent the number of 
instances. The values in the third column (d) present the fea-
tures. And the values in the fourth column (L) represent the 
label. The values in the fifth column (LCard) indicate the 
label cardinality, which is the average number of labels per 
instance [5, 14]. The formula for the label cardinality is de-
fined for N examples as: 

1 1

1
N

i

j

i j

Lcard y
N = =

=              (6) 

The sixth column presents the application domain of each 
dataset. To evaluate the efficiency of DCC in different 
datasets, we refer to [14] to classify the datasets into three 
groups according to the complexity ( )N d L  of each 
datasets: small (“Music”, “Genbase”, “Medical”, “Medical”, 
and ”Langlog”), medium (“Scene”, “Yeast”, and “Enron”) 
and large (“Corel5K”, and “Bibtex”).  

4.2. Evaluation Methods 

In multi-label experiment, it is essential to evaluate the 
performance of each algorithm. Over the last few years, sev-
eral evaluation measures specifically designed for multi-
label classification have been proposed in literatures, such as 
[1, 5, 14, 15, 19]. All of these evaluation methods help iden-
tifying how the proposed algorithms perform well crossing a 
range of evaluation methods. There is an important division 
between label-based evaluation, which is carried out on a 
per-label basis, and label set-based evaluation, which evalu-
ates label sets. In label-based evaluation, the evaluation is 
executed on a per-label basis. On the other hand, the label 
set-based evaluation is carried out on label sets. In this ex-
periment evaluation, we use several of both types of meas-
ures, including 0/1 loss, Hamming Loss, Precision, Accuracy, 
Micro_F1, and time for training and testing in this paper.  

When any predicted set of labels ŷ must match the true 

set of labels y exactly, this is known as 0/1 Loss as a loss 

measure. It is defined in (7): 

ˆ

1

1
0/1 Loss 1 1 i i

N

y y
iN =

=

=             (7) 

Since 0/1 Loss can be seen very harsh, any label set not 
predicted perfectly is given a zero score [14]. However, 
when the label is a separate binary evaluation, the Hamming 
loss tends to be very tolerant due to the typical sparsity of 
multi-labelling, and ignores the multi-label problem as a 
whole. The Hamming Loss is defined in (8): 

1 1

ˆHamming Loss= 1
N L

i i

j j

i j

y y
= =

=           (8) 

Accuracy measure introduced by Godbole in [15] is a la-
bel set-based measure. It is defined in (9): 

1

ˆ1 | |
Accuracy

ˆ| |

i iN

i i
i

y y

N y y=

=             (9) 

Micro_F1measure is an approach of combining the Mi-
cro_precision and Micro_recall measures of a classifier by 
means of an evenly harmonic mean of both them. It is de-
fined in (10). 

2 Micro_precision Micro_recall
Micro_F1=

Micro_precision Micro_recall
    (10) 

Where, the Micro_precision and Micro_recall measures 
are defined as (11) and (12) respectively.  

1

1 1

Micro_precision

L

jj

L L

j jj j

tp

tp fp

=

= =

=

+

      (11) 

1

1 1

Micro_recall

L

jj

L L

j jj j

tp

tp fn

=

= =

=

+

        (12) 

where tpj, fpj and fnj  are the number of true positives, false 

positives and false negative respectively for the label yj.  

We apply the Fredman test [20] to verify whether the dif-
ferences between algorithms are statistical significance. This 
test is based on method’s average rankings cross datasets, 
and is appropriate for finding significant differences among 

Table 1. A collection of multi-label datasets and associated statistics. 

Dataset N d L LCard Type 

Music 592 71n 6 1.89 media 

Genbase 661 1185b 27 1.25 biology 

Medical 978 1449b 45 1.25 text 

Langlog 1460 1004n 75 1.18 text 

Scene 2407 294n 6 1.07 media 

Yeast 2417 103n 14 4.24 biology 

Enron 1702 1001b 53 3.38 text 

Corel5K 5000 499b 374 3.52 image 

Bibtex 7395 1836b 159 2.40 text 

N indicates numeric attributes, d indicates binary attribute. 
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different methods. Therefore, for each evaluation measure, 
we display the values achieved and the rank pertaining to 
those values for each dataset. 

4.3. Threshold Selection 

To predict the final output ˆ {0,1}Ly , we refer to [21] to 

define a threshold function ˆ( )tf w such that:  

ˆ1
ˆ

ˆ0

j

j

j

if w t
y

if w t

   

=
   <

            (13) 

where, ˆ
j
w  is a confidence values for each label. 

j
t is a 

threshold for each ˆ
j
w  and is defined in (14): 

ˆ

1 1

1
argmin ( ) ( 1 )

j

N L

w
t i j

t LCard D t
N = =

=       (14)  

4.4. Experimental Set up 

In this experiment, we evaluate all algorithms under a 
MEKA platform [4, 14] which is a standard open source tool 
for the evaluation of multi-label algorithms that works on the 
top of the WEKA framework. Both of the platforms are 
widely used for research in multi-label classification. SMO 
(MEKA’s implementation of Support Vector Machines 
based on the SMO algorithm) is used as base classification 
algorithm. We have considered four classifiers to perform 
comparisons: binary relevance (BR), classifier chains (CC), 
meta-BR (MBR), and double layer based classification 
chains (DCC). The performance of implementations for en-
semble binary relevance (EBR), ensemble classifier chains 
(ECC), and ensemble classifier chains based on double layer 
(EDCC) are also considered for comparison. Because of the 
time and memory limitation, we set the number of ensemble 
iteration m=10 for small and medium datasets, and m=5 for 
large datasets. The performance of each ensemble method is 
evaluated using 10-fold cross-validation.  

We set 67% of each complete dataset as training sets and 
the rest of part is used as testing sets. All experiments are run 
on 64 bit machines. 

5. EXPERIMENTS 

5.1. Results and Analysis for DCC 

(Tables 2-5) show the performances of DCC’s chaining 
method compared with BR, CC and MBR on 9 benchmark 
datasets in terms of 0/1 Loss, Hamming Loss, Accuracy and 
Micro_F1 evaluation measures respectively. The average 
rankings cross datasets is appropriate for finding significant 
differences among different methods.  

According to (Table 2), the best average rank (1.389) for 
0/1 Loss is achieved by DCC over all types of provided 
datasets except the performance on Genbase with average 
ranking 2.5. 

The results presented in (Table 3) show that the MBR 
model obtains the best results in terms of Hamming Loss and 
BR takes second place. This is expected, since the BR is 
actually suitable for most loss functions that ignore label 
correlations, as demonstrated in [15]. From Table 3, we see 
that the performance of DCC with average rank 2.667 is in-
ferior to MBR and BR. However, the differences between 
the Hamming Loss values of BR and DCC are very small in 
most of the datasets, except for Music, LangLog and 
Corel5K. J. Read demonstrated in [4] that it can’t be ex-
pected that a method performs best over all types of evalua-
tion measures in multi-label classification. Therefore, it 
comes as no surprise that different methods perform best 
under different measures.  

(Tables 4, 5) show that the DCC method also outper-
forms the other models in terms of Accuracy and Micro_F1 
in most of datasets. The average ranks for DCC compared 
with BR, CC and MBR under Accuracy and Micro_F1 
evaluation methods are preponderant.  

(Figs. (5, 6)) give the plots of the percentage of training 
data versus Accuracy and 0/1 Loss. These two figures illus-
trate how the percentage change of training data affects the 
enhancement of performance. In this experiment, we take 
Medical dataset as an example for both comparisons. 

(Fig. (5)) shows the change of curve for Accuracy under the 
two pairs of classifiers (for example, BR versus MBR and  

Table 2. Performance in terms of 0/1 Loss. 

Dataset BR CC MBR DCC 

Music 0.743 (4) 0.713 (3) 0.708 (2) 0.678 (1) 

Genbase 0.027 (2.5) 0.027 (2.5) 0.027(2.5) 0.027(2.5) 

Medical 0.339 (4) 0.291 (2) 0.327 (3) 0.288 (1) 

LangLog 0.757 (3.5) 0.753 (2) 0.757(3.5) 0.736 (1) 

Scene 0.491 (4) 0.361 (1) 0.449 (3) 0.389 (2) 

Yeast 0.847 (4) 0.779 (1) 0.843 (3) 0.811 (2) 

Enron 0.886 (4) 0.881 (2) 0.884 (3) 0.876 (1) 

Corel5k 0.995 (4) 0.990 (2) 0.991 (3) 0.988 (1) 

Bibtex 0.856 (3.5) 0.847 (2) 0.856(3.5) 0.839 (1) 

Ave. Rank 3.722 (4) 1.944 (2) 2.944 (3) 1.389 (1) 
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Table 3. Performance in terms of Hamming Loss. 

Dataset BR CC MBR DCC 

Music 0.197 (1) 0.215 (4) 0.198 (2) 0.209 (3) 

Genbase 0.001 (2.5) 0.001 (2.5) 0.001(2.5) 0.001 (2.5) 

Medical 0.010 (2.5) 0.010 (2.5) 0.010(2.5) 0.010 (2.5) 

LangLog 0.018 (3) 0.018 (3) 0.018 (3) 0.017 (1) 

Scene 0.107 (3) 0.106 (2) 0.105 (1) 0.119 (4) 

Yeast 0.198 (2) 0.203 (3) 0.197 (1) 0.207 (4) 

Enron 0.060 (3.5) 0.060 (3.5) 0.059(1.5) 0.059 (1.5) 

Corel5k 0.012 (1) 0.014 (3) 0.013 (2) 0.014 (4) 

Bibtex 0.016 (3.5) 0.015 (1.5) 0.016(3.5) 0.015 (1.5) 

Ave. Rank 2.444 (2) 2.778 (4) 2.111 (1) 2.667 (3) 

 
Table 4. Performance in terms of Accuracy. 

Dataset BR CC MBR DCC 

Music 0.527 (4) 0.546 (3) 0.552 (2) 0.578 (1) 

Genbase 0.989 (2.5) 0.989 (2.5) 0.989 (2.5) 0.989(2.5) 

Medical 0.751 (4) 0.778 (2) 0.754 (3) 0.781 (1) 

LangLog 0.135 (3.5) 0.139 (2) 0.135 (3.5) 0.154 (1) 

Scene 0.586 (4) 0.684 (1) 0. 613 (3) 0.650 (2) 

Yeast 0.502 (4) 0.538 (1) 0.505 (3) 0.513 (2) 

Enron 0.397 (4) 0.399 (2) 0.398 (3) 0.411 (1) 

Corel5k 0.085 (4) 0.116 (2) 0.104 (3) 0.124 (1) 

Bibtex 0.317 (3) 0.318 (2) 0.316 (4) 0.323 (1) 

Ave. Rank 3.667 (4) 1.944 (2) 3.000 (3) 1.389 (1) 

 
Table 5. Performance in terms of Micro_F1. 

Dataset BR CC MBR DCC 

Music 0.652 (3.5) 0.652 (3.5) 0.667 (2) 0.677 (1) 

Genbase 0.989 (2.5) 0.989 (2.5) 0.989 (2.5) 0.989 (2.5) 

Medical 0.805 (3.5) 0.817 (1) 0.805 (3.5) 0.814 (2) 

LangLog 0.222 (3.5) 0.227 (2) 0.222 (3.5) 0.242 (1) 

Scene 0.679 (3) 0.699 (1) 0.686 (2) 0.662 (4) 

Yeast 0.635 (4) 0.655 (1) 0.637 (2) 0.636 (3) 

Enron 0.513 (2.5) 0.509 (4) 0.513 (2.5) 0.521 (1) 

Corel5k 0.151 (4) 0.176 (2) 0.172 (3) 0.187 (1) 

Bibtex 0.404 (3.5) 0.411(2) 0.404 (3.5) 0.415 (1) 

Ave. Rank 3.333 (4) 2.111(2) 2.722 (3) 1.833 (1) 
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Fig. (5). Accuracy with different percentages of training data.  
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Fig. (6). 0/1 Loss with different percentages of training data. 

CC versus DCC) scale with respect to the percentage of 
training data. From Fig. (5), we observe that the Accuracy 

are improved for the four classifiers when the percentage of 
training data are increased. For DCC, the improvement of 
Accuracy displays better than CC when 60% of training data 
is involved. Moreover, the DCC maintains best all over the 
four classifiers. But, the degree of improvement for each pair 
is not too explicit. Especially for BR and MBR, the curves 
are almost coincident. It means the enhancement of MBR 
versus MBR is slight.  

From Fig. (6), we may see the results of comparison in 
terms of 0/1 Loss. In this figure, as the percentage of training 
data increasing, all of the results go down and the perform-
ances go up. DCC still keeps lowest loss in such a case.  

5.2. Results and Analysis for EDCC 

(Tables 6-9) present the results of ensemble implementa-
tions for EDCC comparing with EBR, ECC and EMBR on 9 
benchmark datasets in terms of in terms of 0/1 Loss, Ham-
ming Loss, Accuracy and Micro_F1 respectively. In com-
parison with other ensemble classifiers, EDCC yields sur-
prisingly well on all evaluation measures than any other 
methods, and obtains the highest rankings overall, especially, 
on large datasets Corel5K and Bibtext. 

(Fig. (7)) illustrates the influence of different number of 
iterations on accuracy. Fig. (7) shows that when the ensem-
ble number is less than 4, the improvement of prediction 
accuracy for each classifier has high impact. After that, all 
the curves keep increase smoothly. For EDCC and ECC, the 
scope of the improvement under different number of itera-
tions is larger than that on EBR and EMBR. However, the 
curves for EBR and EMBR show that there is almost no im-
provement when the iteration numbers are same. In general, 
the performance of EDCC has a distinct advantage over all 
the other three classifiers under this circumstance. 

The result of Accuracy with different ensemble numbers 
using four classifiers in terms of 0/1 Loss is shown in Fig. 8. 
The figure reveal that when the number of iteration increas-
ing, all of the performances go up. In this point, EDCC still 
keeps ahead all over the other three classifiers.  

Table 6. Performance of ensembles of classifiers in terms of 0/1 Loss. 

Dataset EBR ECC EMBR EDCC 

Music 0.728 (3.5) 0.683 (1) 0.728 (3.5) 0.698 (2) 

Genbase 0.035 (3) 0.035 (3) 0.035 (3) 0.031 (1) 

Medical 0.342 (3.5) 0.321 (2) 0.342 (3.5) 0.306 (1) 

LangLog 0.781 (2.5) 0.783 (4) 0.781 (2.5) 0.777 (1) 

Scene 0.502 (4) 0.399 (2) 0.438 (3) 0.396 (1) 

Yeast 0.855 (4) 0.802 (1) 0.853 (3) 0.824 (2) 

Enron 0.874 (3) 0.867 (1) 0.876 (4) 0.869 (2) 

Corel5k 0.998 (1.5) 0.999(3.5) 0.998 (1.5) 0.999(3.5) 

Bibtex 0.896 (3.5) 0.890 (2) 0.896 (3.5) 0.870 (1) 

Ave. Rank 3.167 (4) 2.167 (2) 3.056 (3) 1.611 (1) 



136    The Open Cybernetics & Systemics Journal, 2014, Volume 8 Guo and Li 

Table 7. Performance of ensembles of classifiers in terms of Hamming Loss. 

Dataset EBR ECC EMBR EDCC 

Music 0.212 (4) 0.203 (1) 0.210 (3) 0.206 (2) 

Genbase 0.001 (2.5) 0.001(2.5) 0.001 (2.5) 0.001 (2.5) 

Medical 0.010 (3) 0.010 (3) 0.010 (3) 0.009 (1) 

LangLog 0.026 (2.5) 0.026 (2.5) 0.026 (2.5) 0.026 (2.5) 

Scene 0.116 (4) 0.101 (1) 0.104 (2.5) 0.104 (2.5) 

Yeast 0.208 (3.5) 0.205 (1) 0.208 (3.5) 0.207 (2) 

Enron 0.057 (3.5) 0.056 (1.5) 0.057 (3.5) 0.056 (1.5) 

Corel5k 0.024 (3.5) 0.025 (1.5) 0.026 (3.5) 0.025 (1.5) 

Bibtex 0.022 (3.5) 0.021 (2) 0.022 (3.5) 0.020 (1) 

Ave. Rank 3.333(4) 1.778 (1) 3.056 (3) 1.833 (2) 

 

Table 8. Performance of ensembles of classifiers in terms of Accuracy. 

Dataset EBR ECC EMBR EDCC 

Music 0.557 (4) 0.567 (3) 0.566 (2) 0.569 (1) 

Genbase 0.986 (3) 0.986 (3) 0.986 (3) 0.988 (1) 

Medical 0.767 (3) 0.785 (2) 0.766 (4) 0.794 (1) 

LangLog 0.166 (2.5) 0.165 (4) 0.166(2.5) 0.167 (1) 

Scene 0.627 (4) 0.704 (1) 0.654 (3) 0.678 (2) 

Yeast 0.533 (4) 0.543 (1) 0.534 (3) 0.538 (2) 

Enron 0.441 (4) 0.454 (1) 0.442 (3) 0.451 (2) 

Corel5k 0.122 (4) 0.126 (3) 0.129 (2) 0.132 (1) 

Bibtex 0.310 (2.5) 0.318 (2) 0.310(2.5) 0.329 (1) 

Ave. Rank 3.444 (4) 2.222 (2) 2.778 (3) 1.333 (1) 

 

Table 9. Performance of ensembles of classifiers in terms of Miro_F1. 

Dataset EBR ECC EMBR EDCC 

Music 0.672 (4) 0.674(2.5) 0.678 (1) 0.674 (2.5) 

Genbase 0.985 (3) 0.985(3) 0.985 (3) 0.987 (1) 

Medical 0.817 (3) 0.826 (2) 0.816 (4) 0.831 (1) 

LangLog 0.255 (3) 0.255 (3) 0.255(3) 0.255(1) 

Scene 0.694 (4) 0.731 (1) 0.709 (3) 0.712 (2) 

Yeast 0.660 (3.5) 0.662 (1) 0.661 (2) 0.660 (3.5) 

Enron 0.558 (4) 0.564 (1) 0.560 (3) 0.562 (2) 

Corel5k 0.194 (4) 0.200(2.5) 0.202(2.5) 0.212 (1) 

Bibtex 0.391 (3.5) 0.403 (2) 0.391(3.5) 0.413 (1) 

Ave. Rank 3.556 (4) 2.000 (32) 2.778 (3) 1.667 (1) 



Double Layer Based Multi-label Classifier Chain The Open Cybernetics & Systemics Journal, 2014, Volume 8     137 

 

0 2 4 6 8 10 12 14 16 18 20
0.700

0.725

0.750

0.775

0.800
A

c
c

u
ra

c
y

Number of iterations (m)

 EBR

 ECC

 EMBR

 EDCC

 

Fig. (7). Accuracy with different ensemble numbers under four 

classifiers in terms of Accuracy. 
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Fig. (8). Accuracy with different ensemble numbers under four 

classifiers in terms of 0/1 Loss. 

CONCLUSION  

This paper presents a chaining method for multi-label 
classification based on double layers. We derive this algo-
rithm from the binary relevance method, which many litera-
tures argued has many advantages over more sophisticated 
methods currently. The algorithm sets two layers to decom-
pose the multi-label classification problem into independent 
binary classification problems respectively. The instance 
with attribute space for each binary model is extended with 
label relevance of all previous classifiers to form a classifier 
chain. The label correlation information is passed along a 
chain of classifiers to help learning and predicting. This 
method counteracts the disadvantages of the binary relevance 
method and inherits the benefit of classifier chain. The en-
sembles of classifiers chains are also implemented to aug-
ment predictive performance.  

By using a considerable variety of multi-label datasets and 

evaluation measures, we carried out empirical evaluations com-

pared with a range of algorithms. The experiments results dem-

onstrate that DCC and EDCC algorithms can achieve better 
predictive performance in most of datasets which is used in 
this experiments and present superior to related methods.  
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