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Abstract: Neighborhood Preserving Embedding (NPE) and extensions of NPE are hot research topics of data mining at 

present. An algorithm called Constraint Sparse Neighborhood Preserving Embedding (CSNPE) for dimensionality reduc-

tion is proposed in the paper. The algorithm firstly creates the local sparse reconstructive relation information of samples; 

then, exacts the pairwise constrain information of samples. Finally, projections are obtained by infusing the two kinds of 

information with linear weighted way. In contrast to existing semi-supervised dimensionality reduction algorithms on 

NPE, CSNPE is available with the following characteristics: 1) Sparse reconstruction of local neighborhood of samples 

cost little because the number of them is limited. 2) CSNPE inherits the great robustness from sparse learning. 3) CSNPE 

infuses pairwise constrain information with weighted, preserving more discriminant information and local neighborhood 

sparse reconstruction information. Experiments conducted on real word facial databases demonstrate the effectiveness of 

the proposed algorithm. 

Keywords: Information infuse, neighborhood preserving embedding, pairwise constrain, semi-supervised dimensionality re-
duction, sparse learning.  

1. INTRODUCTION 

Dimensionality reduction is an important step of dispos-

ing high-dimensional data in practical applications of data 

mining. Usually, dimensionality reduction methods are divi-

dend into unsupervised dimensionality reduction methods 

and supervised dimensionality reduction methods. Principal 

Component Analysis (PCA) [1, 2] and Linear Discriminant 

Analysis (LDA) [3] are respectively representational dimen-

sionality reduction methods. PCA and LDA are linear, which 

are not successfully applied in data with nonlinear structures. 

Although kernel versions of them [4] can be fit for nonlinear 

data, the problem of kernel functions and parameters re-

mains. Therefore, manifold learning-based dimensionality 

reduction algorithms are proposed, discovering data lying on 

nonlinear manifolds. Locally Linear Embedding (LLE) [5] 

assumes the points within a neighborhood have a linear re-

construction relation and the reconstructing coefficients, 

which represent the local manifold structure, are preserved in 

the low dimensional embedding space. ISOMAP [6] main-

tain the global geodesic distances; and Laplacian eigenmaps 

(LE) [7] is designed to preserve the relative distances. 

Neighborhood Preserving Embedding (NPE) [8] is the linear 

approximations of LLE and aims to find a low-dimensional 

embedding that optimally preserves the local neighborhood 

structure on the original data manifold. NPE shares some 

similar properties with Locality Preserving Projections (LPP) 

[9, 10] algorithm. However, NPE is a linear approximation 

to LLE, which leads to some problems in practical face rec-

ognition. 

 

 

 
 

Firstly, usually the number of face image samples is 

smaller than the dimension of face image data space. It is 

difficult to directly apply NPE to high dimensional matrices 

because of computational complexity. Moreover, in such 

case, NPE often suffers from the singularity problem of ei-

genmatrix, which makes the direct implementation of the 

NPE algorithm almost impossible. Aiming at overcoming the 

out-of-sample problem, Kokiopoulou et al. proposed Or-

thogonal Neighborhood Preserving Projections (ONPP) [11]. 

ONPP can be viewed as a synthesis of PCA and LLE, pre-

serving both the intrinsic neighborhood geometry of the data 

samples and the global geometry. But ONPP only focuses on 

the intraclass geometrical information while ignores the in-

teraction of samples from different classes. Zhang et al. pro-

posed Discriminative orthogonal neighborhood preserving 

projections (DONPP) [12] and semi-supervised DONPP 

(SDONPP) for classification. DONPP takes into account 

both intraclass and interclass geometries, following the or-

thogonality property of ONPP. Different from orthogonal 

linear algorithms, Wang et al. proposed a novel approach 

named Complete Neighborhood Preserving Embedding 

(CNPE) [13]. CNPE transforms the singular generalized ei-

gensystem computation into two eigenvalue decomposition 

problems. 

However, like LLE, NPE and above algorithms are based 
on the assumption of the local linearity and constitutes 
coordinates of one sample from its k neighbors, which cause 
that the performance of NPE is not ideal on nonlinear data 
with such external disturbs as illuminations and occlusions. 
More precisely, the robustness of NPE is poor. Recently,  
sparse representation (SR) has been proposed. Recent  
researches [14] showed that classifier based on SR has  
natural discriminating power and achieves the best recogni- 
tion rate on facial databases with varying expression, illumi-
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nation, occlusion and disguise, which, thanks to the sparse 
reconstructive weight reflects some intrinsic geometric prop-
erties of the data. Therefore, Cheng et al. proposed sparse 
neighborhood preserving embedding (SNPE) [15]. However, 
SNPE suffers from a limitation that it does not encode dis-
criminant information. Gui et al. proposed a discriminant 
sparse neighborhood preserving embedding (DSNPE) [16] 
algorithm by combining SNPE and maximum margin crite-
rion (MMC) [17] methods, which can be viewed as a new 
algorithm integrating Fisher criterion and sparsity criterion. 
But MMC is based on the linear covariance matrix of data 
and could be slow when the dataset is large in practice.  

Owing to great convenience in obtaining them and more 

supervised discriminant information in them, Pairwise Con-
straint (PC) [18, 19] has attained more attentions. As side-

information, pairwise constraint doesn't require people to tell 

which category an instance belongs to, that is we do not 
know the exact label of an instance, and only need to judge 

whether a pair of instances belong to the same class (must-

link constraints) or different classes (cannot-link con-
straints). It can be seen that side information is more general 

than label information, because we can get side information 

from label information but it cannot work contrariwise. 
Moreover pairwise constraint encodes more discriminant 

information, especially on image data. Nowadays pairwise 

constraint has been successfully applied in dimensionality 
reduction [20-26]. 

Motivated by above analysis, an algorithm called Con-

straint Sparse Neighborhood Preserving Embedding 
(CSNPE) for dimensionality reduction is proposed in this 

paper. CSNPE firstly achieves sparse reconstruction infor-

mation of samples of within the same class; then exacts 
pairwise constraint information of samples; finally fuses 

these two feature information with linear weighted way and 

projections are obtained. Experimental results on real world 
facial datasets demonstrate the effectiveness of the proposed 

algorithm. 

CSNPE is available with following merits: 

(1) Sparse reconstructions of A considerable amount of 
samples is significantly expensive. Sparse neighborhood 
reconstructions in the same class cost little time. 

(2) As a semi-supervised dimensionality reduction algo-
rithm, CSNPE not only preserve local sparse reconstructions 
information but also preserve pairwise constrain information, 
retaining the sparsity characteristics of sparse learning and 
side information. 

The remainder of this paper is organized as follows: In 
Section 2 we will introduce related works. A theoretical 
analysis of CSNPE is given in Section 3. The experimental 
results on real word datasets will be presented in Section 4, 
followed by the conclusions in Section 5. 

2. RELATED WORKS  

2.1. Sparse Representation and Sparse Reconstruction  

Given a set of training samples 

X ={x
1
,x
2
,x
3
,...,x

n
} R

d n , sparse representation aims to 

reconstruct each sample 
i
x with else sample, using as few 

samples as possible, namely, seek a sparse reconstructive 

weight vector 
i
s  for each 

i
x through the following minimi-

zation problem: 

  

min
s
i

|| s
i
||

0

s.t.x
i
= Xs

i

               (1) 

where ijS  denotes the contribution of each jx  to reconstruct-

ing 
i
x .

  
||s

i
||0  is the pseudo-

0
 norm which is equal to the 

number of non-zero components in S . However, Eq.(5) is 

NP-hard. The solution of 0  minimization problem is equal 

to the solution of 
1

 minimization problem. Therefore, this 

difficulty can be bypassed by transforming the problem and 

solving as follows: 

  

min
s
i

|| s
i
||
1

s.t.x
i
= Xs

i

               (2) 

 Sparse reconstruction seeks a sparse reconstructive 
weight vector 

i
x  for each 

i
x  through the following modified 

1
 minimization problem: 

min
s
i

|| S
i
||
1

s.t.x
i
= Xs

i

1=1T s
i

               (3) 

where,   
| s

i
||

1 denotes the 1  normal of i
s

, 

  
s

i
= [s

i1
,...,s

ii 1
,0,s

ii+1
,...,s

in
]

T
R

n

is a vector in which ij
s  de-

notes the contribution of each jx  to reconstructing i
x ，and 

1
n
R is a vector of all ones. 

x
i
= s

i1
x
1
+ ...+ s

ii 1
x
i 1

+ s
ii+1
x
i+1

+ ..+ s
in
x
n       (4) 

The sparse reconstruction matrix 
  
S= s

1
,s

2
, ...,s

n
[ ]

T

 is at-

tained through calculating
i
s . 

2.2. Neighborhood Preserving Embedding (NPE)  

NPE employs a nearest neighborhood search in the low-

dimensional space to yield results to that in the high-

dimensional image space as similar as possible. Given sam-

ples
  
X ={x

1
,x

2
,x

3
,...,x

n
} R

d n , NPE attempts to seek an 

optimal transformation matrix T to map high-dimensional 

data X  into low-dimensional data  Y = T
T

X , in which the 

local neighborhood structure of X can be preserved. There 

are some basic steps of NPE as follows: 

(1) Construct neighborhood adjacent graphic G. The ad-

jacent graphic G is composed of N nodes. Node i corre-

sponds to sample 
i
x . If sample j

x  is the neighborhood of 

sample 
i
x , there is a line between j

x  and 
i
x . Common 

methods for constructing neighborhood adjacent graphic G 

are k  neighborhood and neighborhood.  
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(2) Calculate the sparse reconstructive weights. Accord-
ing to G, Each sample in training samples is reconstructed 
through the linear combination of neighborhood nodes of the 
sample as follows: 

  

min
T

x
i

w
ij
x

j
j=1

k

i

2

s.t. w
ij

j=1

k

= 1

             (5) 

(3) Projected low-dimensional data Y satisfy: 

min
T

y
i

w
ij
y
j

j=1

k

i

2

=min
T
Y I W( )

2

=min
T
Y I W( ) I W( )

T

YT( )
=min

T
TX I W( ) I W( )

T

XT T( )
=min

T
TXMXTT( )

          (6) 

where, 
 
M = I W( ) I W( )

T

, I represents an identity matrix. 

In order to make the optimization problem well posed, con-

strain conditions are introduced as follows: 

  

y
i
= 0

i=1

N

1

N 1
y

i

T
y

i
i=1

N

= I

              (7) 

According to =
T

Y T X , we replace Y  with T
T X  in Eq. 

(10) and Eq. (11) and get the objective function 

min
T

T
T
XMX

T
T

s.t.T
T
XX

T
T = I               (8) 

2.3. PCFP  

Given training samples 
  
X = {x

1
, x

2
, x

3
,..., x

n
} , must-link 

set ML = {(x
i
,x

j
) | x

i
 and x

j
 are in the same class}  and cannot-

link setCL = {(x
i
,x

j
) | x

i
 and x

j
 are not in the same class} . PCFP 

aims to find an optimal projection matrix T that maximizes 

the following function: 

max
T

|| (T T x
i
-T T x

j
) ||2

( x
i
,x
j
) CL

|| (T T x
i
-T T x

j
) ||2

( x
i
,x
j
) ML

s.t. T TT = I

    (9) 

where XS XT + (1 )P( ) = XXT + (1 )I( )  denotes 

the 
  
T

d r (r < d ) norm. 

Eq.(9) may be understood in such a sentence that two 
samples of must-link set in high-dimensional data space 
should be more near in low-dimensional data space and two 
samples of cannot-link set in high-dimensional data space 
should be more further in low-dimensional data space. 

3. CONSTRAINT SPARSE NEIGHBORHOOD PRE-
SERVING EMBEDDING (CSNPE)  

3.1. Basic Idea 

In the term of information infusion, semi-supervised di-

mensionality reduction is the process of information infu-

sion, which not only preserves supervised feature informa-

tion but also preserves unsupervised feature information. 

According to the information level, information fusions are 

divided into the data level, the feature level and the decision-

making level. Information fusion based on the feature level 

may make sure relations are maintained among different 

feature information. Fusion of supervised feature informa-

tion and unsupervised feature information based on the linear 

weighted way has proved to be an efficient fusion way of 

semi-supervised dimensionality reduction [15, 16]. 

3.2. Objective Function  

Given samples X ={x
i
| x
i
R
n
1
n
2 ,1 i n}  and classes 

  
C = 1,2,3,...,m{ } .  

(1) Firstly, the sparse construction of neighbors is defined 
as follows: 

  

min
s

i

|| S
i
||
1

s.t.x
i
= S

ij
x

j

(k )

j=1

h

1=1T S
i            (10) 

where 
( )k

jx  denotes jx among the k nearest neighbors of 

i
x , ijS  denotes the contribution of each jx to reconstructing 

i
x . Eq.(14) gives us description of sparse reconstructive 

weights of 
i
x  among the k nearest neighbors of jx , preserv-

ing local intrinsic geometric property. The weight matrix 
S

W is calculated with the sparse weight matrix S . 

(2) We can get 
  
M

(s)
= I W

S( ) I W
S( )

T

 replacing S  with 

W  in Eq.(10) and get the following objective function: 

  

min
T

y
i

S
ij

y
j

j=1

k

i

2

= min
T

TXM (S ) XT T( )      (11) 

(3)According to Eq.(9) and Eq.(11),we can draw the fol-
lowing objective function: 

  

max
T

|| (T T
x

i
-T T

x
j
) ||2

( x
i
,x

j
) CL

|| (T T
x

i
-T T

x
j
) ||2

( x
i
,x

j
) ML

1( )TXM
(S )

XT
T

s.t. T
T
T = I

 (12) 

where
 
M

S
= I W

S( ) I W
S( )

T

. 

where denote the trade-off parameter. Eq.(12) reduce to 

Eq.(9) when = 1 and Eq.(12) reduce to Eq.(11) when = 0 . 
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3.3. Algorithm Steps  

Input: training samples X = {x
1
,x
2
,x
3
,...,x

n
} R

d n , must-

link set ML, cannot-link set CL and the trade-off parameter 

. 

Output: the projection matrix   
T = t

1
,t

2
,...,t

d
R

r d

 

 
r < d( )

. 

Steps: 

(1) According to Eq.(10), calculate sparse reconstructive 
weight S  of samples in each class.  

(2) The weight matrix 
 
P is obtained with  S . 

(3) Transform Eq.(12) to the generalized eigenvalue 
problem and calculate the projection matrix 

  
T

r d (r < d ) . 

3.4. Computational Complexity Analyses 

Given samples
  
X = {x

1
,x

2
,x

3
,...,x

n
} R

d n , main part cost 

considerable time in CSNPE as follows : 

(1) The computational complexity of selecting the k 

nearest neighbors of each sample cost with K nearest neigh-

bors (KNN) is 
  

n
2

d
2( ) . 

(2) The computational complexity of sparse learning is 

nearly that of solution of`
1
l norm minimization problems 

which is 
  

d
3( ) [17]. Therefore the computational complex-

ity of solving S  is 
  

n d
3( ) .  

(3) The computational complexity of the scatter differ-

ence of CL and ML is
  

n d
2( ) .  

(4) The eigen-problem on a symmetric matrix can be ef-

ficiently computed by the singular value decomposition 

(SVD) which is 
  

d
3( ) .  

To sum up, the computational complexity of CSNPE 

is
  

n
2

d
2
+ 2n d

2
+ d

3( ) . 

4. EXPERIMENTS AND ANALYSES 

In this section, in order to evaluate the performance of 
CSNPE, we compare it with the NPE, SNPE, DSNPE and 
PCFP on AR and YaleB face databases which are disturbed 
by external environment. 

4.1. Face Datasets 

(1) AR: the facial database consists of over 4000 facial 
images of 126 individuals. For each individual, 26 pictures 
were taken in two sessions that were separated by two weeks 
and each section contains 13 images, which includes front 
view of faces with different expressions, illuminations and 
occlusions. Fig. (1) shows a group of face images on AR. 
For computational convenience, we firstly resize theses face 
images to 30 30 pixels. 

 (2) YaleB: the face database contains 2414 front-view 
facial images of 38 individuals. For each individual about 64 
pictures were taken under various laboratory-controlled 
lighting conditions. A group face images of YaleB are shown 
in Fig. (2). In our experiment, these images are resized to 
32 32 pixels 

4.2. Experimental Settings  

SNPE, PCFP, SDONPP and DSNPE are compared with 
the proposed OTSNPE for analyses on performances of 
CSNPE. Apart from the trade-off parameter , the detail 
settings of other parameters on algorithms are shown in 
Table 1. 

Table 1. The detail settings of parameters on algorithms. 

Algorithms Name Parameters Settings 

SNPE = 7  

PCFP no 

SDONPP = 0.5  

DSNPE = 0.5  

CSNPE = 7 , = 0.5  

 

Fig. (1). A group of face images on AR. 

 

Fig. (2). A group of face images on YaleB. 
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Where, the parameter k denotes the neighborhood size. 

The Nearest Neighbor Classifier (NNC) is applied for 
calculating the recognition rate. For computational conven-
ience, we firstly resize face image to 30 30 pixels.  

According to Eq. (12), CSNPE is sensitive to the number 
of training samples and the scale of pairwise sets. We ran-
domly select T images from each group of faces for training 
samples and remainder for testing. In order to evaluate the 
performance of our algorithm, we select respectively re-

tained feature with the increment D and calculate corre-
sponding recognition accuracy rates. Moreover, pairwise sets 
with the certain number CS are created randomly. 

4.3. Experimental Results and Analyses 

4.3.1. Analyses on the Performance of Dimensionality Re-

duction  

Concrete experimental results under different T and CS 
are shown in Figs. (3 and 4). 

20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

Reduced Dimensions

R
e
c
o
g
n
i
t
i
o
n
 
A
c
c
u
r
a
c
y
(
1
0
0
%
)

 

 

SNPE

PCFP

SDONPP
DSNPE

CSNPE

20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

Reduced Dimensions

R
e
c
o
g
n
i
t
i
o
n
 
A
c
c
u
r
a
c
y
(
1
0

 

 

SNPE

PCFP

SDONPP
DSNPE

CSNPE

 
(a) T=10, CS=2000          (b) T=10, CS=4000 
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(c) T=10, CS=6000            (d) T=20, CS=5000 
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(e) T=20, CS=10000           (f) T=20, CS=20000 

Fig. (3). The recognition rate VS. dimensions on AR under T and CS.  
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From above Figs. (3 and 4), we can draw conclusions as 
follows: 

(1) As a semi-supervised dimensionality reduction algo-
rithm, Our CSNPE algorithm outperforms them obviously, 
which is attributed to CSNPE inheriting their characteristics 
and infusing them efficiently. 

 (2) SDONPP generalize DONPP by introducing new 
part optimizations based on unlabeled samples and then in-
corporating them into the whole alignment stage, with less 

exact discriminant information of samples including unla-
beled samples and labeled samples than CSNPE.  

(3) Similarly, DSNPE combines sparsity criterion and 
maximum margin criterion (MMC) together to project the 
input high-dimensional image into a low-dimensional feature 
vector, sharing sparsity learning with CSNPE. CSNPE is 
superior to DSNPE, which is illustrated by that the con-
strains information of samples is available for power dis-
criminant information than MMC.  
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(a) T=5, CS=2000           (b) T=5, CS=4000 
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(c) T=5, CS=8000           (d) T=10, CS=4000 
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(e) T=10, CS=8000             (f) T=10, CS=16000 

Fig. (4). Recognition rate VS. dimensions on YaleB under T and C. 
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(4) The size of constrain sets play an impact on the per-
formance of CSNPE. More constrain sets contain more su-
pervised information and help CSNPE to get more perform-
ance, which is illustrated by comparations under the same 
training samples on AR and YaleB. 

4.3.2. Analyses on the Effect of the Trade-off Parameter  

In order to further verify the effect of the trade-off pa-
rameter  in Eq.(12), we set  from 0.1 to 0.95 with the 

increment 0.05 and calculate corresponding recognition 
rates. 

From Figs. (5 and 6), following conclusions are drawn: 

(1) The recognition rate fluctuates greatly when reduced 

dimensions are low and it is smooth when reduced dimen-

sions are high, which illustrate that the trade-off parameter 

 is sensitive to reduced dimension. 
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(a) T=5, CS=2000 (b) T=5, CS=4000 
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(e) T=10, CS=8000 (f) T=10, CS=16000 

Fig. (5). Recognition rate VS. Trade-off parameter  on AR with different dimension under T and CS. 
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(2) When training samples of each individual increase 
from 10 to 20 on AR, there is no change on the curve, de-
scribing the effect of the trade-off parameter  on the rec-
ognition rate when reduced dimensions are high, which also 
happen with YaleB.  

To sum up, the trade-off parameter  is set to 0.5 in our 
CSNPE, attaining nearly most of the performance without 
spending plenty of time in calculating the optimal value.  

5. CONCLUSION  

In the paper, in order to attain power discriminant super-
vised information, Constraint Sparse Neighborhood Preserv-
ing Embedding (CSNPE) is proposed for semi-supervised 
dimensionality reduction. CSNPE considers explicitly the 
local neighborhood sparse reconstruction by the objective 
function (10), which captures local nonlinear structure based 
on sparse representation. Meanwhile, the power supervised 
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(e) T=10, CS=8000 (f) T=10, CS=16000 

Fig. (6). The recognition rate VS. The trade-off parameter  on YaleB with different dimension under T and CS. 
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constrain feature information is infused in the objective func-
tion (12), ensuring CSNPE to attain power discriminant in-
formation than other supervised feature. Experimental results 
on AR and Yale demonstrate the effectiveness of our algo-
rithm. 

However, as a vector-based reduction algorithm, CSNPE 
fails to take into account the spatial relation of image pixels. 
How to extend it to tensor version to deal with tensor data is 
among the future work. 
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