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Abstract: Let s and t be two points in the plane, how to compute the Euclidean shortest path between s and t which visits 

a sequence of segments given in the plane, is the problem to be discussed in this paper, especially, the situation of the ad-

jacent segments intersect is the focus of our study. In this paper, we first analyze the degeneration applying rubber-band 

algorithm to solve the problem and introduce the algorithm for computing Euclidean shortest path with removing suffi-

ciently small segments. Then based on rubber-band algorithm, we present a new algorithm for solving the degeneration 

and computing the ESP by crossing over two segments to deal with intersection and in our algorithm the adjacent seg-

ments order can be changed when they intersect. Furthermore, we have implemented the two algorithms and have applied 

a large test data to test them. The experiments demonstrate that our algorithm is more efficient and effective, and it has the 

same time complexity as the rubber-band algorithm.  

Keywords: Euclidean shortest path, degeneration, rubber-band algorithm, test data. 

1. INTRODUCTION 

Euclidean shortest path (ESP) problem is one of the typi-

cal problems in Computational Geometry. Its main aim is to 

find the shortest path between two points for a given series 

of obstacles in Euclidean space [1]. In this paper, we mainly 

study the algorithms for computing the Euclidean shortest 

path between two points s and t of visiting a sequence of 

segments given in the plane. Especially, the situation of the 

adjacent segments intersection is the focus of our study, but 

when three or more line segments intersect at one point then 

it is not the scope of this paper. The problem can be de-

scribed as follows.  

Let  be a plane. Assume that there are n>1 segments 

si  such that 
i j ks s s = , for i j k and i,j,k =1,2,…,n, 

see Fig. (1), then how to compute the shortest path from s to 

t that visits all the given segments si (at least once) is our 

study, here, the visiting order needn’t to be in the given or-

der. In Fig. (1), the path linked by dotted lines is the ESP 

from s to t which visits 4 given segments, and the visiting 

order is s1, s3, s2, s4.  

The ESP problem of visiting a sequence of segments has 

been intensively studied. When the given segments don’t 

intersect, such as Funnel algorithm [2] proposed by D. T. 

Lee and F. P. Preparata in 1984, and rubber-band algorithm 

[3, 4] (denoted by R algorithm) proposed by Fajie Li and 

Reinhard Kettle in 2007. R algorithm has the K( )·O(n) 

time, where K( )=(L0－L)/ , L is the true length of the 

ESP of segment set S, L0 that of an initial path, and n is the  

 

 

 

 

 

Fig. (1). ESP of visiting segments in the plane, for n=4. 

number of segments of the set S. In 2011, Wang and Huo 

obtained that the time complexity of R algorithm is O(n
2
) 

when n is larger (i.e.,n 500) by the experiment. Further-

more, they introduced divide and conquer into R algorithm 

and reduced the time complexity to O(n) [5]. When the given 

segment may intersect, many researchers have been studying 

more effective methods. LI Fa-jie and KLETTE Reinhard in 

2008 got an approximation solution by removing sufficiently 

small segments within an application of R algorithm [4]. So 

far, no other effective method has been reported yet. In this 

paper, based on R algorithm, we present a new algorithm for 

computing the ESP of given segments by the method of 

crossing over two segments to deal with the intersection and 

in our algorithm the adjacent segments order can be changed 

in order to get the shorter path when they intersect. The ex-

periments show that our algorithm is efficient and accurate 

for solving the problem given above.  

2. THE DEGENERATION APPLYING ALGORITHM 
TO COMPUTE THE ESP 

The basic idea of R algorithm is that it computes the 
shortest path by local optimization and continuous iteration. 
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Except start point and end point, all the path points from the 
first point will be updated one by one by each iteration. The 
algorithm will not stop until the total length of the path be-
tween two iterations only differs by  (the chosen accuracy) 
at most [3, 4]. In R algorithm, the iteration is computed ac-
cording to the given order of the segments. 

When any two segments of the segment set S don’t inter-

sect, we can apply R algorithm to compute the ESP between 

two points s and t of visiting a sequence of segments in the 

given order easily [3-5], but when they intersect, it may be 

hard and even incorrect to get the shortest path. Taking the 

Fig. (2) for example, if the calculated path points qi on si and 

qi+1 on si+1 are at the intersection of si and si+1 in current it-

eration, it is impossible to compute new q'i and q'i+1 

( 'q qi i , '
1 1

q q
i i+ +

) that makes qi-1 q'i q'i+1 qi+2 shorter 

than qi-1qi qi+1 qi+2 in the later iteration processes. Because qi 

and qi+1 are both at the crossing of si and si+1, the path points 

qi and qi+1 do not change in the later iteration process, obvi-

ously qi-1qi qi+1 qi+2 isn't the optimal, except qi-1, qi, qi+1, qi+2 

are on the same line. We call the situation in this example as 

a degeneration path of the algorithm [3-5]. When the degen-

eration appears, applying R algorithm will lead to failure. 

 

Fig. (2). The degeneration with an application of R algorithm. 

Removing sufficiently small segments from segment si or 

si+1 at the intersection can avoid the degeneration [4]. Based 

on this idea, in reference [6], the improved R algorithm, de-

noted by A1, is presented.  

The degeneration can be avoided by applying A1 when 

the adjacent segments intersect, but the shortest path ob-

tained is only an approximate because it is possible that the 

path through the intersection of the segments is the shortest. 

In this paper, based on R algorithm, we propose the method 

of crossing over two segments to compute path points by 

analyzing the position relationship between path points and 

segments, and we can change the order of the adjacent seg-

ments in order to get the shorter path when they intersect. 

The method not only can solve the degeneration effectively 

but also it’s more efficient and accurate than A1. The ex-

periments show that our algorithm is correct and effective. 

3. THE METHOD OF DEALING WITH THE INTER-
SECTED SEGMENTS 

When the segments do not intersect, references [3-5] has 
presented the solving method.  

When the segments intersect, assume that the segments si 

and si+1 intersect at the point C, pi-1 and pi+2 are the path 

points on si-1 and si+2 respectively. Then, there are some 

cases among the points pi-1 and pi+2 and the segments si and 

si+1 , which are as follows. 

Case 1 pi-1 and pi+2 lie on the different side of si and si+1 

In this case, the approach in the iteration process is as 

follows. If 
1 2i i

p p
+

 passes through both si and si+1, obvi-

ously, 
1 2i i

p p
+

is the local shortest path, denoted by , 

1 2i ip p += , and the visiting order is the order of  pass-

ing through si and si+1, see Fig. (3). Otherwise, for Fig. (3a), 

there are many cases which can be seen in Fig. (4). Accord-

ing to R algorithm, we can choose one of the endpoints of si 

as pi or one of the endpoints of si+1 as pi+1 such that the local 

path is the shortest, and the visiting order is the same as 

above. Similarly, for Fig. (3b), it can be done as Fig. (3a). 

Since there are other possible position relationships between 

si and si+1, (i.e., they are vertical), which also can be done in 

a similar way. In addition, in the flowing case 2 and case 3, 

the method of dealing with the endpoints is the same as that 

of Fig. (3a).  

 

(a) 

 

(b) 

Fig. (3). 
1 2i i

p p
+  

passes through both si and si+1. 

Case 2 pi-1 and pi+2 lie on the different side of si (si+1) and 

on the same side of si+1(si) 

In this case, it needs to compute the reflection point r on 
the line segment si or si+1 to find the shortest path [7, 8], see 
Fig. (5). 

The approach in the iterative process is as follows. If 

  
p

i 1
p

i+2
 only intersects with one of segments si and si+1 , the 

reflection point r lies on the segment which does not inter-

sect with 
1 2i i

p p
+

, =
1i

p r +
2i

rp
+

, and the visiting order 

is the order of  passing through si and si+1. 
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(a)          (b)   

   

(c)          (d) 

Fig. (4). 
1 2i i

p p
+

 does not intersect with si or si+1. 

 

(a) The reflection point lies on si 

 

(b) The reflection point lies on si+1 

Fig. (5). pi-1 and pi+2 lie on the different side of si (si+1) and on the 

same side of si+1(si). 

Case 3 pi-1 and pi+2 lie on the same side of si and si+1 

In this case, there are two cases which are shown in Figs. 
(6) and (7). 

(1) the case of computing one reflection 

The two segments can be visited by computing a 

reflection point (see Fig. 6). In this case, obviously, 

=
1i

p r +
2i

rp
+

. It is worth noting that when  passes 

through si or si+1 twice, we can select the nearest intersection 

to C as the pi or pi+1 in order to deal with endpoints easily.  

 

(a) The reflection point lies on si 

 

(b) The reflection point lies on si+1 

Fig. (6). pi-1 and pi+2 lie on the same side of si and si+1 (One reflec-

tion point). 

(2) the case of computing two reflections 

It needs to compute two reflections when the two seg-

ments can’t be visited by computing a reflection point. The 

approach is as follows. We make the symmetric point of pi-1 

on si and the symmetric point of pi+2 on si+1, denoted by p'i-1 

and p'i+2 respectively.  

In this case, there are three situations when computing 

the local shortest path (see Fig. 7). 

 if 
1 2
' '
i i

p p
+

 intersects with si and si+1 at the point pi 

and pi+1 respectively, and pi and pi+1 are on the same side of 

pi-1 and pi+2, they are the two reflections and also the path 

points. If 
1i i

p p  does not intersect with 
1 2i i

p p
+ +

, the short-

est path is =
1i i

p p + 
1i i

p p
+

+ 
1 2i i

p p
+ +

, and the visiting 

order is the order of  passing through si and si+1(see Fig. 

(7a). Otherwise, we need to change the visiting order of si 

and si+1 in order to get the shortest path, then 

=
1 1i i

p p
+

+
1i i

p p
+

+
2i i

p p
+

 (see Fig. (7b). 

 if 
1 2
' '
i i

p p
+

 passes through the intersection C, in this 

case, the reflection points coincide with C and they are also 

the path points (pi=pi+1=C), =
1i

p C +
2i

Cp
+

, and the visit-

ing order is the order of  passing through si and si+1. It 

easily can be proved by making two auxiliary points p'i and 

p'i+1 on si and si+1 (see Fig. (7c). 

 if
1 2
' '
i i

p p
+

doesn’t pass through the intersection C 

and 
1 2
' '
i i

p p
+

is different from the side of 
1i

p C  and 
2i

Cp
+

, 

=
1i

p C +
2i

Cp
+

, the path points pi and pi+1 coincide with 

C, and the visiting order is the order of  passing through si 
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and si+1 (see Fig. 7d). This can be proved as follows. In Fig. 

(7d), we take two points p'i and p'i+1 on si and si+1, since 

1
' '
i i

p p + 
1

' '
i i

p p
+

 + 
1 2
' '
i i

p p
+ +

 = 
1
'

i i
p p  + 

1
' '
i i

p p
+

 + 

1 2
'
i i

p p
+ +

, 
1
'
i

p C +
2
'
i

Cp
+

=
1i

p C +
2i

Cp
+

, obviously, 
1
'
i

p C  

+ 
2
'
i

Cp
+

< 
1
' '
i i

p p +
1

' '
i i

p p
+

+
1 2
' '
i i

p p
+ +

, then 
1i

p C + 
2i

Cp
+

 

< 
1
'

i i
p p +

1
' '
i i

p p
+

+
1 2
'
i i

p p
+ +

, =
1i

p C +
2i

Cp
+

 follows. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. (7). pi-1 and pi+2 lie on the same side of si and si+1 (Two reflec-

tion points). 

4. NEW ALGORITHM 

In this paper, we adopt the method of crossing over two 

segments when two segments intersect. The basic idea is as 

follows. Assume that si interests with si+1, we can compute 

the path point pi on si and the path point pi+1 on si+1 according 

to the position relationship between the path points pi-1 and 

pi+2 and the segments si and si+1. Next, we judge the position 

relationship of si+1 and si+2,, if 1 2i i
s s

+ +
= , we compute 

the path point pi+2 on si+2 and pi+3 on si+3. Otherwise, we 

compute the path point pi+1 on si+1 and pi+2 on si+2. 

The new algorithm is denoted by A2, which consists of 

Main procedure, Update procedure, ESPByOne procedure 

and ESPByTwo procedure. Main procedure is developed 

based on R algorithm which is used to calculate the iteration 

process, Update procedure is used to compute the path points 

in each iteration, ESPByOne is the procedure of crossing 

over one segment to compute the path points, the detail has 

been presented in reference [7], ESPByTwo is the procedure 

of crossing two segments to compute the path points, which 

is the core of this paper. ESPByTwo procedure can be de-

scribed as follows.  

ESPByTwo(
1i

p ,
2i

p
+

,
i
s ,

1i
s

+
) procedure. 

Here, 
i
s  and 

1i
s

+
are two segments, 

1i
p  and 

2i
p

+
 are 

two path points on 
1i

s  and
2i

s
+

. The procedure is used to 

compute the new path points 
i
p and

1i
p

+
 on 

i
s  and 

1i
s

+
. 

Let 
1 2i i

s p p
+

= , L denote the path computed by ESP-

ByOne procedure, and c is the intersection of 
i
s  with

1i
s

+
. 

Case 1 pi-1 and pi+2 lie on the different side of si and si+1 

if (
i
s s  && 

1i
s s

+
), assume that 

1
r  and 

2
r  

are the intersections of 
i
s with s, and 

1i
s

+
 with s respectively, 

then let 
1i

p r=  and
1 2i

p r
+
= , and if (

1 1i
p r >

1 2i
p r ) then 

call swap (
i
s ,

1i
s

+
) and call swap(

i
p ,

1i
p

+
). 

Case 2 pi-1 and pi+2 lie on the different side of si (si+1) and 

on the same side of si+1( si) 

if (
i
s s  || 

1i
s s

+
) 

if (
i
s s ) then call ESPByOne(

1i
p ,

2i
p

+
,

1i
s

+
), as-

sume that 
1
r  and

2
r  are the intersections of L with 

i
s , and L 

with 
1i

s
+

 respectively.  

Let 
1i

p r= ,
1 2i

p r
+
=  and 

2 2i
sTemp r p

+
= , 

if (
i
s sTemp ) then call swap (

i
s ,

1i
s

+
),and call 

swap (
i
p ,

1i
p

+
). 

else ESPByOne(
1i

p ,
2i

p
+

,
i
s ), assume that 

1
r  and 

2
r  are 

the intersections of L with 
i
s , and L with 

1i
s

+
 respectively.  

Let 
1i

p r= ,
1 2i

p r
+
=  and 

1 1i
sTemp p r= . 
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if (
1i

s sTemp
+

) then call swap (
i
s , 

1i
s

+
), and call 

swap (
i
p ,

1i
p

+
). 

Case 3 pi-1 and pi+2 lie on the same side of si and si+1 

ESPByOne(
1i

p ,
2i

p
+

,
i
s ) , let 

1
r  denotes the intersection 

of L with 
i
s  and 

1 1i
sTemp p r= . 

if (
1i

s sTemp
+

), and 
2
r  is the intersection, then let 

1i
p r= ,

1 2i
p r

+
= , call swap (

i
s ,

1i
s

+
) and call swap 

(
i
p ,

1i
p

+
). 

else ESPByOne(
1i

p ,
2i

p
+

,
1i

s
+

), let 
2
r denotes the inter-

section of L with
1i

s
+

, and
2 2i

sTemp p r
+

= . 

if (
i
s sTemp ) , and r1 is the intersection, then let 

1i
p r= , 

1 2i
p r

+
= , call swap (

i
s ,

1i
s

+
) and call swap 

(
i
p ,

1i
p

+
). 

else we make the symmetric point of pi-1 on i
s  and that of 

pi+2 on 1i
s

+
, denoted by p'i-1 and p'i+2 respectively, 

let
1 2
' '
i i

sTemp p p
+

= , 
1
r  and 

2
r  denote the intersec-

tion
i
s with sTemp , and 

1i
s

+
 with sTemp . 

if (
1i

p
 
and c lie on the same side of sTemp ) then let 

1i i
p p c

+
= = . 

else let 
1i

p r= , and 
1 2i

p r
+
= .  

if (
1 1i

p r
1 2i i

p p
+ +

) then call swap (
i
s ,

1i
s

+
) and 

call swap (
i
p ,

1i
p

+
). 

5. THE ANALYSIS OF RUNNING RESULT 

We have implemented A1 and A2 with C++ program and 
have applied 10 randomly generated segment sets to test the 
algorithms, and the size of segments is 100, 200,…,1000 

respectively. The experiment’s results show that our 
algorithm is correct and efficient, which can be shown in 
Table 1. From the Table 1, we can see that the ESP of A2 is 
shorter than that of A1 and the iteration times of A2 is less 
than that of A1. 

 

Fig. (8). The running result of 10 segments of A1 and A2. 

To make the result clearly visible, we only present the 

result of 10 segments (see Fig. 8). The solid lines are 

randomly generated segments, the path linked by the thin-

dotted-lines from S to T is the ESP obtained by the A1 and 

the path linked by the thick-dotted-lines from S to T is the 

ESP obtained by the A2. It’s obvious that the ESP obtained 

by A2 is shorter than ESP obtained by A1. In this example, 

s1, s2, s3, s4, s5, s6, s7, s8, s9, s10 is the initial given order of 

segments. After running with our algorithm, the output is 

s4,s1,s3,s2,s6,s5,s7,s9,s8,s10. We can see the visiting order has 

been changed and we can get the shorter path and the faster 

running time. Furthermore, this example contained three 

position relationships between path points and segments dis-

Table 1. The Results of 10 Segments Sets by A1 and A2. 

A1 Algorithm A2 Algorithm 
Segment Sets 

Iteration Times ESP Iteration Times ESP 

100 161 36754 69 35647 

200 376 83234 293 62814 

300 386 126239 297 94627 

400 420 167955 401 123784 

500 454 203113 426 156598 

600 472 247585 434 167352 

700 486 284348 447 189651 

800 497 321843 458 204536 

900 512 358296 487 246725 

1000 520 358401 490 276593 
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cussed above, for example, (p1, s3, s2, p6), (p2, s6, s5, p7) and 

(p9,s8,s10,T) are the case1, case2 and case3 respectively. 

6. CONCLUSION 

In this paper, based on R algorithm, we present a new al-
gorithm for computing the Euclidean shortest path of visiting 
a sequence of segments given in the plane. When the adja-
cent segments intersect, applying the method of crossing 
over two segments to deal with the intersection can effec-
tively solve the degeneration caused by R algorithm. 
Furthermore, our algorithm can efficiently and accurately 
compute the ESP of given segments. Since dealing with de-
generation has not increased the time complexity of R 
algorithm, it has the same time complexity as R algorithm.  

This research has made preliminary results, the situation 
of three or three more line segments intersect at one point is 
an open problem [9]. 

CONFLICT OF INTEREST 

The authors confirm that this article content has no con-
flict of interest. 

ACKNOWLEDGEMENTS 

This work is supported by the National Natural Science 
Foundation of China (No.61173034, 61272171) and the 

General Project of Liao Ning Province Science and Research 
(No. L2012487).  

REFERENCES 

[1] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computa-

tional Geometry: Algoriths and Applications (3rd Edition), 

Springer-Verlag Publishers: Berlin, 2009, pp. 10-11. 

[2] D. T. Lee and F. P. Preparata, “Euclidean shortest paths in the 

presence of rectilinear barriers,” Networks, vol. 14, no. 3, pp. 393-

410, September.1984. 

[3] F. Li and R. Klette, “Exact and approximate algorithms for the 

calculation of shortest paths,” IMA J. Manag. Mathem., vol. 17, 

no.1, pp.134-138, 2006. 

[4] F. Li and R. Klette, “Shortest path algorithms for sequences of 

polygons,” CAAI Trans. Intell. Syst., vol. 3, no. 1, pp. 23-30, 

2008. 

[5] L. Wang, L. Huo, and D. He, “An improved algorithm for euclid-

ean shortest paths of visiting line segments in the plane,” J. Conver. 

Inform. Tech., vol. 6, no. 6, pp. 119-125, 2011. 

[6] L. Wang, B. Jiang, Q. Wei, D. He, “Research on the algorithm for 

euclidean shortest paths of visiting line segments in the plane,” 

ICIC Express Lett., vol. 8, no. 6, pp. 1683-1687, 2014. 

[7] X. Tan, “Fast computation of shortest watchman routes in simple 

polygon,” Inform. Process. Lett., vol. 77, no. 1, pp. 27-33, 2001. 

[8] A. Dumitrescu, J. S. B. Mitchell and P. yli ski, “Watchman Route 

for Line and segments, ” Algorithm. Theory – SWAT 2012 Lect. 

Notes Comp. Sci., vol .7357, no. 14, pp. 36-47, May. 2012.  

[9] M. Dror, A. Efrat, A. Lubiw and J. S. B. Mitchell, “Touring a se-

quence of polygons,” In Proc. 35th Annu. ACM Sympos. Theory 

Comput., California, USA, 2003, pp. 473-482. 

 

Received: September 22, 2014 Revised: November 30, 2014 Accepted: December 02, 2014 

© Wang et al.; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-

licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 


