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Abstract: As an important data structure model, ontology has become one of the core contents in information science. 

Multi-dividing ontology algorithm combines the advantages of graph structure and learning algorithms proved to have 

high efficiency. In this paper, in terms of multi-dividing proper loss functions, we propose new multi-dividing ontology 

learning algorithms for similarity measure and ontology mapping construction. Several theoretical statistical characteris-

tics supporting the new learning model are given. Finally, four experiments on different scientific fields verify that our 

multi-dividing ontology algorithm has high accuracy and efficiency in application implements. 
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1. INTRODUCTION 

As a knowledge representation and conceptual shared 

model, ontology has been applied in image retrieval, knowl-

edge management and information retrieval search exten-

sion. Acting as an effective concept semantic model, ontol-

ogy also employed in disciplines beyond computer science, 

such as social science (for instance, see Bouzeghoub and 

Elbyed [1]), biology science (for instance, see Hu et al., [2]) 

and geography science (for instance, see Fonseca et al.,  

[3]). 

The ontology model is actually a graph G=(V,E), each 

vertex v in an ontology graph G represents a concept and 

each edge e=vivj on an ontology graph G represents a rela-

tionship between concepts vi and vj. The target of ontology 

similarity measure is to find a similarity function Sim: V V 

 ° 
+ 

{0} which maps each pair of vertices to a real 

number. The aim of ontology mapping is to bridge the link 

between two or more ontologies. Let G1 and G2 be two on-

tology graphs corresponding ontology O1 and O2, respec-

tively. For each v G1, find a set Sv V(G2) where the con-

cepts correspond to vertices in Sv are semantically close to 

the concept correspond to v. One method to get such map-

ping is, for each v G1, computing the similarity S(v,vj) 

where vj V(G2) and choose a parameter 0<M<1. Then Sv is 

a collection such that the element in Sv satisfies S(v,vj) M. 

In this point of view, the essence of ontology mapping is to 

obtain a similarity function S and select a suitable parameter 

M. In our article, we focus on the technologies to yield a 

similarity matrix by virtue of distance learning.  

For ontology similarity measure and ontology mapping, 

there are several effective learning tricks. Wang et al., [4]  

 

 

 
 

proposed to learn a score function which maps each vertex to 

a real number, and the similarity between two vertices can be 

measured according to the difference of real number they 

correspond to. Huang et al., [5] presented fast ontology algo-

rithm for calculating the ontology similarity in a short time. 

Gao and Liang [6] raised that the optimal ontology function 

can be determined by optimizing NDCG measure, and ap-

plied such idea in physics education. Gao and Gao [7] de-

duced the ontology function using the regression approach. 

Huang et al., [8] obtained ontology similarity function based 

on half transductive learning. Gao and Xu [9] explored the 

learning theory approach for ontology similarity computation 

using k-partite ranking method. Zhu et al., [10] proposed 

new criterion for ontology computation from AUC and 

multi-dividing standpoint. Gao et al., [11] presented new 

ontology mapping algorithm using harmonic analysis and 

diffusion regularization on hypergraph.  

In this paper, we consider the new multi-dividing ontol-

ogy learning model using strong proper loss function. In next 

section, we present the setting of multi-dividing ontology 

algorithm and give our main computation model. Then, we 

obtain some probability conclusion on multi-dividing 

strongly proper loss. At last, the experiments are designed to 

show the efficiency of the algorithm. 

2. SETTING AND NEW MULTI-DIVIDING LAGO-
RITHM 

First, for each vertex in ontology graph, we use a vector 

to express all the information for such vertex. Then, we say 

V takes its value in a high dimension feature space. The ele-

ments in V are drawn independently and randomly according 

to some unknown distribution D. Given a training set 

S={v1,…,vn} V with size n, the aim of ontology learning 

algorithms is to get an optimal score function f: V °, the 

similarity between two vertices is judged by the difference 
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between two real numbers which they correspond to. The 

multi-dividing method is a special kind of ontology learning 

approach in which vertices come from k categories and the 

learner is given examples of vertices labeled as the k classes. 

Formally, the settings of standard multi-dividing ontol-

ogy problems can be described as follows. There is an in-

stance space V from which vertices are drawn, and the 

learner is given a training sample (
1
S ,

2
S ,…, 

k
S )  1

n
V  

2
n

V  … k
n

V consisting of a sequence of training sample 

a
S =(

1

a
v ,…, 

a

a

n
v ) (1 a k). The goal is to learn from these 

samples a real-valued ontology score function f: V ° that 

orders the future 
a
S  vertices to have higher scores than 

b
S , 

where a<b. We assume that vertices in each 
a
S  are drawn 

randomly and independently according to some unknown 

distribution 
a
D  on the vertex space V, respectively. 

In this paper, we assume that there is an instance space V 

and labels Y={1,2, , }k , with an unknown distribution D 

on V {1,2, , }k . For (V, Y): D, v V, we denote 

, ( )a b
v = { | , { , }}P Y a V v Y a b= =  and 

, { | { , }}a bp P Y a Y a b= =
 

for each pair of (a, b) with 

1 a<b k. Given a multi-dividing sample set S= 

(
1
S ,

2
S ,…, 

k
S ), the aim is to learn a multi-dividing ontology 

function f: V ° that maps the ontology graph into a real 

line and maps each vertex into a real number. Specifically, 

the goal is to learn a multi-dividing ontology function f: V 

° with small error defined as  

1

( )( ( ) ( ))) 0
1 1

( ) [ a b a b

k k
k

D Y Y f V f V
a b a

R f E
<

= = +

=

 

( ) ( )

1
]

2
a bf V f V=

+ ,             (1) 

where, (X,Y), (X’,Y’) are assumed to be drawn independent 

and identically distributed from D, and  is denoted as truth 

function with ( )=1 if its argument is true and 0 otherwise. 

Hence, the error (1) of multi-dividing ontology function f is 

the probability that a randomly drawn rate a vertex receives 

a larger score under f than a randomly drawn rate b vertex, 

with ties broken uniformly at random. Now we define the 

Bayes multi-dividing ontology risk as 

   
R

D

k ,*
= inf

f :V
R

D

k ( f )  

1
, ,

, , ,
1 1

1
[min( ( )(1 ( )),

2 (1 )
a b

k k
a b a a b b

a b a b V V
a b a

E V V
p p= = +

=

 

, ,( )(1 ( )))]a b b a b a
V V

. 

Then, the multi-dividing ontology regret of a multi-

dividing ontology function f: V ° is defined as  

regret ( )k

D f
=

,*( )k k

D DR f R
. 

Given a prediction space Ŷ  °, a loss function l:
 

ˆ{1,2, , }k Y  ° 
+
 assigns a penalty ˆ( , )l y y  for predict-

ing ŷ Ŷ . For each pair of (a,b), loss function restrictions 

on rate a and rate b is defined as 
,a b
l :

 
ˆ{ , }a b Y  ° 

+
. For 

any such loss l, the l-error of a multi-dividing ontology func-

tion f: V Ŷ  is defined as 

 
, ( )l k

DR f = E
(V ,Y ):Da ,b

b=a+1

k

a=1

k 1

[l a,b(Y , f (V ))] , 

and the Bayes multi-dividing ontology l-risk is defined as 

, ,*l k

D
R = ,

ˆ:
inf ( )l k

D
f V Y

R f . 

We define the conditional Bayes multi-dividing ontology 

l-risk k

l
L : ˆ[0,1] Y  ° 

+
 as 

ˆ( , )k

lL y = E
Y : a ,b

[l a,b(Y , ŷ)]
b=a+1

k

a=1

k 1

 

=

1
, , , ,

1 1

ˆ ˆ( , ) (1 ) ( , )
k k

a b a b a b a b

a b a

l a y l b y
= = +

+ , 

where, Y: ,a b denotes a {a,b}-rates random variable taking 

in rate a with probability ,a b . We define the conditional 

multi-dividing ontology Bayes l-risk k

l
H : [0,1]  ° 

+
 as 

k

l
H =

ˆˆ
ˆinf ( , )k

l
y Y
L y . 

The conditional l-regret k

l
R : ˆ[0,1] Y  ° 

+
 is then 

given by 

ˆ( , )k

lR y
=

ˆ( , )k k

l lL y H
. 

For each multi-dividing ontology function f: V Ŷ , 

, ( )l k

DR f = [ ( ( ), ( ))]k

V lE L V f V
, 

, ,*l k

D
R = [ ( ( ))]k

V l
E H V

, 

And any Ŷ  °, a multi-dividing loss function l:
 

ˆ{1,2, , }k Y  ° 
+
, the conditional multi-dividing ontol-

ogy Bayes l-risk 
k

l
H  is a concave function on [0,1]. 

Let Ŷ =[0,1]. A multi-dividing ontology loss function l:
 

{1,2, , } [0,1]k  ° 
+

 
is said to be proper if for any 

[0,1],  

ˆ [0,1]

ˆargmin ( , )k

l
L , 
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And strictly proper if the minimizer is unique for any 

[0,1]. This implies that l is proper if for any [0,1], 

k

l
H = ˆ( , )k

l
L  and strictly proper if k

l
H < ˆ( , )k

l
L  for all 

ˆ . 

The terminology of properness can be applied to multi-

dividing loss function operating on prediction spaces Ŷ be-

yond [0,1] by virtue of compositing with a link function : 

[0,1] Ŷ . Specifically, for any Ŷ  °, a multi-dividing 

ontology loss function l:
 

ˆ{1,2, , }k Y  ° 
+

 
is said to be 

proper composite if it can be expressed as 

ˆ( , )l y y = 
1 ˆ'( , ( ))l y y

 

for some proper multi-dividing loss l’:
 

{1,2, , } [0,1]k  ° 
+

 
and strictly increasing, invertible 

link function : [0,1] Ŷ .  

Let l:
 
{1,2, , } [0,1]k  ° 

+
 be a strictly proper multi-

dividing loss. Let >0. We say l is -strong proper multi-

dividing loss if for all , ˆ [0,1], we have 

ˆ( , ) ( )k k

l l
L H

2ˆ( )
2

. 

Thus, the ontology learning model in this paper is based 

on the Bayes multi-dividing ontology l-risk and conditional 

Bayes multi-dividing ontology l-risk. The main trick in our 

model is to use the proper multi-dividing loss. 

3. MATHEMATICAL ANALYSIS 

In this section, we present some theoretical analysis on 

multi-dividing proper loss function. Our first result stated as 

follows is a characterization of strict properness of a multi-

dividing proper loss l in terms of its conditional multi-

dividing ontology Bayes risk 
k

l
H : 

Lemma 1. A proper multi-dividing loss l:
 

{1,2, , } [0,1]k  ° 
+
 is strictly proper if and only if 

k

l
H is strictly concave. 

Proof. Let l:
 
{1,2, , } [0,1]k  ° 

+
 be a strictly 

proper multi-dividing ontology loss. Assume k

l
H  is strictly 

concave. For , ˆ [0,1] satisfy ˆ . Then we deduce 

ˆ( , ) ( )k k

l l
L H

 

=
ˆ ˆ ˆ( , ) ( ) ( ) ( )k k k k

l l l l
L H H H+

 

=

ˆ( ) ( )
ˆ ˆ( , ) ( ) 2( )

2 2

k k

k k l l

l l

H H
L H+ +

 

>

ˆ
ˆ ˆ( , ) ( ) 2 ( )

2

k k k

l l l
L H H

+
+

 

=

, ,1
,

1 1

ˆ
ˆ2 ( ( , )

2

a b a bk k

a b

a b a

l a

= = +

+

 

, ,
,ˆ
ˆ(1 ) ( , ))

2

a b a b

a b
l b

+
+  

=

ˆ ˆ
ˆ2( ( , ) ( ))

2 2

k k

l l
L H

+ +

 

0. 

This reveals that l is strictly proper multi-dividing loss. 

On the other hand, we assume that l is strictly proper 

multi-dividing loss. Let 
1
,

2
[0,1] satisfy 

1 2
 and let 

t (0,1). Then, we infer 

1 2( (1 ) )k

l
H t t+

 

= 1 2 1 2( (1 ) , (1 ) )k

l
L t t t t+ +

 

= 1 1 2 2 1 2( , (1 ) ) (1 ) ( , (1 ) )k k

l l
tL t t t L t t+ + +

 

> 1 2( ) (1 ) ( )k k

l l
tH t H+

. 

Hence, k

l
H  is strictly concave.           

We have the following necessary and sufficient condi-

tions for strong properness: 

Lemma 2. Let >0. If l:
 
{1,2, , } [0,1]k  ° 

+

 
is -

strong proper multi-dividing loss, then k

l
H  is -strongly 

concave. 

Proof. The proof is similar to the Lemma 1. Assume that 

l is -strongly proper multi-dividing loss. Let 
1
,
2

[0,1] 

satisfy 
1 2

 and let t (0,1). Then, we obtain 

1 2( (1 ) )k

l
H t t+

 

= 1 2 1 2( (1 ) , (1 ) )k

l
L t t t t+ +

 

= 1 1 2 2 1 2( , (1 ) ) (1 ) ( , (1 ) )k k

l l
tL t t t L t t+ + +

 

2 2

1 1 2( ( ) (1 ) ( ) )
2

k

l
t H t+

 

2 2

2 1 2(1 )( ( ) ( ) )
2

k

l
t H t+ +

 

=

2

1 2 1 2( ) (1 ) ( ) (1 )( )
2

k k

l l
tH t H t t+ +

. 

Hence, 
k

l
H  is -strictly concave.         

Lemma 3. Let >0 and l:
 
{1,2, , } [0,1]k  ° 

+

 
be 

a regular proper multi-dividing loss. If k

l
H

 
is -strongly 

concave, then l is -strong proper multi-dividing loss. 
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Proof. Let , ˆ [0,1]. Then there exists a super-

derivative ' ˆ( )
l

H of k

l
H

 
at ˆ  such that 

ˆ( , )k

l
L

=
'ˆ ˆ ˆ( ) ( ) ( )k

l l
H H+

. 

This implies 

ˆ( , ) ( )k k

l l
L H

 

=
'ˆ ˆ ˆ( ) ( ) ( ) ( )k k

l l l
H H H+

 

2ˆ( )
2

. 

Hence, l is -strong proper multi-dividing loss function.  

Combining Lemma 2 and Lemma 3, we get the character 
of strong properness for regular proper multi-dividing losses 
stated in Theorem 1.  

Theorem 1. Let >0 and l:
 
{1,2, , } [0,1]k  ° 

+

 
be 

a regular proper multi-dividing loss. Then l is -strong 

proper if and only if 
k

l
H

 
is -strongly concave. 

Next, we obtain the regret bound using strongly proper 
multi-dividing ontology losses. We begin with the following 
lemma. 

Lemma 4. For any ˆ : V [0,1], we have 

ˆregret [ ]
k

D

1

, ,
1 1

1
ˆ[ ( ) ( ) ]

(1 )

k k

Va b a b
a b a

E V V
p p= = +

. 

Proof. Let ˆ : V [0,1], we deduce  

ˆregret [ ]
k

D  

1

, , ,
1 1

1
[ ( ) ( )

2 (1 )
a b

k k
a b

a b a b V V
a b a

E V V
p p= = +  

ˆ ˆ( ( ) ( ))( ( ) ( )) 0
]a b a b

V V V V
. 

Note that for each pair of (a, b), if 
, ( )a b a
v >

, ( )a b b
v , 

we get  

, , , ,ˆ ˆ( ( ) ( ))( ( ) ( )) 0a b a a b b a b a a b b
v v v v

, ,ˆ ˆ( ) ( )a b a a b b
v v

 

, , , ,ˆ( ) ( ) ( ( ) ( ))a b a a b b a b a a b a
v v v v

 

, ,ˆ( ( ) ( ))a b b a b b
v v+

 

, , , ,ˆ( ) ( ) ( ) ( )a b a a b b a b a a b a
v v v v

 

, ,ˆ ( ) ( )a b b a b b
v v+

 

, , , ,ˆ( ) ( ) ( ) ( )a b a a b b a b a a b a
v v v v

 

, ,ˆ ( ) ( )a b b a b b
v v+

. 

If 
, ( )a b a
v

<
, ( )a b b
v

, by using the similar way, we have  

, , , ,ˆ ˆ( ( ) ( ))( ( ) ( )) 0a b a a b b a b a a b b
v v v v

 

, , , ,ˆ( ) ( ) ( ) ( )a b a a b b a b a a b a
v v v v

 

, ,ˆ ( ) ( )a b b a b b
v v+

.  

And, this result is trivially true if , ( )a b a
v =

, ( )a b b
v . 

Thus, we get 

ˆregret [ ]
k

D  

1
, ,

, , ,
1 1

1
ˆ[ ( ) ( )

2 (1 )
a b

k k
a b a a b a

a b a b V V
a b a

E V V
p p= = +  

, ,ˆ ( ) ( ) ]a b b a b b
V V+  

=

1

, ,
1 1

1
ˆ[ ( ) ( ) ]

(1 )

k k

Va b a b
a b a

E V V
p p= = + .        

Theorem 2. Let Ŷ
 ° and >0. Let l:

 
ˆ{1,2, , }k Y  ° 

+

 
be a -strongly proper composite 

multi-dividing loss. Then for any multi-dividing ontology 

function f: ˆV Y ,  

regret ( )k

D f
1

.

, ,
1 1

2
regret ( )

(1 )

k k
k l

D a b a b
a b a

f
p p= = +

. 

Proof. Let l:
 
{1,2, , } [0,1]k  ° 

+
 be a -strongly 

proper multi-dividing loss and :[0,1] Ŷ be a strictly 

increasing link function such that ˆ( , )l y y = 
1 ˆ'( , ( ))l y y . 

Let f: V Ŷ . Then we have  

regret ( )k

D f
=

1regret ( )k

D f
 

1
1

, ,
1 1

1
[ ( ( )) ( ) ]

(1 )

k k

Va b a b
a b a

E f V V
p p= = +  

=

1
1 2

, ,
1 1

1
( [ ( ( )) ( ) ])

(1 )

k k

Va b a b
a b a

E f V V
p p= = +  

1
1 2

, ,
1 1

1
[( ( ( )) ( )) ]

(1 )

k k

Va b a b
a b a

E f V V
p p= = +  

1
1

, ,
1 1

1 2
[ ( ( ), ( ( )))]

(1 )

k k
k

V ca b a b
a b a

E R V f V
p p= = +  

=

1

, ,
1 1

1 2
[ ( ( ), ( ))]

(1 )

k k
k

V ca b a b
a b a

E R V f V
p p= = +  

=

1
.

, ,
1 1

2
regret ( )

(1 )

k k
k l

D a b a b
a b a

f
p p= = + .  
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The first equality holds since is strictly increasing; the 

first inequality holds by Lemma 4; the second inequality 

established by convexity of 
2( )u u= and Jensen’s inequal-

ity; the last inequality holds since l’ is -strongly proper 

multi-dividing loss.              

Theorem 2 implies that for any strong proper composite 

multi-dividing loss l:
 

ˆ{1,2, , }k Y  ° 
+
, a multi-

dividing ontology function f: V Ŷ  with low l-regret will 

also have low multi-dividing ontology regret. 

In the last part of this section, we show that our result is 

stable under low-noise conditions. Let [0,1]. A distribu-

tion D on {1,2, , }V k
 
satisfies assumption that if there 

exists a positive constant C such that for all v V , each 

pair of (a, b) and any t [0,1],  

, ,( ( ) ( ) )a b a b

V
P V v t Ct

. 

Note that =0 imposes restriction on D, while smaller 

value of  impose smaller restrictions.  

Theorem 3. Let Ŷ  °, >0 and [0,1]. Let l:
 

ˆ{1,2, , }k Y  ° 
+
 be a -strongly proper composite 

multi-dividing loss. Then there exists a positive constant
 
C  

such that for any distribution D on {1,2, , }V k  satisfying 

above low-noise condition and for any multi-dividing ontol-

ogy function f: ˆV Y , we have 

regret ( )k

D f
 

1 1 1
,2 2

, ,
1 1

2
( ) (regret ( ))

(1 )

k k
k l

D a b a b
a b a

C
f

p p

+ +

+ +

= = +

. 

Proof. Let l:
 
{1,2, , } [0,1]k  ° 

+
 be a -strongly 

proper multi-dividing loss and :[0,1] Ŷ be a strictly 

increasing link function such that ˆ( , )l y y = 
1 ˆ'( , ( ))l y y . 

Let D be a distribution on {1,2, , }V k  satisfying above 

low-noise condition. Let f: V Ŷ . Then we infer  

regret ( )k

D f
=

1regret ( )k

D f
 

, 11
1 2 2

, ,
1 1

( [( ( ( )) ( )) ])
(1 )

a bk k

Va b a b
a b a

C
E f V V

p p

+

+

= = +  

=

, 11
1 2

, ,
1 1

2
( [ ( ( ), ( ( ))])

(1 )

a bk k
k

V la b a b
a b a

C
E R V f V

p p

+

+

= = +  

=

, 11

2
, ,

1 1

2
( [ ( ( ), ( )])

(1 )

a bk k
k

V la b a b
a b a

C
E R V f V

p p

+

+

= = +  

=

1 1 ,1
,2 2

, ,
1 1

2
( ) (regret ( ))

(1 )

a bk k
k l

D a b a b
a b a

C
f

p p

+ +

+ +

= = + .  

The first equality holds since is strictly increasing; the 

first inequality holds by the fact that for q [1, ], there 

exists a positive constant 
,q

C  such that for any distribution 

D on {1,2, , }V k
 
satisfying low-noise condition and any 

ˆ : V  [0,1] 

ˆregret ( )k

D  

11
,

, ,
1 1

ˆ( [ ( ) ( ) ])
(1 )

k k
qq q

Va b a b
a b a

C
E V V

p p

+

+

= = +

, 

and then taking q=2; the second inequality established since 

l’ is -strongly proper multi-dividing loss.  

At last, the desired result is obtained by setting 

C = ,

,
max{ }a b

a b

C .              

4. DESCRIPTION OF ONTOLOGY ALGORITHMS 

The new multi-dividing ontology learning algorithm can 
be used in ontology concepts similarity measurement and 
ontology mapping. The basic idea is: via the empirical ver-
sion of new model, the ontology graph is mapped into a line 
consisting of real numbers. The similarity between two con-
cepts then can be measured by comparing the difference be-
tween their corresponding real numbers. 

Algorithm 1. Ontology similarity measuring based on 
multi-dividing model using proper loss:  

Step 1. Mathematizing ontology information. For each 
vertex in ontology graph, we use a vector to express all its 
information. 

Step 2. By minimizing empirical version of Bayes multi-
dividing ontology l-risk or conditional Bayes multi-dividing 
ontology l-risk, we map the ontology graph to the real line 
and map the vertices of ontology graph to real numbers. 

Step 3. For each v  V(G), we use one of the following 

methods to obtain the similar vertices and return the out-

comes to the users.  

Method 1: Choosing a parameter M, return set {v' V(G), 

( ) ( ')f v f v M }.  

Method 2: Selecting an integer N, return the closest N 
concepts according to the value list in V(G).  

Clearly, method 1 looks fairer and method 2 can control 
the number of vertices that return to the users. 

Algorithm 2. Ontology mapping based on multi-dividing 
model using proper loss: 

Let G1, G2,… ,Gm be ontology graph correspond to on-
tology O1, O2,… , Om. 

Step 1. Mathematizing ontology information. For each 
vertex in ontology graph, we use a vector to express all its 
information. 



264     The Open Cybernetics & Systemics Journal, 2014, Volume 8 Gao et al. 

Step 2. By minimizing empirical version of Bayes multi-
dividing ontology l-risk or conditional Bayes multi-dividing 
ontology l-risk, we map the ontology graph to the real line 
and map the vertices of ontology graph to real numbers. 

Step 3. For v  V(Gi), where 1  i m, we use one of 

following methods to obtain the similar vertices and return 

the outcome to the users. 

 Method 1: Choose a parameter M, return set {v'  V(G-

Gi), ( ) ( ')f v f v M }. 

Method 2: Choose an integer N, return the closest N con-
cepts on the list in V(G-Gi). 

Also, method 1 looks fairer but method 2 can control the 
number of vertices that return to the users. 

5. ENTEXPERIMENTS 

In this section, four simulation experiments relevance on-
tology similarity measure and ontology mapping are de-
signed below. In order to adjacent to the setting of ontology 
algorithm, we use a vector with same dimension to express 
each vertex’s information. Such vector contains the informa-
tion of name, instance, attribute and structure of vertex. Here 
the instance of vertex refers to the set of its reachable vertex 
in the directed ontology graph.  

5.1. Experiment on Biology Data 

We use “Go” ontology O1 which was constructed in http: 

//www. geneontology. org. (Fig. 1 shows the basic structure 

of O1) for our experiment. P@N (Precision Ratio, see 

Craswell and Hawking [12] for more detail) is used to meas-

ure the equality of the experiment. We first give the closest 

N concepts for every vertex on the ontology graph by ex-

perts, and then we obtain the first N concepts for every ver-

tex on ontology graph by the algorithm and compute the pre-

cision ratio. In this experiment, we use canonical exponential 

loss function 
exp,can

ˆ( , )l y y = 2
ˆˆ

1 ( )
2 2

y yy
+ . Ontology 

algorithms in Huang et al., [5], Gao and Liang [6] and Gao 

and Gao [7] are employed to “Go” ontology, and we com-

pare the precision ratio which we get from the four methods. 

Several experiment results refer to (Table 1). 

When N= 3, 5, 10 or 20, the precision ratio by virtue of 
our algorithm is higher than the precision ratio determined 
by algorithms proposed in Huang et al., [5], Gao and Liang 
[6] and Gao and Gao [7]. In particular, when N increases, 
such precision ratios are increasing apparently. Therefore, 
the algorithm described in our paper is superior to the 
method proposed by Huang et al., [5], Gao and Liang [6] and 
Gao and Gao [7].  

GO

Molecular function Biological process Cellular component

Signal transducer Chaperone Development

process
Call growth

malntenance
and/or

ligand

Receptor Signaling

protein

receptor

Receptor associated

protein

Transmembrane
receptor

photoreceptor

Mating

Pheromone processing

…
…

…
…

…
…

…
…

 
Fig. (1). “Go” ontology. 

Table 1. The experiment data on biology ontology. 

 
P@3 Average Precision 

Ratio 

P@5 Average Precision 

Ratio 

P@10 Average Precision 

Ratio 

P@20 Average Precision 

Ratio 

Algorithm 1 46.76% 55.76% 65.91% 78.15% 

Algorithm in Huang et al., [5] 46.38% 53.48% 62.34% 74.59% 

Algorithm in Gao and Liang [6] 43.56% 49.38% 56.47% 71.94% 

Algorithm in Gao and Gao [7] 42.13% 51.83% 60.19% 72.39% 
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Nature Sound

The sound Generation & Transmission

Sound Characteristics

Kinds of Sound

We Can Hear We Can Not Hear

Music Noise Ultrasonic Wave Infrasonic Wave
  

Fig. (3). “Physical Education” Ontology O3.  

5.2. Experiment on Physical Education Data 

We use physical education ontologies O2 and O3 (the 

structures of O2 and O3 are presented in Figs. (2) and (3) 

respectively) for our second experiment. The goal of this 

experiment is determining the ontology mapping between O2 

and O3 via similarity matrix which is deduced by Algorithm 

1. P@N criterion is applied to measure the equality of the 

experiment. We first give the closest N concepts for each 

vertex on the ontology graph with the help of experts, and 

then we obtain the first N concepts for every vertex on on-

tology graph by the algorithm and compute the precision 

ratio. The loss function used in this experiment is squared 

loss function ˆ( , )sql y y
 
= 2ˆ(1 )y y  and canonical squared 

loss function 
,

ˆ( , )sq canl y y = 2
ˆ

(1 )
4

y y
. Also, ontology algo-

rithms in Huang et al., [5], Gao and Liang [6] and Gao et al., 

[11] are employed to “physical education” ontology, and we 

compare the precision ratio which we get from four methods. 

Several experiment results refer to (Table 2).  

The experiment results in Table 2 reveal that our algo-
rithm is more efficient than algorithms raised in Huang et al., 
[5], Gao and Liang [6] and Gao et al., [11] especially when 
N is sufficiently large.  

5.3. Experiment on Plant Data 

In this subsection, “PO” ontology O4 which was con-

structed in http: //www.plantontology.org. (Fig. 4 shows the 

basic structure of O4) is used to test the efficiency of our new 

Physics in Nature and Daily Life

Sustainable Dvelopment

Energy Conservation of EnergyVarious forms of Move& energy

Explore

Mechanical 

Movement
LightSound

Thermal Ph-

enomenon

Internal 

Energy

Electro 

Energy

Mecha 

Energy

Material Structure of matter

Properties of matter

Force Magnetic

Molecular 

Themal 

Motionic

The Motion & Int-

eraction of Matter

The use 

of new 
Materias

 
Fig. (2). “Physical Education” Ontology O2. 

Table 2. The experiment data on physical education ontology. 

 P@1 Average Precision Ratio P@3 Average Precision Ratio P@5 Average Precision Ratio 

Algorithm 2 70.97% 78.49% 90.32% 

Algorithm in Huang et al., [5] 61.29% 73.12% 79.35% 

Algorithm in Gao and Liang [6] 69.13% 75.56% 84.52% 

Algorithm in Gao et al., [11] 67.74% 77.42% 89.68% 
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algorithm for ontology similarity measuring. The P@N stan-

dard is used again for this experiment. The loss function we 

use logistic loss logl :{1,2, ,k}  ° 
+
 defined as 

log
ˆ( , )l y y = 

2
ˆ

ln(1 )
y y

e+  is a proper composite loss. Fur-

thermore, we apply ontology method in Wang et al., [4], 

Huang et al., [5] and Gao and Liang [6] to the “PO” ontol-

ogy. Calculating the accuracy by these three algorithms and 

compare the result to algorithm in our paper, part of the data 

refers to (Table 3). 

When N= 3, 5, or 10, the precision ratio in terms of our 

algorithm is higher than the precision ratio determined by 

algorithms proposed in Wang et al., [4], Huang et al., [5] and 

Gao and Liang [6]. In particular, when N increases, such 

precision ratios are increasing apparently. Therefore, the 

algorithm described in our paper is superior to the method 

proposed by Wang et al., [4], Huang et al., [5] and Gao and 

Liang [6].  

5.4. Experiment on Humanoid Robotics Data 

We use humanoid robotics ontologies O5 and O6 (con-

structed by Gao and Zhu [13], and the structures of O5 and 

O6 are presented in Figs. (5) and (6) respectively) for our last 

experiment. The goal of this experiment is to determine  

ontology mapping between O5 and O6 via similarity matrix  

Hip raise 

joint

Actuator attach 

directly to body Upperleg segment

Hip actuator

Knee actuator
Knee joint

Lowerleg segment

Ball foot   
Fig. (5). “Humanoid Robotics” Ontology O5. 

which are deduced by Algorithm 1. P@N criterion is applied 

to measure the equality of the experiment. Ontology algo-

rithms in Gao and Lan [14], Gao and Liang [6] and Gao et 

al., [11] are employed to humanoid robotics ontologies, and 

we compare the precision ratio which we get from four 

methods. Several experiment results refer to (Table 4).  
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Fig. (4). “PO” ontology O4. 

Table 3. The experiment data on plant ontology. 

 P@3 Average Precision Ratio P@5 Average Precision Ratio P@10 Average Precision Ratio 

Algorithm 1 48.85% 57.02% 72.63% 

Algorithm in Wang et al., [4] 45.49% 51.17% 58.59% 

Algorithm in Huang et al., [5] 42.82% 48.49% 56.32% 

Algorithm in Gao and Liang [6] 48.31% 56.35% 68.71% 
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Force sensor

Electrical machinery Bandage
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Force transducer

Antiseptic dressing

Frame feetFoot force sensor  

Fig. (6). “Humanoid Robotics” Ontology O6..  

In this experiment, k=2. The loss function we use 

exponential loss 
exp
l :

   {1,2, ,k}  ° 
+
 defined as 

exp
ˆ( , )l y y =

2
ˆ

2

y y

e  is a proper composite loss.  

The experiment results in Table 4 reveal that our algo-
rithm is more efficient than algorithms raised in Gao and Lan 
[14], Gao and Liang [6] and Gao et al., [11] especially when 
N is sufficiently large.  

6. CONCLUSION  

In this paper, we propose a new idea for multi-dividing 

ontology similarity measure and ontology mapping applica-

tion. The tricks are based on the proper multi-dividing loss 

function and some new fashions and theoretical characteris-

tics are employed for using such technologies. At last, simu-

lation data shows that multi-dividing ontology algorithms 

using proper loss functions have high efficiency in biology, 

physics education, plant science and humanoid robotics. 

CONFLICT OF INTEREST 

The authors confirm that this article content has no con-
flict of interest. 

ACKNOWLEDGEMENTS 

First we thank the reviewers for their constructive com-
ments in improving the quality of this paper. This work was 
supported in part by the PHD initial funding of the first 
author. We also would like to thank the anonymous referees 
for providing us with constructive comments and sugges-
tions. 

REFERENCES 

[1] A. Bouzeghoub and A. Elbyed, “Ontology mapping for web-based 

educational systems interoperability,” Interoperability in Business 

Information Systems, vol. 1, pp. 73-84, 2006.  

[2] B. Hu, S. Dasmahapatra, P. Lewis, and N. Shadbolt, “Ontology-

based medical image annotation with description logics,” In 15th 

IEEE International Conference on Tools with Artificial Intelli-

gence, California, Sacramento, USA, pp. 77-82, 2003. 

[3] F. Fonseca, E. Egenhofer, C. Davis, and G. Camara, “Semantic 

granularity in ontology-driven geographic information systems,” 

AMAI Annals of Mathematics and Artificial Intelligence - Special 

Issue on Spatial and Temporal Granularity, vol. 36, pp. 121-151, 

2001. 

[4] Y. Wang, W. Gao Y. Zhang, and Y. Gao, “Ontology similarity 

computation use ranking learning Method,” The 3rd International 

Conference on Computational Intelligence and Industrial Applica-

tion, Wuhan, China, pp. 20-22, 2010. 

[5] X. Huang, T. Xu, W. Gao and Z. Jia, “Ontology similarity measure 

and ontology mapping via fast ranking method,” International 

Journal of Applied Physics and Mathematics, vol. 1, pp. 54-59, 

2011. 

[6] W. Gao and L. Liang, “Ontology similarity measure by optimizing 

NDCG measure and application in physics education,” Future 

Communication, Computing, Control and Management, vol. 142, 

pp. 415-421, 2011. 

[7] Y. Gao and W. Gao, “Ontology similarity measure and ontology 

mapping via learning optimization similarity function,” Interna-

tional Journal of Machine Learning and Computing, vol. 2, pp. 

107-112, 2012. 

[8] X. Huang, T. Xu, W. Gao, and S. Gong, “Ontology similarity 

measure and ontology mapping using half transductive ranking,” In 

Proceedings of 2011 4th IEEE international conference on com-

puter science and Information technology, Chengdu, China, pp. 

571-574, 2011. 

[9] W. Gao and T. Xu, “Stability analysis of learning algorithms for 

ontology similarity computation,” Abstract and Applied Analysis, 

Vol. 2013, p. 9, 2013. 

[10] L. Zhu, F. Wu, and W. Gao, “Theoretical analysis for new multi-

dividing ontology algorithm based on AUC criterion,” Computing 

and Informatics, In press. 

[11] W. Gao, Y. Gao, and L. Liang, “Diffusion and harmonic analysis 

on hypergraph and application in ontology similarity measure and 

ontology mapping,” Journal of Chemical and Pharmaceutical Re-

Table 4. The experiment data on humanoid robotics ontology. 

 P@1 Average Precision Ratio P@3 Average Precision Ratio P@5 Average Precision Ratio 

Algorithm 2 27.78% 50.00% 58.89% 

Algorithm in Gao and Lan [14] 27.78% 48.15% 54.44% 

Algorithm in Gao and Liang [6] 22.22% 40.74% 48.89% 

Algorithm in Gao et al., [11] 27.78% 46.30% 53.33% 



268     The Open Cybernetics & Systemics Journal, 2014, Volume 8 Gao et al. 

search, vol. 5, no. 9, pp. 592-598, 2013. 

[12] N. Craswell and D. Hawking, “Overview of the TREC 2003 web 

track,” Proceeding of the Twelfth Text Retrieval Conference, 

Gaithersburg, Maryland, NIST Special Publication, pp. 78-92, 

2003.  

[13] W. Gao and L. Zhu, L, “Gradient learning algorithms for ontology 

computing,” Computational Intelligence and Neuroscience, Vol. 

2014, p. 12, 2014. 

[14] W. Gao and M. Lan, M, “Ontology mapping algorithm based on 

ranking learning method,” Microelectronics & Computer, vol. 9, 

pp. 59-61, 2011. 

 

Received: September 22, 2014 Revised: November 30, 2014 Accepted: December 02, 2014 

© Gao et al.; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-

licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 

 

 


